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Abstract—This paper presents a computational approach for 

solving optimal control problem for a class of nonlinear discrete-

time systems. We focus on problem in which a pre-specified N 

local subsystems are given to describe the studied systems. For 

such problem, we derive an output feedback controller and a cost 

function such that the resulting closed-loop system is 

asymptotically stable and the closed loop cost function is 

minimized. The main results are demonstrated numerically 

through the implementation of the proposed algorithm for 

solving the optimal control problem of a mechanical system. 
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I. INTRODUCTION 

The optimal control of discrete-time nonlinear systems 
remains an important open control problem in control 
engineering and continue to attract significant attention of  
control research [1-4 ]. For the static output feedback, the 
reader is referred to [5-9]. It is well known that the optimal 
control of linear systems with respect to a quadratic cost 
function can be achieved by solving the Riccati equation [10]. 

However, when studying the nonlinear discrete-time 
systems we often need to solve either nonlinear partial 
difference or differential Hamilton-Jacobi-Bellman equation 
[11,12], which is generally a difficult task. Despite recent 
advances [13-17], some of the developed techniques have 
limited applicability because of the strong conditions imposed 
on the system. Other implemented solutions are often partial 
and of significant complexity because of the need to find an 
accurate model of the system. In practice, an accurate 
complete model of the studied system isn't usually available. 
The full model information cannot be available at the time of 
design or it might change or the system can have different 
operating conditions. For all the previous reasons  and even 
for  the reason of  simplifying the tuning and the maintenance 
of the system we need to  rely on local model control based on 
local modeling.  Motivating by what discussed above we will 
investigate the best closed loop performance that is achievable 
by an output feedback controller based on multi-model 
approach [18-20]. 

The rest of the paper is organized as follows: Section 2 
provides the description of the studied systems and problem 
statements. The proposed strategy of the optimal output 
feedback control of the discrete time nonlinear studied 
systems is presented in section 3. Main results are derived and 
summarized by an efficient algorithm. Then, the validity of 

the proposed approach is illustrated by simulation results in 
Section 4. Concluding remarks are given in Section 5. 

II. PROBLEM STATEMENTS 

Let's consider in this study a class of nonlinear and 
uncertain discrete-time systems described as: 
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where ( )
n

x k 
  

is the state vector, ( )
m

u k  is the 

input vector and ( )
p

y k   is the output vector. The 

functions f (.) and h(.) depend on a vector of parameters θ(k) 
which is considered unknown, but evolving in a convex 

domain ID . 

In the literature, various approaches [15,16] like 
identification, linearization or convex polytopic 
transformation can be used to determine the multi-model 
description of a complex system. 

In this paper, we assume that the nonlinear mathematical 
model of the studied system is known. By linearization around 

its several operating points , 1...0 0( , ) i Ni iu x  , different and 

simpler local models are obtained. So the complex studied 
system described initially by a nonlinear mathematical model 
(1) can be then described by a library of N local linear model 
characterized by the following state space equations: 
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where N is the number of local models, ( )x ki
n

 , ( )y ki  

p
  and ( )u ki  are respectively the state vector, the output 

vector and the control input vector of the i-th submodel noted 

Mi . 

The state space matrices , ,i i iA B C  are constant of 

appropriate dimensions to be determined. 
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and let's note: 
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Each model of the library, involving N  sub-models, 

contributes to the process description with a degree of trust 
measured by a validity coefficient. The validity appears to be 
of great importance if realizing their influence on the 
performances of the global control law. 

Indeed, the use of the validity coefficients is a convenient 
mean to experiment with sub-collection of systems and is also 
useful to put more emphasis on the performances of some 
particular instances of parameter values. In the literature 
several methods were proposed for the estimation of these 
validities. In this paper the approach proposed in [19] is 
considered for validities computing. Because the 
implementation of linear controllers is straightforward and 
cost effective, the multi-model approach was also proposed in 
the following section as a solution for the control and analysis 
of the nonlinear studied discrete systems. 

III. OPTIMAL OUTPUT FEEDBACK CONTROL FOR DISCRETE-

TIME NONLINEAR SYSTEMS 

In this section, our objective is to design an output 
feedback controller for the studied system and a cost function 
such that the resulting closed-loop system is asymptotically 
stable and the closed loop cost function is minimized. 

Assume for each isolated subsystem Mi , a local controller 

is designed. 

 ( ) ( )i i iu k F y k        (5) 

where 
m p

Fi


  is the control gain matrix to be 

determined by minimizing the proposed  quadratic function: 
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where 0
n n

i

T

iQ Q


   and iR   are the state and input 

weighting matrices. 

Applying controller (5) to the system (2) results in the 
closed-loop system: 
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The performance index associated with the studied system 

(1) is then the following quadratic function 
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where i , 1, ,i N  are the validity
 
coefficients of the 

proposed multi-model description. 

Using the solution of the recurrent equation (7), one can 
write: 
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and substituting (9) in (8), the global  performance index 
(8) can be rewritten: 
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and presented in a simplified expression: 
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(11) 

are symmetric positive definite matrices, solutions of the 
following Lyapunov equations: 

    

       0 ;      1,...,

T

i i i i i i i i i i

T T

i i i i i i

A B FC P A B FC P

Q C F R FC i N

   
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 (12)

 

The dependency of the optimal solution on the initial 
condition can be removed when considering the average value 

function (.)E such that: 

 
 
 0 0

T

i i i nE x Px I   (13) 

Based on equation (13), the corresponding closed-loop 
cost function will be written as follows: 

  
1

N

i i
i

J trace P


    (14) 

A. Main Results 

In order to derive the necessary conditions of  optimal gain 
matrices of the feedback control, the optimization problem 
formulated by (11) is reduced to the minimization of  the 
following Lagrangian: 
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where , 0, 1,...,n n T

i i i i N        selected to be 

symmetric positive definite matrices are Lagrange multipliers. 

By using the gradient matrix operations [20,21], the 

necessary conditions for Fi , Pi  and i , to be optimal are 

given by 
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Solving the first equation in (16), one obtains the optimal 

control gain matrix
i

F  of the local model Mi : 
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and from the two others equations we can determine the 

matrices i  and  all the matrices Pi  solutions of the Lyapunov 

equations (12). Indeed, based on (16), i  
and Pi  are also the 

solutions of the following equations: 
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To solve instantly the three equations (17), (18) and (19), and 

to calculate all the introduced matrices ,  i iF P  and  i , we 

propose an iterative algorithm which can be summarized in 
the following way: 

Algorithm (A) 

 

Step1 : Initialize 1n    

Select 0, 0Q Ri i 
 
and an initial matrix 0iF

 
as initial 

starting value such that 0i i i iA B F C  is a stable for each 

local model. 

 

Step 2 :  nth iteration 

 calculate inF
 
 (17)

 
 

 solve  2 , 0in inG F P    and  calculate in . 

 solve  3 , 0in inG F P   ; and get the matrix inP . 

 calculate   

     
1 1

( 1)
T T T T
i in i i i in i in i i in ii n B P B R B P A C C CF

 
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Step 3 :  incrementation  

   repeat step 2 until verifying  
 1in i n

P P 


 
 

End 

  is a prescribed small number used to check the 

convergence of the algorithm. 

B. The Optimal Controller Design 

Given the predetermined matrices
iF , the system (1) can be 

controlled in an optimal manner by the following control 

policy ( )u k , which guarantees the minimization of the infinite 

horizon cost function (8). 
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then the closed-loop system (1)  admits the realization: 
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C. Stability Analysis 

In order to prove the asymptotic stability of the controlled 

system, let's consider ( ( ))iV x k  the Lyapunov function defined 

by the following quadratic form: 

 
( ( )) ( ) ( )T

i i i iV x k x k Px k
         (22) 

where
n n

iP


  are the symmetric positive definite 

matrices solution of the equation (12) and (16). 

The stability of the controlled system (7) is ensured if the 
difference of  Lyapunov function (22) along the trajectory of 
(7) is  negative definite. 

One has 
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Using the third equation of system (16), (19) becomes: 
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T T T
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According to the properties of matrices Qi  and Ri , the 

matrix 
T T

Q C F RF Ci i i i  is symmetric positive definite. The 

variation of the quadratic Lyapunov function, expressed by 
(24), is then negative defined and the controlled system is then 
asymptotically stable. 

IV. APPLICATION TO A MECHANICAL SYSTEM 

In order to demonstrate the effectiveness and merits of the 
proposed optimal output feedback controller over the existing 
results, the following mechanical system described by a spring 
damper mass M is considered: 
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where: 

 1M Kg  is the mass of the system, 

 1 1c  , 2 1.155c   and 3 0.13c   are constants, 

 ( )u t  is the exerted force for the spring, 

 3( )x t  is the nonlinear term. 

and rewritten in the following state space equations: 
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(26)  

where 1( )x t  is the velocity of the mass and
 2 ( )x t  the 

position of the same mass. 

By using an appropriate discretization method and a 
suitable sampling period 0.05T s , it comes the discrete-time 

state space equations: 
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we pointed out that the nonlinearity of the system is 
considered as uncertainty and the term of linearities depend on  

1( )x k  which is assumed to vary in the range  1.5 1.5 . 

According to section 3, and based on the multimodel 
approach the nonlinear dynamical system (26) can be 
described by: 
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where 
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and  
0.9 -0.1155

1 2 0.1 1
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1 0

1 2 2 1
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The validity coefficients of this system are expressed as 
follows: 

 

3
( )

1
( ( ))

1
0.5

1 6.75

x k
x k  

 
( ( )) ( ( ))

2 1 1 1
1x k x k  

 
Using the proposed iterative algorithm the following 

results are derived: 

 The quadratic criterion: 

J = 0.7727 ,1
J = 0.97082  

 The symmetric positive definite matrices: 
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 ,
0.1412 0.1148

P =
1 0.1148 0.6315

 
  

0.2735 0.1806
P =
2 0.1806 0.6973

 
    

 The symmetric positive definite matrices of Lagrange 
multipliers: 

 ,
5.9552 -5.2978

Γ =
1 -5.2978 7.0525

 
  

6.9638 -5.3482
Γ =

2 -5.3482 9.8512

 
    

and all the gain matrices of the proposed optimal control 
are calculated: 

  ,F = -1.0621 1.7891  
1  F = -0.3236 1.4268

2
 

To show the effectiveness of the proposed optimal output 
feedback control we have carried out some simulations shown 
from figure 1 to 2. It appears from figure1 a satisfactory 
stabilization of the state variables of the controlled discrete-
time studied system. The figure 2 illustrates the evolution of  
the proposed optimal output feedback control  law. Indeed, its 
high performances shows the aptitude of the proposed  
Algorithm (A) to be implemented and to give  interesting  
results for the output feedback control of a large class of 
nonlinear discrete-time systems. 

V. CONCLUSION 

An iterative algorithm is proposed to derive all the gain 
matrices of the designed optimal feedback control. The 
nonlinear discrete-time studied system is first represented by a 
multi local linear models. Then, an output feedback controller 
based on the multimodel control approach and minimizing a 
quadratic criterion is derived assuring the asymptotic stability 
of the controlled system. The gradient resolution of the 
Lagrangian functions and the iterative algorithm allowed the 
calculus of all the gain matrices. An illustrative example of a 
mechanical system is considered and the simulation results 
show the effectiveness of the proposed control strategy. 

 
Fig. 1. State trajectories subject to the proposed control 

 
Fig. 2. The proposed optimal control law 
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