
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

149 | P a g e

www.ijacsa.thesai.org

Instant Diacritics Restoration System for Sindhi

Accent Prediction using N-Gram and Memory-Based

Learning Approaches

Hidayatullah Shaikh, Javed Ahmed Mahar, Mumtaz Hussain Mahar

Department of Computer Science,

Shah Abdul Latif University,

Khairpur Mir’s,

Sindh, Pakistan

Abstract---The script of Sindhi Language is highly complex

due to many complexities including abundance of homographic

words. The interpretation of the text turns so tough due to the

possibility of multitudinal meanings associated with a

homographic word unless given specific pronunciation with the

help of diacritics. Diacritics help the readers to comprehend the

text easily. Due to the rapidly developing nature of this era,

people don’t bother writing diacritics in routine applications of

life. Besides creating difficulties for human reading, the absence

of diacritics does also make the text abstruse for machine

reading. Relatively alike human, machines may also lead to

semantic and syntactic complexities during computational

processing of the language. Instant diacritics restoration is an

approach emerged from the text prediction systems. This type of

diacritics restoration is an unprecedented work in the realm of

natural language processing, particularly in Indo-Aryan

languages. A proposition for a framework using N-Grams and

Memory-Based Learning approach is made in this work. The

grab-point of this mechanism is its 99.03% accuracy on the

corpus of Sindhi language during the experiments. The

comparative edge of instant diacritics restoration is its being

source of expedition in the performance of other natural

language and speech processing applications. The future

development of this approach seems vivid and clear for Sindhi

orthography is highly similar to those of Arabic, Urdu, Persian

and other languages based on this type of script.

Keywords--Sindhi Language; Instant Diacritics Restoration;

Text Prediction; N-Grams; Memory-Based Learning

I. INTRODUCTION

Sindhi orthography abounds in such words which possess
different meaning but identical morphological structure. These
words are called homographs in linguistics. The solution to
this problem is the assignment of diacritic marks to the
homographs. Sindhi orthography has two types of diacritic
signs used for the correct pronunciation of the words [1]. The
superscript signs assigned over the letters and subscript ones
beneath the letters. The routine scripts of Sindhi language are
written without diacritics such as newspapers, magazines and
books. Such absence brings about critical challenges facing
computational processing of the language [2]. In more
elaborate way, homographic words can be interchangeably
meant or interpreted if diacritics are absent. They may be
meant and pronounced erroneously as well. Without

disambiguation, it is rather difficult to figure out the intended
meaning and pronunciation of words during the process of
different linguistic and speech processing applications.

The automatic assignment of diacritics in Sindhi script is
essential for its processing into natural language and speech
applications [3] [4]. Therefore, the literature of this type of
research is replete with the details of the research works on
diacritic restoration particularly by using statistical approaches
[5] [2]. Firstly, the results of previous research works are not
satisfactory or at acceptable level and secondly, the instant
diacritics restoration is taken into consideration for the first
time for Sindhi. The objective of the study is the development
of automatic system that will convert the un-diacritized words
into the diacritized ones by assigning the diacritic signs
instantly during typing.

This research study aims at the development of automatic
system that assigns diacritics to the words which at first are
un-diacritized during typing instantly. For this, an
investigative study with the combination of N-Grams and
Letter-Level Approaches is carried out to meet the objective.

The rest of the paper is organized as follows: some
research contributions of diacritics restoration of Arabic
script-based languages are presented in Section II. The
overview of corpus preparation is given in Section III. The
proposed model for the task of instant diacritics restoration is
described and depicted in Section IV. In Section V, execution
process of developed software application is explained, while
in Section VI, implementation process of proposed model and
detail evaluation of calculated results are given and finally, the
paper is concluded in Section VII with core results and
conclusion.

II. RELATED WORK

The study of literature on this topic reveals that diacritics
restoration is performed at letter and word level. Diacritics
restoration has been centered by using various techniques at
word and letter level as well, like N-Grams [6] [7], Neural
Networks [8], Maximum Entropy [9], Memory-Based
Learning [10] [11], and Weighted Finite State [12]. Majority
of researchers has received encouraging results at word level
using N-Gram language model [6] [7] [2] whereas Memory-
Based Learning Approach [13] also yields good results at

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

150 | P a g e

www.ijacsa.thesai.org

letter level for the same task on Arabic script-based languages
including Sindhi [14].

The task of automatic Sindhi diacritics restoration is
mainly considered and taken by the researchers using
statistical approaches such as maximum entropy [1], N-grams
[5] and memory-based learning approach [14]. The acceptable
results are achieved with memory-based learning and N-gram
based language modeling approaches. Hence, the proposed
instant diacritics restoration mechanism is also based on the
N-Grams and Memory-Based Learning approaches. Making
use of this mechanism high accuracy in less time is attained.

III. CORPUS PREPARATION

As a matter of fact, two types of data sets are always
required for experimentation of diacritics restoration systems
[1]. Therefore, two types of corpora are designed and
developed. The first subsumes complete diacritized text and
the second undiacritized text. In addition to them, a lexicon is
also built. The experiments of the proposed method were
performed by making use of both types of data sets; corpora
and lexicon.

A data set of corpus having 2, 65,257 words are built in
Sindhi language for the purpose of training and testing the
system. The organized information of the developed corpus in
is given in Table I. The corpus is classified into three
segments: the antique books that are completely written with
diacritics like Shah Jo Rosalo [15], the poetry books that
possess partially diacritized text and the recently published
text of different genres which are entirely void of diacritics
like newspapers, magazines and text books.

TABLE. I. WORDS INFORMATION OF DEVELOPED SINDHI CORPUS

Type of Corpus
No. of

Sentences

No. of

Words

Fully Diacritized 8326 49,462

Partially Diacritized 10190 93,188

Not-Diacritized 14869 1,22, 607

Total 33385 2, 65,257

A. Developed Lexicon

In addition to the development of Sindhi corpus, a lexicon
of Sindhi text has been created for it is an essential component
for the proposed method of instant diacritization. The
mechanism of the instant diacritics restoration has the basis of
memory based learning approach with the aid of letter level
learning approach. Relatively, a table having the letters in
different forms of diacritized as well as un-diacritized is

developed. The specimen of this table is given in “Fig. 1”. It
should be noted here that each letter is assigned a unique
number for the identification. This identification is required
for the execution of the letters into the system.

IV. PROPOSED MODEL

The nine components work altogether as the constituents
of the proposed mechanism: Calculation of word probabilities,
specimens of letters, pattern matching and comparative
function of homographic structures, K-NN Classifier and
Class Labels, calculation of distance between instances using
overlap metric, calculate the features weight, nested hash and
tokenization. The proposed model in “Fig. 2” is used to show
the execution process of the complete system.

The corpus functions as a patron on which the probabilities
are dependent; hence, training corpus design is a delicate
matter to deal with. The more specified training corpus leads
to the more accurate probabilities which help the task to be
achieved conveniently. The N-grams are probabilistic models
that help the provision of direction for the assignment of
probabilities to the words. The unigram, bigram, trigram and
so on models are used for the calculation of probabilities. A
unigram is an N-gram of 1, bigram of 2, and consequently
trigram of 3, and so on with the progressive numbers [16]. The
text is a sequential series of structured words and can be given
representation as below:

For a bigram grammar

The trigram is same as bigram except the condition on two

previous words as under.

The ultimate product on the part of the system is the

provision of the option to the user to choose the suitable or
correct words as per the requirement. Therefore, the language
modeling is used for the computation of N-Grams up to quad
one. The probabilities of all the words given in the corpus are
individually calculated and stored into a specified table in the
designed lexicon. The purpose of this whole process is to
support the further process of the mechanism.

1 2 1(, ,... ,)n nP W W W W

1 1

1

() (|)
n

n

i i

i

P w P w w 





1 2 1

1

() (|)
n

n

i i i

i

P w P w w w 





(1)

(2)

(3)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

151 | P a g e

www.ijacsa.thesai.org

Fig. 1. Sample Database Table for Instant Diacritics Restoration

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

152 | P a g e

www.ijacsa.thesai.org

Fig. 2. Proposed Model for Sindhi Instant Diacritics Restoration

After the words probabilities are calculated, the system
starts computation of the available instances of each
diacritized letter. For this, almost all the possible instances of
all the letters in corpora calculated with every diacritic mark;
i.e., ُبَ, بِ , ب are calculated altogether with the surrounding
letter (N letter) on both left and right sides. At the same time,
the calculated instances are saved in a multidimensional array
ascending. At least 1224688 instances are taken from the
available corpus taking care of the particular notations given
to the white spaces (SP), commas (CO) and dots (DO) alike
[11] [13]. A vector based multidimensional array is used for
the storage of these examples. The corpus same from [1] is
given below and the related sample of feature vectors
extracted from the same source is presented in Table II.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

153 | P a g e

www.ijacsa.thesai.org

TABLE. II. SAMPLE LETTERS AND FEATURE VECTORS

Letters Feature Vectors

 ا ,ن ,ت ,ي ,SP ,ڏ ,ڇ ,SP ,ي ,ڍ : ڪَ

 پ ,ا ,س ,و ,CO, SP, SP ,ن ,و ,ي :

 SP, SP, SP, SP, SP ,ب ,SP ,ن ,هه ,ن : ڪِ

 ي ,SP ,ج ,و ,SP ,ٿ ,ڪ ,SP ,ي ,ٿ :

 ٿ ,ي ,ن ,هه ,SP ,ٿ ,هه ,SP ,ي ,ٿ :

 SP ,هه ,ر ,SP ,هه ,و ,ڻ ,ا ,م ,SP : ڪُ

 ن ,SP ,س ,ڀ ,SP ,ا ,ک ,SP ,ڙ ,و :

 SP ,ڪ ,ٿ ,ي ,SP ,و ,ر ,ض ,SP ,ٿ : ههَ

 ن ,د ,و ,SP ,ا ,ا ,س ,ا ,DO ,ي :

 SP ,م ,ا ,ن ,SP, SP ,ڪ ,هه ,SP ,ر :

 ر ,ي ,SP ,پ ,ن ,پ ,SP ,و ,ج ,ن :

 SP, SP, SP ,ڪ ,ن ,ن ,هه ,ن ,SP ,ن : ههِ

 ن ,SP ,هه ,ر ,SP ,هه ,ڻ ,م ,SP ,ڪ :

 چ ,SP ,پ ,ا ,ڻ ,م ,ا ,س ,SP ,ي :

 ض ,ر ,و ,ر ,SP, SP ,و ,د ,ن ,و : ههُ

 ڪ ,SP ,م ,ا ,ڻ ,ڻ ,ا ,پ ,SP ,و :

 ي ,SP ,س ,ا ,م ,چ ,ا ,SP ,ن ,و :

The absence of diacritical marks lead to many
complexities in the text regarding various possible vowels
sounds used in a word [11]. The word سکن may be taken for
example. The system performs comparison of the pattern of
the un-diacritized word with the diacritized ones available in
the corpus. System receives two types of words ِسُکَن and ِسِکَن.
Pattern matching process is carried out using regular
expression approach. The system, then, acknowledges the
pattern of un-diacritized input word with the diacritized one.
The suitable word on the basis of the highest probability is
fixed at the same location. Sample regular expression example
is given graphical representation below:

The complete group of examples is extracted from the

corpus for each complex letter structure. Each letter from the

set is taken one by one including the surrounding neighbors
from both sides. Then, the system compares with the available
instances in the corpus. The KNN classifier is used for this
comparison process. The value of each feature vector is
calculated and stored in the built-in metric. All of the values of
each feature are weighted and tagged with labels whether
matched or mismatched structures. These instances are
divided in accordance with the assigned labels. The instance
based learning algorithm is taken into use for the comparison
of new problem examples with instances stored already in the
memory. K-nearest neighbor algorithm is the proven simplest
method of an instance-based learning one; on the other hand,
K-NN method categorizes the objects based on the nearest
training example in the feature space. The core model is given
below [17]:

All of the input instances are compared individually with

the all the closest neighbors by using KNN classifier. Finally,
the system accepts the most frequent ones. A
multidimensional array in the system saves the training
examples containing feature vectors. The label specifies each
example according to its class. The highest numbers of votes
including with neighbors categorize the labeled entity.

While the process of classification undergoes, a unique test
instance is fed to the system, using the distance ∆(X, Y). This
computes the sameness of the new examples and all of the
other examples in memory. Overlap metric is used for this
task particularly considering the distance between instances
manifested by N-features. It is only to show the distance per
feature [13] [14].

The metric performs counting of the entire number of
feature-values in both patterns regardless of matching or
mismatching for the addition of the domain knowledge bias to
the weight.

For the weight of the features, statistical information is
calculated through an examination to reach the better
predictors of the class tags. Information Gain (IG) examines
each feature individually and prepares measurement for the
information to be produced and stored knowledge for valid
class label.

Immediately after the above process, hash table begins the
process of storing data in an associated network manner. This
table stores the data in the array format and each data value
receives a unique index within. This way the data is quickly
accessed after knowing the index of the required data. Hashing
technique is widely known technique that is used for the
conversion of a range of key values to a range of the array
indexes.

Tokenization of the script of Sindhi is also one of the
challenging tasks due to the complexities in the text,

1

()

()

k

i

i
q

f x

f x
k




1

(,) (,)
n

i i

i

X Y x y


 

(4)

(5)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

154 | P a g e

www.ijacsa.thesai.org

particularly the complexities of homographic structures. A
compound word needs to be entitled as a single token but the
embedded space required in between creates ambiguity for the
tokenization process. The embedded space is required in
between due to the cursive nature of Sindhi script and its
connecting and non-connecting letters. Therefore, more
attention is to be paid because of these complications facing
the tokenization. Mahar’s [1] tokenization model is taken in
this research project.

In fact, Sindhi script abounds in homographic words. As a
result, the ambiguity is often observed when the text is
undiacritized. A simple word and root word of Sindhi قسم has
such constituent letters which may be interchangeably taken in
almost two way as ُقسََم (an oath) (noun), ُقسِِم (kind) (noun). The
taken words without diacritics are exactly identical. Thus, they
create ambiguity for NLP applications. Viterbia Algorithm is
one of the efficient approaches to find the most likely path
transitions in such cases. This algorithm produces the most
likely possible word on the basis of the highest probability
value calculated by using N-grams [16].

V. EXECUTION PROCESS OF APPLICATION

Text prediction is the basic idea that ignition to the Instant
Diacritics Restoration. The former was proposed to save time
and energy simultaneously by offering assumptions of
possible upcoming set of letters after typing the beginning
letters of words. By typing each succeeding letter, the user
receives possible suggestions in different forms of popup to
adopt with a single click only rather than typing all the
upcoming letters of the word. For example, user wants to type
the word انسان.

After typing the first letter, he will be shown some popup
carrying some most possible and frequently used words
begging with ا. Then, he will type the next letter ن, he will
again be shown some set of most possible and frequently used
set of letters after the two begging ones. If he finds the same
letter in the popup, he would just hit a single click to get the
word typed rather than hitting five strokes for all the five
letters in the word.

This function of text prediction gave birth to the idea of
instant diacritics restoration. The predictive approach of
instant diacritization facilitates the user to type the words with
their exact pronunciations which further helps in reading it
correctly. The editor actively and simultaneously works with
the user and assigns the diacritics automatically. The user has
to type the words only. The diacritics will automatically be
assigned immediately. For example, the user wants to type the
word ُانِۡسَان, he first types the first letter ا, the editor will assign

it the superscript diacritic sign initially, for the system is
assigned this task for every first letter. After ا, the user types
another letter ن, the system will immediately calculate the
probability of the possible diacritics to this couple of letters

and assign to ن, simultaneously the to ا will change

into .

The user is to type س now, as he types س the system again
goes for the calculation of the probability of the possible
diacritics to this combination of letters and assigns the

diacritics to all of the three according the highest found match
in the corpus. Now, the user moves ahead to type ا and then ن,
the system will simultaneously work with the letters and the
diacritics while calculating the probabilities of the letters and
diacritic signs from the given corpus. After the user is done
with typing ُانِۡسَان, the system finalizes its diacritics with the
same procedures detailed above. The same process takes place
by typing each letter in the editor.

VI. IMPLEMENTATION AND RESULTS

The training and testing set design stand as the foundations
to the final results. Therefore, both are mainly concerned till
the results are derived. Different techniques like Word Error
Rat, Diacritic Error Rate, Precision, Recall and F-measures
were in the use previously. We have also taken Precision
which is one of them due to the fact that its performance is
observed to be better at letter level approach [1]. Moreover,
the complex letters assign the target features for being trained;
hence, the task is performed at the lowest basic level of letters.
Three mainly used diacritics, i.e., Zabar, Zair and Pesho in
Sindhi are considered in experiments.

The Letter Level Learning method processes every letter
taken from the corpus and creates a ten letters vector. Each
vector is put into an array. Consequently, each letter is pre-
processed with its calculated probability. After receiving the
testing data set, system throbs the comparison of all the
undiacritized letters of the testing data set with the pre-
processed data available in the arrays and after the said
process replace the letter with the diacritized one.

From the total sets of instances taken from the developed
corpus, 159330 instances are experimentally tested from each
set. The testing examples are approximately 15% of the whole
set of examples. Table III, Table IV and V depict the results
attained with N=1, 3 and 5. The tables show the ambiguous
letters extracted from the developed corpus, the precision as
the result by applying instance-based learning at letter level.

TABLE. III. AMBIGUOUS SET OF LETTERS, EXAMPLES AND ACHIEVED

PRECISION WITH N=1

Ambiguous Set
Total

Examples

Tested

Examples

Precision

Achieved

 %91.22 14889 99,262 اَ اُ اِ

 %93.51 2383 15,881 بَ بُ بِ

ٻُ ٻِ ٻَ 6,447 967 92.71%

 %90.84 2212 14,752 ڀُ ڀِ ڀَ

 %91.36 5126 34,169 تَ تُ تِ

ٿِ ٿَ ٿُ 11,223 1684 90.33%

ٽِ ٽَ ٽُ 10,227 1534 92.42%

 %90.01 701 4,673 ٺُ ٺِ ٺَ

 %89.19 127 850 ثَ ثُ ثِ

پُ پِ پَ 12,273 1841 92.62%

 %88.24 6253 41,688 جَ جُ جِ

 %83.61 823 5,486 جَهه جِهه جُهه

ڄِ ڄَ ڄُ 782 117 94.56%

ڃِ ڃَ ڃُ 238 36 94.62%

 %90.41 2828 18,852 چُ چِ چَ

ڇِ ڇَ ڇُ 10,293 1544 92.55%

 %93.77 3118 20,790 حُ حِ حَ

خِ خَ خُ 8,039 1206 95.71%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

155 | P a g e

www.ijacsa.thesai.org

 %97.09 4572 30,477 دُ دِ دَ

ڌِ ڌَ ڌُ 993 149 94.22%

ڊِ ڊَ ڊُ 274 41 95.11%

ڏِ ڏَ ڏُ 25,622 3843 94.63%

ڍِ ڍَ ڍُ 691 104 96.12%

 %90.81 80 532 ذُ ذِ ذَ

 %90.01 7205 48,033 رُ رِ رَ

ڙِ ڙَ ڙُ 1,943 291 93.32%

 %90.54 127 849 زُ زِ زَ

 %94.90 3635 24,237 سُ سِ سَ

 %94.32 149 994 شُ شِ شَ

 %94.88 89 592 صُ صِ صَ

 %95.62 35 231 ضُ ضِ ضَ

 %89.21 126 838 طُ طِ طَ

 %90.01 30 201 ظُ ظِ ظَ

 %93.79 1713 11,421 عُ عِ عَ

 %93.88 126 841 غُ غِ غَ

 %94.56 1926 12,840 فُ فِ فَ

 %93.76 83 556 ڦُ ڦِ ڦَ

 %94.55 91 605 قُ قِ قَ

 %95.64 8226 54,837 ڪُ ڪِ ڪَ

 %95.99 4267 28,444 کُ کِ کَ

 %94.06 2215 14,766 گُ گِ گَ

 %81.58 374 2,495 گهِ گهَ گه

ڳِ ڳَ ڳُ 348 52 94.93%

 %92.27 26 173 ڱُ ڱِ ڱَ

 %92.77 8268 55,121 لُ لِ لَ

 %95.74 9041 60,270 مُ مِ مَ

 %90.31 15169 101,126 نُ نِ نَ

 %90.91 19 126 ڻُ ڻِ ڻَ

 %95.05 8350 55,664 وُ وِ وَ

 %88.64 12605 84,033 ههِ ههَ هه

ءِ ءَ ءُ 76 11 93.03%

 %90.88 18904 126,023 يُ يِ يَ

TABLE. IV. AMBIGUOUS SET OF LETTERS, EXAMPLES AND ACHIEVED

PRECISION WITH N=3

Ambiguous Set
Total

Examples

Tested

Examples

Precision

Achieved

 %94.55 14889 99,262 اَ اُ اِ

 %96.86 2383 15,881 بَ بُ بِ

ٻِ ٻُ ٻَ 6,447 967 94.66%

 %95.14 2212 14,752 ڀُ ڀِ ڀَ

 %96.31 5126 34,169 تَ تُ تِ

ٿِ ٿَ ٿُ 11,223 1684 92.23%

ٽِ ٽَ ٽُ 10,227 1534 93.76%

 %95.85 701 4,673 ٺُ ٺِ ٺَ

 %94.63 127 850 ثَ ثُ ثِ

 %92.62 1841 12,273 پَ پُ پِ

جِ جَ جُ 41,688 6253 92.54%

 %87.41 823 5,486 جَهه جِهه جُهه

ڄِ ڄَ ڄُ 782 117 95.33%

ڃِ ڃَ ڃُ 238 36 97.02%

 %94.48 2828 18,852 چُ چِ چَ

ڇِ ڇَ ڇُ 10,293 1544 95.88%

 %96.77 3118 20,790 حُ حِ حَ

 %96.07 1206 8,039 خُ خِ خَ

دَ دُ دِ 30,477 4572 98.21%

ڌِ ڌَ ڌُ 993 149 95.99%

ڊِ ڊَ ڊُ 274 41 96.79%

ڏِ ڏَ ڏُ 25,622 3843 97.13%

ڍِ ڍَ ڍُ 691 104 96.88%

 %93.22 80 532 ذُ ذِ ذَ

 %93.66 7205 48,033 رُ رِ رَ

ڙِ ڙَ ڙُ 1,943 291 96.22%

 %94.34 127 849 زُ زِ زَ

 %95.42 3635 24,237 سُ سِ سَ

 %97.32 149 994 شُ شِ شَ

 %95.07 89 592 صُ صِ صَ

 %97.65 35 231 ضُ ضِ ضَ

 %93.44 126 838 طُ طِ طَ

 %93.71 30 201 ظُ ظِ ظَ

 %95.17 1713 11,421 عُ عِ عَ

 %95.48 126 841 غُ غِ غَ

فَ فُ فِ 12,840 1926 95.06%

 %96.72 83 556 ڦُ ڦِ ڦَ

 %95.15 91 605 قُ قِ قَ

 %96.99 8226 54,837 ڪُ ڪِ ڪَ

 %97.01 4267 28,444 کُ کِ کَ

 %95.06 2215 14,766 گُ گِ گَ

 %87.25 374 2,495 گهِ گهَ گه

 %95.91 52 348 ڳُ ڳِ ڳَ

 %94.87 26 173 ڱُ ڱِ ڱَ

 %96.44 8268 55,121 لُ لِ لَ

 %97.14 9041 60,270 مُ مِ مَ

 %96.53 15169 101,126 نُ نِ نَ

 %95.11 19 126 ڻُ ڻِ ڻَ

 %96.57 8350 55,664 وُ وِ وَ

 %91.84 12605 84,033 ههِ ههَ هه

 %93.78 11 76 ءَ ءُ ءِ

 %96.77 18904 126,023 يُ يِ يَ

TABLE. V. AMBIGUOUS SET OF LETTERS, EXAMPLES AND ACHIEVED

PRECISION WITH N=5

Ambiguous Set
Total

Examples

Tested

Examples

Precision

Achieved

 %98.26 14889 99,262 اَ اُ اِ

 %99.17 2383 15,881 بَ بُ بِ

ٻُ ٻِ ٻَ 6,447 967 99.09%

 %99.74 2212 14,752 ڀُ ڀِ ڀَ

 %99.22 5126 34,169 تَ تُ تِ

ٿِ ٿَ ٿُ 11,223 1684 99.04%

ٽِ ٽَ ٽُ 10,227 1534 98.51%

 %99.64 701 4,673 ٺُ ٺِ ٺَ

 %99.61 127 850 ثَ ثُ ثِ

 %99.55 1841 12,273 پَ پُ پِ

 %98.14 6253 41,688 جَ جُ جِ

جُههجَهه جِهه 5,486 823 94.38%

ڄِ ڄَ ڄُ 782 117 99.23%

ڃِ ڃَ ڃُ 238 36 99.88%

 %99.66 2828 18,852 چُ چِ چَ

ڇِ ڇَ ڇُ 10,293 1544 99.17%

 %99.47 3118 20,790 حُ حِ حَ

 %99.47 1206 8,039 خُ خِ خَ

 %99.91 4572 30,477 دُ دِ دَ

ڌِ ڌَ ڌُ 993 149 99.87%

ڊِ ڊَ ڊُ 274 41 99.73%

ڏِ ڏَ ڏُ 25,622 3843 99.44%

ڍِ ڍَ ڍُ 691 104 99.81%

 %99.88 80 532 ذُ ذِ ذَ

 %99.22 7205 48,033 رُ رِ رَ

ڙِ ڙَ ڙُ 1,943 291 99.11%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

156 | P a g e

www.ijacsa.thesai.org

 %99.14 127 849 زُ زِ زَ

 %98.66 3635 24,237 سُ سِ سَ

 %98.93 149 994 شُ شِ شَ

 %99.28 89 592 صُ صِ صَ

 %99.33 35 231 ضُ ضِ ضَ

 %99.17 126 838 طُ طِ طَ

 %99.32 30 201 ظُ ظِ ظَ

 %99.37 1713 11,421 عُ عِ عَ

 %99.57 126 841 غُ غِ غَ

 %99.22 1926 12,840 فُ فِ فَ

ڦَ ڦُ ڦِ 556 83 99.13%

 %97.55 91 605 قُ قِ قَ

 %99.18 8226 54,837 ڪُ ڪِ ڪَ

 %99.63 4267 28,444 کُ کِ کَ

 %99.26 2215 14,766 گُ گِ گَ

 %94.52 374 2,495 گهِ گهَ گه

 %99.01 52 348 ڳُ ڳِ ڳَ

 %99.61 26 173 ڱُ ڱِ ڱَ

 %99.14 8268 55,121 لُ لِ لَ

 %99.93 9041 60,270 مُ مِ مَ

 %99.44 15169 101,126 نُ نِ نَ

 %98.66 19 126 ڻُ ڻِ ڻَ

 %99.51 8350 55,664 وُ وِ وَ

 %97.35 12605 84,033 ههِ ههَ هه

 %98.17 11 76 ءَ ءُ ءِ

 %99.26 18904 126,023 يُ يِ يَ

Three different window sizes were tested to reach the best
one. Among the window sizes of two, six, and ten letters (i.e.,
N= 1, 3, 5), the calculated accuracy with N=1 is 92.52%,
accuracy of 95.12% is received when N=3 and 99.03% is
calculated with N=5. Window size for the greatest and most
efficient accuracy was observed up to ten nearest
accompanying letters (i.e., N=5) where N stands for the
number of letters from each side of the letter under process.
The calculated cumulative precisions with different
experimented window sizes are shown in “Fig.3”.

Fig. 3. Calculated Cumulative Precision with Different Window Sizes

The figures, given in the tables, show that a considerable
difference can be found among them; in addition to this, the
calculated results reveal that the window size is also decisive

in increase and decrease of results. Therefore, N=5 proves to
be the most suitable and reliable window comparatively.

VII. CONCLUSION

Automatic instant diacritic restoration is essential
component for many NLP applications. The restoration is
attempted with the most possible intelligent use of two
approaches; N-grams based and Letter Level Learning-based.
Each of both methods has their own specifications along with
the limitations. The proposed mechanism in this study is
experimented on our developed corpus of Sindhi language.
The window (N=5) is found the best one after testing different
sizes. The Precision with this window is achieved at 99.03%.
The proposed method is also capable for the instant diacritics
restoration of Arabic, Urdu and Persian languages after slight
modifications.

REFERENCES

[1] J. A. Mahar, “Statistical Approaches to Diacritics Restoration in Sindhi
Text to Speech Synthesis System”, PhD Thesis, Hamdard University,
Karachi, Pakistan, 2012.

[2] S. A. Mahar, “Comparative Analysis of Vowel Restoration for Arabic
Script Based Languages Using N-Gram Models”, MS Thesis, Shah
Abdul Latif University, Khairpur, Pakistan, 2014.

[3] A. Al-Wabil, H. Al-Khalifa, W. Al-Saleh, “Arabic Text-To-Speech
Synthesis: A Preliminary Evaluation”, In Proceedings of the 2007 World
Conference on Educational Multimedia, Hypermedia and
Telecommunications, Vancouver, Canada, Pp. 4423-4430, 2007.

[4] A. A. Shah, A. W. Ansari, L. Das, “Bi-Lingual Text to Speech Synthesis
System for Urdu and Sindhi”, National Conference on Emerging
Technology, Pp. 126-130, 2004.

[5] J. A. Mahar, G. Q. Memon, “Automatic Diacritics Restoration for
Sindhi”, Sindh University Research Journal (Science Series), Vol. 43,
No. 1, Pp. 43-50, June 2011.

[6] Y. Gal, “An HMM Approach to Vowel Restoration in Arabic and
Hebrew”, ACL-02 Workshop on Computational Approaches to Semitic
Languages, Association for Computational Linguistic, Philadelphia,
Pennsylvania, Pp.1-7, 2002.

[7] A. A. Harby, M. A. Shehawey, R. S. Barogy, “A Statistical Approach
for Quran Vowel Restoration”, ICGST International Journal on
Artificial Intelligence and Machine Learning, Vol. 8, No. 3, Pp. 9-16,
2008.

[8] H. Sultan, “Automatic Arabic Diacritization using Neural Network”,
Scientific Bulletin of Faculty of Engineering Ain-Shams University:
Electrical Engineering, Vol. 36, No. 4, Pp.501-510, 2001.

[9] I. Zitouni, R. Sarikaya, “Arabic Diacritic Restoration Based on
Maximum Entropy Models”, Computer Speech and Language, Vol. 23,
Pp. 257-276, 2008.

[10] R. Mihalcea, V. Nastase, “Letter Level Learning for Language
Independent Diacritics Restoration”, Proceedings of 6th Workshop on
Computational Language Learning, Vol. 20, Pp.1-7, 2002.

[11] S. Kubler, E. Mohamed, “Memory-based vocalization of Arabic”, In
Proceedings of the LREC Workshop on HLT and NLP within the Arabic
World, Pp. 58-62, Morroco, 2008.

[12] R. Nelken, S. M. Shieber, “Arabic Diacritization using Weighted Finite-
State Transducers”, ACL Workshop on Computational Approaches to
Semitic Languages, Association for Computational Linguistic, Pp.79-86,
Michigan, 2005.

[13] R. F. Mihalcea, “Diacritic Restoration: Learning from Letters Versus
Learning from Words”, Lecture Notes in Computer Science, Vol. 2276,
Pp. 96-113, 2002.

[14] J. A. Mahar, G. Q. Memon, H. Shaikh, “Sindhi Diacritics Restoration
By Letter Level Learning Approach”, Sindh University Research
Journal (Science Series), Vol. 43, No. 2, Pp. 119-126, December 2011.

[15] K. Aadvani, “Shah Jo Risalo”, 2nd Edition, Sindhica Academy, Karachi,
Pakistan, 2009.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

157 | P a g e

www.ijacsa.thesai.org

[16] D. Jurafsky, J. H. Martin, “Speech and Language Processing: An
Introduction to Natural Language Processing”, Computational Linguistic
and Speech Recognition, Prentice-Hall, Pp. 300-307, 2000.

[17] Y. Hifny, “Restoration of Arabic Diacritics Using Dynamic
Programming," COLING, 2012.

[18] C. Lee, G. G. Lee, “Information Gain and Divergence-Based Feature
Selection for Machine Learning-Based Text Categorization”, An
International Journal of Information Processing and Management,
Special Issue: Formal Methods for Information Retrieval, Vol. 42, Issue
1, Pp. 155-165, January 2006.

