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Abstract—Weapon-target assignment (WTA) is a 

combinatorial optimization problem and is known to be NP-

complete. The WTA aims to best assignment of weapons to 

targets to minimize the total expected value of the surviving 

targets. Exact methods can solve only small-size problems in a 

reasonable time. Although many heuristic methods have been 

studied for the WTA in the literature, a few parallel methods 

have been proposed. This paper presents parallel simulated 

algorithm (PSA) to solve the WTA. The PSA runs on GPU using 

CUDA platform. Multi-start technique is used in PSA to improve 

quality of solutions. 12 problem instances (up to 200 weapons and 

200 targets) generated randomly are used to test the effectiveness 

of the PSA. Computational experiments show that the PSA 

outperforms SA on average and runs up to 250x faster than a 

single-core CPU. 
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I. INTRODUCTION 

The Weapon-Target Assignment (WTA) problem is an NP-
complete combinatorial optimization problem at field of 
military operation research [1]. The WTA Problem aims to find 
best assignment of weapons to targets, to minimize the 
expected damage of the defended area in order to increase 
chances of survival.  Several exact methods are studied in the 
literature [2-4] but these methods can solve only small-size 
problems. Thus, heuristic methods such as Simulated 
Annealing [5, 6], Genetic Algorithm [6, 7], Tabu Search [6], 
Variable Neighborhood Search [3, 6], Ant Colony [7-9] and 
Particle Swarm Optimization [10] are proposed for the WTA. 

Simulated Annealing (SA) is an efficient algorithm for 
solving the WTA problem [5, 6]. The SA is a flexible 
algorithm to implement any problem like the WTA. On the 
other hand, each iteration of the SA depends on the previous 
iteration. Therefore, runtime of the SA method is not as good 
enough as other heuristic methods. Parallelization of the SA 
can be presented as a solution to overcome this problem. 

Nowadays, GPUs are very efficient hardware platform to 
develop parallel algorithms. Several parallel implementations 
of the SA on GPU are presented in the literature [11-12]. These 
methods have achieved good quality results in the applied 
areas. In this paper, a parallel SA algorithm (PSA) is developed 
to solve the WTA problem. PSA has been developed on GPU 
and has used the multi-start technique to obtain better results. 

This paper is organized as follows. In Section II, 
mathematical formulation and definition of the WTA problem 
is introduced. The SA algorithm is described in Section III. 
Section IV gives details about the PSA. Computational 
experiments and results are presented in Section V and finally 
Section VI states some conclusions. 

II. THE WTA PROBLEM 

In the WTA problem, assets of the defense want to destroy 
attacks of the targets directed by offense. The defense has a 
finite number of weapons to defend incoming threats from the 
offense. There are two models as static and dynamic of the 
WTA problem. In this paper, the static of the WTA problem 
has been studied. In the static model, all inputs of the problem 
are static and the assignments of weapons to targets are 
performed in a single step. The expected damage for 
assignments is evaluated after all weapon-target engagements 
have been completed.  Parameters and variables of the problem 
are defined as follow: 

 n , the number of the targets (1, 2, …, n), 

 m , the number of the weapons (1, 2, …, m), 

 vi , the value of the target i, 

 pij , the probability of destroying by assigning the jth 
weapon to the ith target, 

 x = [xij], the decision variable that is nxm matrix, where  

1 if weapon   is assigned to target  ,

0 otherwise
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All weapons must be assigned to targets. In this paper, it is 
assumed that number of target equals to number of weapons 
and only one weapon can be assigned to one target. 
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III. SIMULATED ANNEALING ALGORITHM FOR THE WTA 

Simulated Annealing (SA) is a heuristic algorithm to obtain 
optimum or near-optimum of a given function in a large space. 
Kirkpatrick and Vecchi [13] have developed the SA in 1983 to 
solve a problem for economic activities. In the SA algorithm, 
each step generates a random solution using the current 
solution that is achieved in the previous step. Acceptance of the 
new solution depends on parameters of the method and the 
difference between neighbor solutions. Metropolis criterion 
[14] and Boltzmann distribution are used for the acceptance of 
the new solution. Also, these methods ensure that the SA does 
not stick to a local minimum or maximum. The acceptance 
probability function is shown as follows: 

  
1                           if     0,

(- / )         otherwise,

f
P f

exp f T

 
  



  (4) 

where T is temperature at each step and decreasing by 

cooling factor    for each step. P is acceptation probability of 

the current solution in annealing process. A new candidate 
solution is found by randomly selecting two weapons q and r, 
then swapping assignments to targets between selected 
weapons. Δf is the difference between two neighbors’ solutions 
in a given function and defined as follows: 

( ) ( )q qq rq r rr qrv p p v p pf       (5) 

After swapping operation, the new candidate solution is 
calculated by formula as given below: 

( ) ( )  f ' ff       (6) 

When T reaches to a temperature Tfinal that is determined as 
a parameter by user, the method is terminated. Except for that, 
time dependent and iteration number dependent termination 
methods are also used. The pseudocode of the SA is as follows: 

Algorithm 1: Pseudocode of the SA Algorithm. 

Begin 

T ← T0;  

s ← s0;  

f ← F(s); 

sbest ← s;  

fbest ← f; 

while T > Tfinal  and stopping criterion is not met yet do 

 snew ← rnd(s); 

 fnew ← F(snew); 

 if P(f, fnew, T) > rnd(0,1) then 

  s ← snew;  

f ← fnew; 

end if 

 if f < fbest then 

  sbest ← snew;  

fbest ← fnew; 

 end if 

T ← T x a; 

end while 

End.   
   

The function rnd(s) returns a random number sequence 
using simple local search algorithms like swapping, 2-opt etc. 
for permutation s and the function rnd(0,1) returns a random 
number between 0 and 1. 

The main steps that compose the SA algorithm for the 
WTA problem are described below. 

Stage 1: Initialization 

1) Inputs: Probability of destroying matrix p, value of targets 

v, array of permutation s of the weapons that is assigned to 

each target 

2) Set the SA parameters: T,Tfinal and a. 

3) Solve the WTA using (2) as an initial solution f with the 

permutation array s that is generated randomly. 

Stage 2: The SA Execution 

1) Generate two different index numbers randomly for s and 

swap them. 

2) Calculate
f

using (5). 

3) Accept or not to accept the snew using  P f . 

4) If the snew is accepted then set s = snew and go to step 8, 

otherwise go to step 9. 

5) Calculate the fnew using (6) and set f = fnew. 

6) Set fbest = fnew and sbest = snew if f < fbest. 

7) Set T = T . a; 

8) Repeat Step 4 – Step11 until T is reached to Tfinal. 

In the above stages, Stage 2 performs the SA algorithm 
after initialization of required variables and parameters in Stage 
1. Stage 2 searches a new solution by swapping between 
weapon assignments of two targets ( see Fig.1). 

 

Fig. 1. Swapping between weapon assignments of the targets 

IV. PARALELLIZATION ON GPU 

Implementation of the PSA has been performed using 
Compute Unified Device Architecture (CUDA) on Graphics 
Processing Units (GPUs).  CUDA is a C/C++ language 
extension and a parallel computing platform created by 
NVIDIA Corporation [15].  CUDA platform is also a tool for 
General Purpose Computing on Graphics Processing Units 
(GPGPUs). GPGPU can be defined as a parallel processing 
methodology using GPUs for high-performance computing. 

The technique of restarting a heuristic algorithm with 
different configurations is called multi-start and it is an 
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  Target 1       Target 2       Target 3       Target 4      Target 5
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effective method to improve quality of solutions for 
optimization problems. [16]. This technique is also used for the 
SA and proved its effectiveness [17, 18]. Only one heuristic 
method is run at a time and the method must be restarted to use 
the multi-start technique for a single-core CPUs. On the other 
hand, several heuristic methods run at the same time on a 
multi-core CPUs and many-core GPUs. In this paper, the PSA 
has been proposed with a multi-start technique. 

In the PSA, every thread on GPU starts with a different s. 
cuRAND is a pseudorandom number generator library defined 
on CUDA platform and is used to provide multi-start 
technique. All threads have a different seed and different seeds 
are guaranteed to produce different sequences. Each thread 
runs the SA independently that is given the steps at Stage 2 in 
Section III. After each thread has run the SA, threads in a same 
block communicate with each other using shared memory. The 
best fitness value is found for each block in parallel using 
reduction method. The flowchart of the PSA handled by each 
thread is shown in Fig. 2. 

After the best fitness values have been found for each block 
of the GPU, they are transferred to CPU. These operations are 
shown at the process before the Stop process in Fig. 2. Finding 
the best fitness value has been operated in parallel using 
reduction method. In the reduction method, half of the threads 
on a block are active. Transfer of the best fitness value of each 
block is performed by the first threads on blocks. In other 
words, only first thread on each block is active for transferring. 
After that, the best fitness value is found on CPU from the best 
values of all blocks. 

In this paper, 1024 threads per block on GPU have been 
used. This means all threads on a block are used. When the 
number of blocks is increased, runtime of the PSA increases, 
too. The reason of this increment is accessing the global 
memory at a same time from many threads. Several 
configurations have been realized to optimize the runtime of 
the PSA. These are given below. 

 Short gives better performance than int therefore short 
variables are used instead of int variables if suitable. 

 --use_fast_math is a compiler parameter. It can be 
chosen for faster mathematical functions. 

 Accessing the global memory is very slow in the 
CUDA platform. Shared memory is used for accessing 
v (values of the targets) to read/write much faster. 
Global memory must be used for the p (matrix array 
stores probability of destroying targets) because of the 
limitation of the shared memory. 

Each thread performs the swapping operation on its own 
permutation list. In this context, each thread requires its own a 
copy of: 

 The array of permutation, 

 Two integer variables generated by randomly in each 
step for swapping operation, 

 The fitness value of a given function, 

 The delta value (difference between current and 
candidate solutions), 

 The temperature value (parameter of the SA). 

 
Fig. 2. Flowchart of the PSA 
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V. COMPUTATIONAL EXPERIMENTS 

There are no benchmark problem datasets/instances in the 
literature for the WTA problem. That is why, various scenarios 
created to test the performance for proposed methods. In this 
paper, computational tests have been carried out on 12 problem 
instances in different dimensions (available at: 
http://web.karabuk.edu.tr/emrullahsonuc/wta). The values of 
targets are generated as random numbers from the uniform 
distribution in the range 25–100. The probabilities of 
destroying targets for weapon-target assignments are generated 
as random numbers from the uniform distribution in the range 
0.60–0.90. Problem instances are generated with different 
dimensions which are in the range 5–200. Dimensions of the 
problem instances (WTA1-WTA12) are shown in Table I. 

TABLE. I. DIMENSIONS OF THE PROBLEM INSTANCES FOR THE WTA 

Problem Weapon Target 

WTA1 5 5 

WTA2 10 10 

WTA3 20 20 

WTA4 30 30 

WTA5 40 40 

WTA6 50 50 

WTA7 60 60 

WTA8 70 70 

WTA9 80 80 

WTA10 90 90 

WTA11 100 100 

WTA12 200 200 

The performance of the SA depends on the parameters 
belonging to the method. Parameter configurations are 
determined as T =1000, Tfinal   0.1, α   0.99999. For each 
problem, results have been obtained by averaging of 10 
independent runs on CPU. All tests are performed on CPU with 
Intel Xeon 2.4 GHz. The results of the SA on problem 
instances are presented in Table II. The best, the worst, the 
mean, the median and the standard deviation (SD) are listed in 
Table II for all problem instances. 

TABLE. II. RESULTS OF THE SA ON PROBLEM INSTANCES 

Problem Best Worst Mean Median SD 

WTA1 48.3640 48.3640 48.3640 48.3640 0.00 

WTA2 96.3123 96.3123 96.3123 96.3123 0.00 

WTA3 142.1070 142.1070 142.1070 142.1070 0.00 

WTA4 248.0285 248.0285 248.0285 248.0285 0.00 

WTA5 305.5016 305.5016 305.5016 305.5016 0.00 

WTA6 353.0767 353.5702 353.3112 353.2610 0.14 

WTA7 415.0528 415.7079 415.4068 415.4371 0.21 

WTA8 498.1049 499.0167 498.5918 498.5860 0.30 

WTA9 534.4408 536.2618 535.4559 535.5937 0.57 

WTA10 594.0639 596.1228 595.3277 595.6466 0.72 

WTA11 699.8357 702.1189 701.0054 701.2495 0.75 

WTA12 1306.9126 1309.4616 1308.3382 1308.5187 0.86 

NVIDIA GeForce GTX Titan X (3072 cores, 1.0 GHz) has 
been used for running the PSA. Results of the PSA for each 
problem instances are always same. The reason of this result is 
that the random number sequence generated by each thread is 
the same at every run. The PSA runs on GPU three times for 
each problem instance to obtain the average runtime. 24 blocks 
have been used on GPU to perform the performance 
comparison with CPU. Table III represents the experimental 

results of the PSA on problem instances. Table III also shows 
the best and the mean of the SA (SA Best & SA Mean) for 
comparing results. The best results are shown in bold. 

TABLE. III. RESULTS OF THE PSA AND THE SA ON PROBLEM INSTANCES  

Problem PSA SA Best SA Mean 

WTA1 48.3640 48.3640 48.3640 

WTA2 96.3123 96.3123 96.3123 

WTA3 142.1070 142.1070 142.1070 

WTA4 248.0285 248.0285 248.0285 

WTA5 305.5016 305.5016 305.5016 

WTA6 353.4801 353.0767 353.3112 

WTA7 414.7340 415.0528 415.4068 

WTA8 497.2972 498.1049 498.5918 

WTA9 535.5422 534.4408 535.4559 

WTA10 595.3730 594.0639 595.3277 

WTA11 699.4143 699.8357 701.0054 

WTA12 1307.0154 1306.9126 1308.3382 

Table III shows that the SA has better accuracy in 4 of 12 
problems according to best results. If the mean results are 
considered, the SA has not any better accuracy than the PSA. 
The PSA has better accuracy in 3 of 12 problems. The SA and 
the PSA have same accuracy for 5 of 12 problems. The results 
maybe the optimum fitness value for these 5 problem 
instances. For each problem instance, runtime results in 
seconds and speedups are given in Table IV. Speedup is 
calculated according to a formula as below: 

S

PSA

Aruntime
Speedup

runtime
    (7) 

TABLE. IV. RUNTIMES IN SECONDS (S) AND SPEEDUPS  

Problem SA (s) PSA (s) Speedup 

WTA1 2985.92 19.28 155x 

WTA2 2841.04 30.94 92x 

WTA3 2752.49 17.56 157x 

WTA4 2754.31 11.23 245x 

WTA5 2760.78 12.15 227x 

WTA6 2790.03 11.17 250x 

WTA7 2787.45 14.09 198x 

WTA8 2841.02 15.73 181x 

WTA9 2868.79 18.12 158x 

WTA10 2812.57 19.90 141x 

WTA11 2805.83 20.60 136x 

WTA12 2902.15 27.57 105x 

Average 2985.92 19.28 155x 

According to runtime results of the SA for problem 
instances, runtimes are close to each other on instances and 
average time is 2985.92 seconds. The average runtime of the 
PSA is 19.28 seconds. Speedups have been shown also in 
Fig.3. The average speedup of 12 problem instances is 155x. It 
can be said that this acceleration is capable of making the SA 
algorithm more efficient. 

The reason why the speedup values do not increase linearly 
is due to the access on the global memory. Accessing global 
memory is efficient if there is a coalesced access to it. On the 
PSA, there is no coalesced accessing in the process of writing 
best results for each block to global memory. Thus, speedups 
can be uphill or downhill for various dimensions (see Fig. 3). 
The best speedup is 250x for the WTA6 problem instance and 
the worst speedup is 92x for the WTA2 problem instance. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 4, 2017 

91 | P a g e  

www.ijacsa.thesai.org 

If the PSA is considered, increasing the number of blocks 
will cause more access to global memory. For this reason, this 
will also increase the runtime as mentioned before. On the 
other hand, running of the PSA by more threads means new 
multi-start configurations. More multi-starts provide the 
possibility of increasing the quality of the results. The results 
obtained using 24, 48, 96, 128, 512 and 1024 blocks are shown 
in Table V. The best results are shown in bold. If the number of 
blocks is increased, then the quality of the results is improved. 
Results of first five problem instances (WTA1-WTA5) are 
same for all runs. When 1024 blocks are used for the PSA, all 
results have been improved except first five problem instances.   
Furthermore, when 1024 blocks are used for the PSA, runtime 
is less than half of the SA method corresponding to the PSA 
using 24 blocks. 

 
Fig. 3. Speedup against CPU for problem instances

TABLE. V. RESULTS OF THE PSA ON PROBLEM INSTANCES FOR DIFFERENT NUMBER OF BLOCKS 

Problem 
Number of Blocks (Results are shown on the first column and runtimes in seconds are shown on the second column) 

24 48 96 128 512 1024 

WTA1 48.3640 19.28 48.3640 38.49 48.3640 75.96 48.3640 75.96 48.3640 383.39 48.3640 764.63 

WTA2 96.3123 30.94 96.3123 59.76 96.3123 119.16 96.3123 119.16 96.3123 623.34 96.3123 1245.74 

WTA3 142.1070 17.56 142.1070 33.25 142.1070 65.78 142.1070 65.78 142.1070 324.42 142.1070 642.34 

WTA4 248.0285 11.23 248.0285 21.24 248.0285 41.66 248.0285 41.66 248.0285 217.12 248.0285 431.41 

WTA5 305.5016 12.15 305.5016 23.18 305.5016 45.07 305.5016 45.07 305.5016 198.64 305.5016 391.05 

WTA6 353.4801 11.17 353.3609 21.15 353.0102 41.03 353.0102 41.03 353.0102 233.08 353.0102 459.42 

WTA7 414.7340 14.09 414.7340 26.85 414.7340 52.08 414.7340 52.08 414.6011 232.36 414.6011 428.31 

WTA8 497.2972 15.73 497.2972 30.01 497.2972 58.23 497.2972 58.23 496.7948 278.67 496.7948 536.04 

WTA9 535.5422 18.12 534.6199 34.76 534.3872 68.47 534.3872 68.47 533.9201 343.87 533.9201 670.37 

WTA10 595.3730 19.90 594.4800 38.66 594.4658 76.44 594.4658 76.44 593.6951 382.01 592.7965 749.48 

WTA11 699.4143 20.60 699.4143 40.25 699.4143 79.31 699.4143 79.31 697.6242 401.19 697.6242 787.51 

WTA12 1307.0154 27.57 1306.8689 55.00 1304.4195 110.80 1304.4195 147.11 1304.4195 586.39 1302.9348 1181.51 

VI. CONCLUSIONS 

In this paper, the PSA is proposed to solve the WTA 
problem. Multi-start technique is used in the PSA to obtain 
better results on problem instances. The PSA runs on a GPU 
using CUDA platform. Results are compared both quality and 
acceleration. The PSA is up to 250x faster than a single-core 
CPU. In terms of quality solutions, the PSA is capable of 
delivering good quality results than the SA for problem 
instances in average. In future, the PSA can be optimized for 
coalesced accessing to improve runtime. Also, the PSA can be 
applied dynamic WTA problem which is other model of the 
WTA. 
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