
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

87 | P a g e

www.ijacsa.thesai.org

A Parallel Simulated Annealing Algorithm for

Weapon-Target Assignment Problem

Emrullah SONUC

Department of Computer

Engineering

Karabuk University

Karabuk, TURKEY

Baha SEN

Department of Computer

Engineering

Yildirim Beyazit University

Ankara, TURKEY

Safak BAYIR

Department of Computer

Engineering

Karabuk University

Karabuk, TURKEY

Abstract—Weapon-target assignment (WTA) is a

combinatorial optimization problem and is known to be NP-

complete. The WTA aims to best assignment of weapons to

targets to minimize the total expected value of the surviving

targets. Exact methods can solve only small-size problems in a

reasonable time. Although many heuristic methods have been

studied for the WTA in the literature, a few parallel methods

have been proposed. This paper presents parallel simulated

algorithm (PSA) to solve the WTA. The PSA runs on GPU using

CUDA platform. Multi-start technique is used in PSA to improve

quality of solutions. 12 problem instances (up to 200 weapons and

200 targets) generated randomly are used to test the effectiveness

of the PSA. Computational experiments show that the PSA

outperforms SA on average and runs up to 250x faster than a

single-core CPU.

Keywords—Weapon-Target Assignment; Multi-start Simulated

Annealing; Combinatorial optimization; Parallel algorithms; GPU

I. INTRODUCTION

The Weapon-Target Assignment (WTA) problem is an NP-
complete combinatorial optimization problem at field of
military operation research [1]. The WTA Problem aims to find
best assignment of weapons to targets, to minimize the
expected damage of the defended area in order to increase
chances of survival. Several exact methods are studied in the
literature [2-4] but these methods can solve only small-size
problems. Thus, heuristic methods such as Simulated
Annealing [5, 6], Genetic Algorithm [6, 7], Tabu Search [6],
Variable Neighborhood Search [3, 6], Ant Colony [7-9] and
Particle Swarm Optimization [10] are proposed for the WTA.

Simulated Annealing (SA) is an efficient algorithm for
solving the WTA problem [5, 6]. The SA is a flexible
algorithm to implement any problem like the WTA. On the
other hand, each iteration of the SA depends on the previous
iteration. Therefore, runtime of the SA method is not as good
enough as other heuristic methods. Parallelization of the SA
can be presented as a solution to overcome this problem.

Nowadays, GPUs are very efficient hardware platform to
develop parallel algorithms. Several parallel implementations
of the SA on GPU are presented in the literature [11-12]. These
methods have achieved good quality results in the applied
areas. In this paper, a parallel SA algorithm (PSA) is developed
to solve the WTA problem. PSA has been developed on GPU
and has used the multi-start technique to obtain better results.

This paper is organized as follows. In Section II,
mathematical formulation and definition of the WTA problem
is introduced. The SA algorithm is described in Section III.
Section IV gives details about the PSA. Computational
experiments and results are presented in Section V and finally
Section VI states some conclusions.

II. THE WTA PROBLEM

In the WTA problem, assets of the defense want to destroy
attacks of the targets directed by offense. The defense has a
finite number of weapons to defend incoming threats from the
offense. There are two models as static and dynamic of the
WTA problem. In this paper, the static of the WTA problem
has been studied. In the static model, all inputs of the problem
are static and the assignments of weapons to targets are
performed in a single step. The expected damage for
assignments is evaluated after all weapon-target engagements
have been completed. Parameters and variables of the problem
are defined as follow:

 n , the number of the targets (1, 2, …, n),

 m , the number of the weapons (1, 2, …, m),

 vi , the value of the target i,

 pij , the probability of destroying by assigning the jth
weapon to the ith target,

 x = [xij], the decision variable that is nxm matrix, where

1 if weapon is assigned to target ,

0 otherwise

j i
x
ij


 


 (1)

The survival probability of target i when attacks weapon j

is  1
xij

pij . The problem can be formulated as follows:

 
1 1

() 1
ij

mn
x

i ij

i j

f v p
 

   (2)

1

. . 1, 1, 2,..., .
n

ij

i

s t x j m


  (3)

All weapons must be assigned to targets. In this paper, it is
assumed that number of target equals to number of weapons
and only one weapon can be assigned to one target.

This work was supported by the Scientific Research Coordination Unit of
Karabuk University under Grant KBU-BAP-15/2-DR-027.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

88 | P a g e

www.ijacsa.thesai.org

III. SIMULATED ANNEALING ALGORITHM FOR THE WTA

Simulated Annealing (SA) is a heuristic algorithm to obtain
optimum or near-optimum of a given function in a large space.
Kirkpatrick and Vecchi [13] have developed the SA in 1983 to
solve a problem for economic activities. In the SA algorithm,
each step generates a random solution using the current
solution that is achieved in the previous step. Acceptance of the
new solution depends on parameters of the method and the
difference between neighbor solutions. Metropolis criterion
[14] and Boltzmann distribution are used for the acceptance of
the new solution. Also, these methods ensure that the SA does
not stick to a local minimum or maximum. The acceptance
probability function is shown as follows:

  
1 if 0,

(- /) otherwise,

f
P f

exp f T

 
  



 (4)

where T is temperature at each step and decreasing by

cooling factor   for each step. P is acceptation probability of

the current solution in annealing process. A new candidate
solution is found by randomly selecting two weapons q and r,
then swapping assignments to targets between selected
weapons. Δf is the difference between two neighbors’ solutions
in a given function and defined as follows:

() ()q qq rq r rr qrv p p v p pf     (5)

After swapping operation, the new candidate solution is
calculated by formula as given below:

() () f ' ff    (6)

When T reaches to a temperature Tfinal that is determined as
a parameter by user, the method is terminated. Except for that,
time dependent and iteration number dependent termination
methods are also used. The pseudocode of the SA is as follows:

Algorithm 1: Pseudocode of the SA Algorithm.

Begin

T ← T0;

s ← s0;

f ← F(s);

sbest ← s;

fbest ← f;

while T > Tfinal and stopping criterion is not met yet do

 snew ← rnd(s);

 fnew ← F(snew);

 if P(f, fnew, T) > rnd(0,1) then

 s ← snew;

f ← fnew;

end if

 if f < fbest then

 sbest ← snew;

fbest ← fnew;

 end if

T ← T x a;

end while

End.

The function rnd(s) returns a random number sequence
using simple local search algorithms like swapping, 2-opt etc.
for permutation s and the function rnd(0,1) returns a random
number between 0 and 1.

The main steps that compose the SA algorithm for the
WTA problem are described below.

Stage 1: Initialization

1) Inputs: Probability of destroying matrix p, value of targets

v, array of permutation s of the weapons that is assigned to

each target

2) Set the SA parameters: T,Tfinal and a.

3) Solve the WTA using (2) as an initial solution f with the

permutation array s that is generated randomly.

Stage 2: The SA Execution

1) Generate two different index numbers randomly for s and

swap them.

2) Calculate
f

using (5).

3) Accept or not to accept the snew using  P f .

4) If the snew is accepted then set s = snew and go to step 8,

otherwise go to step 9.

5) Calculate the fnew using (6) and set f = fnew.

6) Set fbest = fnew and sbest = snew if f < fbest.

7) Set T = T . a;

8) Repeat Step 4 – Step11 until T is reached to Tfinal.

In the above stages, Stage 2 performs the SA algorithm
after initialization of required variables and parameters in Stage
1. Stage 2 searches a new solution by swapping between
weapon assignments of two targets (see Fig.1).

Fig. 1. Swapping between weapon assignments of the targets

IV. PARALELLIZATION ON GPU

Implementation of the PSA has been performed using
Compute Unified Device Architecture (CUDA) on Graphics
Processing Units (GPUs). CUDA is a C/C++ language
extension and a parallel computing platform created by
NVIDIA Corporation [15]. CUDA platform is also a tool for
General Purpose Computing on Graphics Processing Units
(GPGPUs). GPGPU can be defined as a parallel processing
methodology using GPUs for high-performance computing.

The technique of restarting a heuristic algorithm with
different configurations is called multi-start and it is an

Weapon 1 Weapon 2 Weapon 3 Weapon 4 Weapon 5

 Target 1 Target 2 Target 3 Target 4 Target 5

swapping

Weapon 1 Weapon 4 Weapon 3 Weapon 2 Weapon 5

 Target 1 Target 2 Target 3 Target 4 Target 5

Before

After

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

89 | P a g e

www.ijacsa.thesai.org

effective method to improve quality of solutions for
optimization problems. [16]. This technique is also used for the
SA and proved its effectiveness [17, 18]. Only one heuristic
method is run at a time and the method must be restarted to use
the multi-start technique for a single-core CPUs. On the other
hand, several heuristic methods run at the same time on a
multi-core CPUs and many-core GPUs. In this paper, the PSA
has been proposed with a multi-start technique.

In the PSA, every thread on GPU starts with a different s.
cuRAND is a pseudorandom number generator library defined
on CUDA platform and is used to provide multi-start
technique. All threads have a different seed and different seeds
are guaranteed to produce different sequences. Each thread
runs the SA independently that is given the steps at Stage 2 in
Section III. After each thread has run the SA, threads in a same
block communicate with each other using shared memory. The
best fitness value is found for each block in parallel using
reduction method. The flowchart of the PSA handled by each
thread is shown in Fig. 2.

After the best fitness values have been found for each block
of the GPU, they are transferred to CPU. These operations are
shown at the process before the Stop process in Fig. 2. Finding
the best fitness value has been operated in parallel using
reduction method. In the reduction method, half of the threads
on a block are active. Transfer of the best fitness value of each
block is performed by the first threads on blocks. In other
words, only first thread on each block is active for transferring.
After that, the best fitness value is found on CPU from the best
values of all blocks.

In this paper, 1024 threads per block on GPU have been
used. This means all threads on a block are used. When the
number of blocks is increased, runtime of the PSA increases,
too. The reason of this increment is accessing the global
memory at a same time from many threads. Several
configurations have been realized to optimize the runtime of
the PSA. These are given below.

 Short gives better performance than int therefore short
variables are used instead of int variables if suitable.

 --use_fast_math is a compiler parameter. It can be
chosen for faster mathematical functions.

 Accessing the global memory is very slow in the
CUDA platform. Shared memory is used for accessing
v (values of the targets) to read/write much faster.
Global memory must be used for the p (matrix array
stores probability of destroying targets) because of the
limitation of the shared memory.

Each thread performs the swapping operation on its own
permutation list. In this context, each thread requires its own a
copy of:

 The array of permutation,

 Two integer variables generated by randomly in each
step for swapping operation,

 The fitness value of a given function,

 The delta value (difference between current and
candidate solutions),

 The temperature value (parameter of the SA).

Fig. 2. Flowchart of the PSA

Generate Weapon-Target

Assignment List (s) Randomly

Calculate the f(π)

Generate two random index (q,r)

for the assignment list s

T < T(final)

Yes

Calculate the f(q,r)

(f(q,r) < 0 ||

exp(- f(q,r)/T) > rnd(0,1)

Perform swapping between q r and

Calculate the f(π) by f(π) f(π) + f

Yes

f(π) f(best)

 f(best) = f(π)

Yes

No

T = T . a (Cooling)

No

Find the best fitness value in a block

and write to global memory

No

Stop

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

90 | P a g e

www.ijacsa.thesai.org

V. COMPUTATIONAL EXPERIMENTS

There are no benchmark problem datasets/instances in the
literature for the WTA problem. That is why, various scenarios
created to test the performance for proposed methods. In this
paper, computational tests have been carried out on 12 problem
instances in different dimensions (available at:
http://web.karabuk.edu.tr/emrullahsonuc/wta). The values of
targets are generated as random numbers from the uniform
distribution in the range 25–100. The probabilities of
destroying targets for weapon-target assignments are generated
as random numbers from the uniform distribution in the range
0.60–0.90. Problem instances are generated with different
dimensions which are in the range 5–200. Dimensions of the
problem instances (WTA1-WTA12) are shown in Table I.

TABLE. I. DIMENSIONS OF THE PROBLEM INSTANCES FOR THE WTA

Problem Weapon Target

WTA1 5 5

WTA2 10 10

WTA3 20 20

WTA4 30 30

WTA5 40 40

WTA6 50 50

WTA7 60 60

WTA8 70 70

WTA9 80 80

WTA10 90 90

WTA11 100 100

WTA12 200 200

The performance of the SA depends on the parameters
belonging to the method. Parameter configurations are
determined as T =1000, Tfinal 0.1, α 0.99999. For each
problem, results have been obtained by averaging of 10
independent runs on CPU. All tests are performed on CPU with
Intel Xeon 2.4 GHz. The results of the SA on problem
instances are presented in Table II. The best, the worst, the
mean, the median and the standard deviation (SD) are listed in
Table II for all problem instances.

TABLE. II. RESULTS OF THE SA ON PROBLEM INSTANCES

Problem Best Worst Mean Median SD

WTA1 48.3640 48.3640 48.3640 48.3640 0.00

WTA2 96.3123 96.3123 96.3123 96.3123 0.00

WTA3 142.1070 142.1070 142.1070 142.1070 0.00

WTA4 248.0285 248.0285 248.0285 248.0285 0.00

WTA5 305.5016 305.5016 305.5016 305.5016 0.00

WTA6 353.0767 353.5702 353.3112 353.2610 0.14

WTA7 415.0528 415.7079 415.4068 415.4371 0.21

WTA8 498.1049 499.0167 498.5918 498.5860 0.30

WTA9 534.4408 536.2618 535.4559 535.5937 0.57

WTA10 594.0639 596.1228 595.3277 595.6466 0.72

WTA11 699.8357 702.1189 701.0054 701.2495 0.75

WTA12 1306.9126 1309.4616 1308.3382 1308.5187 0.86

NVIDIA GeForce GTX Titan X (3072 cores, 1.0 GHz) has
been used for running the PSA. Results of the PSA for each
problem instances are always same. The reason of this result is
that the random number sequence generated by each thread is
the same at every run. The PSA runs on GPU three times for
each problem instance to obtain the average runtime. 24 blocks
have been used on GPU to perform the performance
comparison with CPU. Table III represents the experimental

results of the PSA on problem instances. Table III also shows
the best and the mean of the SA (SA Best & SA Mean) for
comparing results. The best results are shown in bold.

TABLE. III. RESULTS OF THE PSA AND THE SA ON PROBLEM INSTANCES

Problem PSA SA Best SA Mean

WTA1 48.3640 48.3640 48.3640

WTA2 96.3123 96.3123 96.3123

WTA3 142.1070 142.1070 142.1070

WTA4 248.0285 248.0285 248.0285

WTA5 305.5016 305.5016 305.5016

WTA6 353.4801 353.0767 353.3112

WTA7 414.7340 415.0528 415.4068

WTA8 497.2972 498.1049 498.5918

WTA9 535.5422 534.4408 535.4559

WTA10 595.3730 594.0639 595.3277

WTA11 699.4143 699.8357 701.0054

WTA12 1307.0154 1306.9126 1308.3382

Table III shows that the SA has better accuracy in 4 of 12
problems according to best results. If the mean results are
considered, the SA has not any better accuracy than the PSA.
The PSA has better accuracy in 3 of 12 problems. The SA and
the PSA have same accuracy for 5 of 12 problems. The results
maybe the optimum fitness value for these 5 problem
instances. For each problem instance, runtime results in
seconds and speedups are given in Table IV. Speedup is
calculated according to a formula as below:

S

PSA

Aruntime
Speedup

runtime
 (7)

TABLE. IV. RUNTIMES IN SECONDS (S) AND SPEEDUPS

Problem SA (s) PSA (s) Speedup

WTA1 2985.92 19.28 155x

WTA2 2841.04 30.94 92x

WTA3 2752.49 17.56 157x

WTA4 2754.31 11.23 245x

WTA5 2760.78 12.15 227x

WTA6 2790.03 11.17 250x

WTA7 2787.45 14.09 198x

WTA8 2841.02 15.73 181x

WTA9 2868.79 18.12 158x

WTA10 2812.57 19.90 141x

WTA11 2805.83 20.60 136x

WTA12 2902.15 27.57 105x

Average 2985.92 19.28 155x

According to runtime results of the SA for problem
instances, runtimes are close to each other on instances and
average time is 2985.92 seconds. The average runtime of the
PSA is 19.28 seconds. Speedups have been shown also in
Fig.3. The average speedup of 12 problem instances is 155x. It
can be said that this acceleration is capable of making the SA
algorithm more efficient.

The reason why the speedup values do not increase linearly
is due to the access on the global memory. Accessing global
memory is efficient if there is a coalesced access to it. On the
PSA, there is no coalesced accessing in the process of writing
best results for each block to global memory. Thus, speedups
can be uphill or downhill for various dimensions (see Fig. 3).
The best speedup is 250x for the WTA6 problem instance and
the worst speedup is 92x for the WTA2 problem instance.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

91 | P a g e

www.ijacsa.thesai.org

If the PSA is considered, increasing the number of blocks
will cause more access to global memory. For this reason, this
will also increase the runtime as mentioned before. On the
other hand, running of the PSA by more threads means new
multi-start configurations. More multi-starts provide the
possibility of increasing the quality of the results. The results
obtained using 24, 48, 96, 128, 512 and 1024 blocks are shown
in Table V. The best results are shown in bold. If the number of
blocks is increased, then the quality of the results is improved.
Results of first five problem instances (WTA1-WTA5) are
same for all runs. When 1024 blocks are used for the PSA, all
results have been improved except first five problem instances.
Furthermore, when 1024 blocks are used for the PSA, runtime
is less than half of the SA method corresponding to the PSA
using 24 blocks.

Fig. 3. Speedup against CPU for problem instances

TABLE. V. RESULTS OF THE PSA ON PROBLEM INSTANCES FOR DIFFERENT NUMBER OF BLOCKS

Problem
Number of Blocks (Results are shown on the first column and runtimes in seconds are shown on the second column)

24 48 96 128 512 1024

WTA1 48.3640 19.28 48.3640 38.49 48.3640 75.96 48.3640 75.96 48.3640 383.39 48.3640 764.63

WTA2 96.3123 30.94 96.3123 59.76 96.3123 119.16 96.3123 119.16 96.3123 623.34 96.3123 1245.74

WTA3 142.1070 17.56 142.1070 33.25 142.1070 65.78 142.1070 65.78 142.1070 324.42 142.1070 642.34

WTA4 248.0285 11.23 248.0285 21.24 248.0285 41.66 248.0285 41.66 248.0285 217.12 248.0285 431.41

WTA5 305.5016 12.15 305.5016 23.18 305.5016 45.07 305.5016 45.07 305.5016 198.64 305.5016 391.05

WTA6 353.4801 11.17 353.3609 21.15 353.0102 41.03 353.0102 41.03 353.0102 233.08 353.0102 459.42

WTA7 414.7340 14.09 414.7340 26.85 414.7340 52.08 414.7340 52.08 414.6011 232.36 414.6011 428.31

WTA8 497.2972 15.73 497.2972 30.01 497.2972 58.23 497.2972 58.23 496.7948 278.67 496.7948 536.04

WTA9 535.5422 18.12 534.6199 34.76 534.3872 68.47 534.3872 68.47 533.9201 343.87 533.9201 670.37

WTA10 595.3730 19.90 594.4800 38.66 594.4658 76.44 594.4658 76.44 593.6951 382.01 592.7965 749.48

WTA11 699.4143 20.60 699.4143 40.25 699.4143 79.31 699.4143 79.31 697.6242 401.19 697.6242 787.51

WTA12 1307.0154 27.57 1306.8689 55.00 1304.4195 110.80 1304.4195 147.11 1304.4195 586.39 1302.9348 1181.51

VI. CONCLUSIONS

In this paper, the PSA is proposed to solve the WTA
problem. Multi-start technique is used in the PSA to obtain
better results on problem instances. The PSA runs on a GPU
using CUDA platform. Results are compared both quality and
acceleration. The PSA is up to 250x faster than a single-core
CPU. In terms of quality solutions, the PSA is capable of
delivering good quality results than the SA for problem
instances in average. In future, the PSA can be optimized for
coalesced accessing to improve runtime. Also, the PSA can be
applied dynamic WTA problem which is other model of the
WTA.

REFERENCES

[1] S. P. Lloyd and H. S. Witsenhausen, "Weapons allocation is NP-
complete," in 1986 Summer Computer Simulation Conference, 1986,
pp. 1054-1058.

[2] F. Ma, M. Ni, B. Gao, and Z. Yu, "An efficient algorithm for the
weapon target assignment problem," in Information and Automation,
2015 IEEE International Conference on, 2015, pp. 2093-2097.

[3] R. K. Ahuja, A. Kumar, K. C. Jha, and J. B. Orlin, "Exact and heuristic
algorithms for the weapon-target assignment problem," Operations
Research, vol. 55, pp. 1136-1146, 2007.

[4] T. Sikanen, "Solving weapon target assignment problem with dynamic
programming," Technical report, Mat− 2.4108 Independent research
projects in applied mathematics, 2008.

[5] A. M. Madni and M. Andrecut, "Efficient heuristic approach to the
weapon-target assignment problem," Journal of Aerospace Computing,
Information, and Communication, vol. 6, pp. 405-414, 2009.

[6] A. Tokgöz and S. Bulkan, "Weapon target assignment with
combinatorial optimization techniques," IJARAI) International Journal
of Advanced Research in Artificial Intelligence, vol. 2, 2013.

[7] J. Zhang, X. Wang, C. Xu, and D. Yuan, "ACGA algorithm of solving
weapon-target assignment problem," Open Journal of Applied Sciences,
vol. 2, p. 74, 2013.

[8] Z.-J. Lee, C.-Y. Lee, and S.-F. Su, "An immunity-based ant colony
optimization algorithm for solving weapon–target assignment problem,"
Applied Soft Computing, vol. 2, pp. 39-47, 2002.

[9] G. Shang, "Solving weapon-target assignment problems by a new ant
colony algorithm," in Computational Intelligence and Design, 2008.
ISCID'08. International Symposium on, 2008, pp. 221-224.

[10] X. Zeng, Y. Zhu, L. Nan, K. Hu, B. Niu, and X. He, "Solving weapon-
target assignment problem using discrete particle swarm optimization,"
in Intelligent Control and Automation, 2006. WCICA 2006. The Sixth
World Congress on, 2006, pp. 3562-3565.

[11] A. Ferreiro, J. García, J. G. López-Salas, and C. Vázquez, "An efficient
implementation of parallel simulated annealing algorithm in GPUs,"
Journal of Global Optimization, vol. 57, pp. 863-890, 2013.

[12] E. Sonuc, B. Sen, and S. Bayir, "A Parallel Approach for Solving 0/1
Knapsack Problem using Simulated Annealing Algorithm on CUDA

0

70

140

210

280

5 10 20 30 40 50 60 70 80 90 100 200

S
p

ee
d

u
p

Dimension of the problem instance

Performance of the PSA

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

92 | P a g e

www.ijacsa.thesai.org

Platform," International Journal of Computer Science and Information
Security, vol. 14, p. 1096, 2016.

[13] S. Kirkpatrick and M. P. Vecchi, "Optimization by simulated
annealing," science, vol. 220, pp. 671-680, 1983.

[14] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller, "Equation of state calculations by fast computing machines,"
The journal of chemical physics, vol. 21, pp. 1087-1092, 1953.

[15] Nvidia. (2017). "CUDA C Programming Guide". Available:
http://docs.nvidia.com/cuda/cuda-c-programming-guide/

[16] R. Martí, M. G. Resende, and C. C. Ribeiro, "Multi-start methods for
combinatorial optimization," European Journal of Operational Research,
vol. 226, pp. 1-8, 2013.

[17] F. Y. Vincent and S.-W. Lin, "Multi-start simulated annealing heuristic
for the location routing problem with simultaneous pickup and
delivery," Applied Soft Computing, vol. 24, pp. 284-290, 2014.

[18] S.-W. Lin, "Solving the team orienteering problem using effective multi-
start simulated annealing," Applied Soft Computing, vol. 13, pp. 1064-
1073, 2013.

