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Abstract—In this paper, a new nonlinear discrete-time PID is
proposed to control Hammerstein model. This model is composed
by a static nonlinearity gain associated to a linear dynamic sub-
system. Nonlinear polynomial structures are used to identify and
to control this class of systems. The determination of parameters
is based on the use of RLS algorithm. A coupled two-tank process
is given to illustrate the effectiveness of the proposed approach.
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I. INTRODUCTION

There are well-developed theories for the control and
identification of linear time invariant (LTI) systems. In modern
applications, physical systems are nonlinear. This drives an
increasing need for modeling techniques able to adequately
describe these systems behavior. Nonlinear system identifi-
cation is an important tool wish can be used to improve
control performance. Indeed, there are serval types models that
describe perfectly this process such as Hammerstein model [1],
polynomial structures [2] [3], voltera [4], NARMAX [5], etc.

Hammerstien model is consisted of a static nonlinearity fol-
lowed by a linear dynamic system. Many chemical processes
have been modeled with it, for examples, pH neutralization
processes [6], distillation columns [7] [8], polymerization
reactor [9] [10] and dryer process [11].

Polynomial models are possibly the most attractive of all
nonlinear representations due to the inherent simplicity of
the model structure and because they revealed the dynamical
properties of the underlying system is a very straightforward
manner [12].

Serval nonlinear predictive control algorithms are existed
based on PID [13], neural networks [14], B-spline neural
networks [15], Fuzzy logic [16] adaptive predictive control
[17] [18]. In most algorithms for nonlinear predictive control,
their performance functions are minimized using nonlinear
programming techniques to compute the future manipulated
variables in on-line optimization. This can make the realization
of the algorithms very difficult for real-time control.

An important advantage of block-structured models is that
they allow the use of standard linear controller design methods.
This is possible because static nonlinearity in the process
can be negated by inserting the nonlinear inverse of static
nonlinearity at the appropriate place in the loop [19] [20] [21].

For the Hammerstein model, reverse nonlinear tuning must
be placed at the output of the controller, wish only sees the
linear dynamic part of the process and conventional linear
controller methods can be used. Often static nonlinearity may
be non-invertible this present a limit for this method.

In this work, a polynomial structure is employed to describe
the nonlinear static function of Hammerstein model. Recursive
least square RLS algorithm is used to estimate the unknown
parameters. A new nonlinear discrete PID is proposed. It is
composed by a linear controller associated with the inverse of
the nonlinearity wish is obtained by an approximation using
polynomial structure.

The remainder of this paper is organized as follows:
first, a Parametric identification of the Hammerstein model is
defined. Second, a proposed nonlinear polynomial structure of
Hammerstein model is described. Third, a method to control
the model is presented. After that, the proposed identification
and control method are applied to a coupled two-tank system.

II. PARAMETRIC IDENTIFICATION OF MODEL
HAMMERSTEIN

Assume that the Hammerstein model of Fig. 1 is composed
of a nonlinear block f (.) associated with a linear sub-system
B(q−1)
A(q−1) . It is described by:{

yk =
B(q−1)
A(q−1) vk

vk = f (uk)
(1)

with:

A
(
q−1
)

= 1 + a1q
−1 + . . .+ anAq

−nA

B
(
q−1
)

= b1q
−1 + . . .+ bnBq

−nB

vk = d1 uk + d2 u
2
k + . . .+ dN u

N
k

q−1 delay operator, uk input of the system, yk output, vk the
unmeasurable internal signal and wk represents the modeling
error, external disturbances, etc.

In order to have a unique parameterization of the Ham-
merstein model structure, the first coefficient of the nonlinear
function f (.) equals to 1, d1 = 1, [22] [23].
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Fig. 1 – Hammerstein model structure.

The output yk is given by:

yk = −
na∑
i=1

ai yk−i +

nb∑
i=1

bi

(
uk−i +

N∑
p=2

dp upk−i

) (2)

Eq. 2 can be put in the following form:

yk = ΦTk θk (3)

with:

Φk =

(
Yk
Uk

)
, θk =

(
ak
bk
sk

)
,

Yk =


−yk−1

−yk−2

...
−yk−na

 , Uk =


U1k

U2k
...

UNk

 ,

Ujk =


ujk−1

ujk−2

...
ujk−nb

 , for j = 1, 2, . . . , N

ak =


a1k

a2k

...
ank

 , bk =


b1k
b2k

...
bnk

 , sk =


d2kbk
d3kbk

...
dNkbk

 ,

Φk and θk ∈ RnR where nR = na +Nnb, Yk ∈ Rna ,
Uk ∈ RNnb , Ujk ∈ Rnb , ak ∈ Rna , bk ∈ Rnb

and sk ∈ RNnb .

The parameter vector θk can be estimated using the RLS
algorithm. It is described by the following equations:

θ̂k = θ̂k−1 + Pk Φk εk

Pk = Pk−1 − Pk−1 Φk ΦT
k Pk−1

1+ΦT
k Pk−1Φk

εk = yk − θ̂Tk−1 Φk

(4)

where Pk is the adaptation gain matrix, Φk is the observa-
tion vector and θk is the parameters vector.

III. PROPOSED NONLINEAR POLYNOMIAL STRUCTURE
OF THE HAMMERSTEIN MODEL

We propose a nonlinear polynomial structure of f (.). It’s
described by :

vk = f (uk) =
r∑
i=1

wi,k U
[i]
k =

r∑
i=1

w̃i,k Ũ
[i]
k (5)

with w i,k, i = 1, 2, . . . , r ∈ R1×ni (resp.
w̃ i,k ∈ R1×ni ) are variable vector and Uk =

(uk, uk−1, . . . , uk−nu+1)
T ∈ Rnu where nu ≤ nA.

U
[i]

k is the Kronecker power of the vector Uk defined
as [12]:{

U
[0]
k = 1,

U
[i]
k = U

[i−1]
k ⊗ Uk = Uk ⊗ U [i−1]

k , for i ≥ 1
(6)

⊗ designates the symbol of the Kroneker product,

Ũ
[i]
k ∈ Rni , for i = 1, 2, . . . , r and ni =

(
n+ i− 1

i

)
,

is the non-redundant. It’s defined as:

Ũ
[1]
k = U

[1]
k = Uk

Ũ
[i]
k =



uik
ui−1
k uk−1

...
ui−1
k uk−n

...
ui−2
k u2

k−n
...
ui−3
k u3

k−1
...
uik−n



, for i ≥ 2
(7)

when the repeated components of the redundant (ith −
power) U [i]

K are omitted and r is the polynomial order.

In this work, we have modeled vk = f (uk) by a nonlinear
polynomial structure as:

vk = w̃1
1,k Uk + w̃1

2,k Ũ
[2]
k + w̃1

3,k Ũ
[3]
k +O(U

[4]
k ) (8)

with Uk =

(
uk
uk−1

)
, w̃1

1,k = ( 1 1 ) ,

w̃1
2,k = ( α1,k α2,k α3,k ) and w̃1

3,k =
( α4,k α5,k α6,k α7,k )

and the linear dynamic system by:

yk = −a1,k yk−1 − a2,k yk−2 + b1,k vk−1 + b2,k vk−2 (9)

Equations 8 and 9 give:

yk = −a1,k yk−1 − a2,k yk−2 + w̃2
1,k Uk−1

+w̃2
2,k Ũ

[2]
k−1 + w̃2

3,k Ũ
[3]
k−1 +O(U

[4]
k )

(10)
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with:
w̃2

1,k = (b1,k ; b1,k + b2,k)
T

w̃2
2,k = (b1,kα1,k ; b1,kα2,k ; b1,kα3,k + b2,k α1,k )

T

w̃2
3,k = (b1,k α4,k ; b1,k α5,k ; b1,k α6,k ;

b1,kα7,k + b2,k α4,k)
T

Eq. 10 can be written in the form (3) with:

Φk =


−yk−1

−yk−2

Uk−1

Ũ
[2]
k−1

Ũ
[3]
k−1

 and θk =


a1,k

a2,k

w̃2
1,k

w̃2
2,k

w̃2
3,k


The parameters αi,k, i = 1, 2, . . . , 7, will be successively

estimated by the RLS algorithm.

IV. NONLINEAR PID CONTROLLER OF THE
HAMMERSTEIN MODEL

In this section, the control of the Hammerstein model with
a nonlinear PID will be discussed. Firstly, we presented a
nonlinear PID based on the exact inverse of f (.). After that, we
proposed a method to determine the inverse of the nonlinearity
using the polynomial structure wish will be used to control the
Hammerstein model.

A. Nonlinear PID controller using the exact inverse

The design strategy discrete-time control is implemented
by introducing the inverse function of Hammerstein model
[20]. Fig. 2. illustrates the control of Hammerstein model. It
is based PID regulator as [24]:

uk = Kp εk +Ki Te

k∑
j=0

εj + Kd
εk − εk−1

Te
(11)

where εk = yck − ymk is the error, yck is the set point, ymk
is the response of the model, Te is the sampling period and
Kp, Ki and Kd are the proportional, integral and derivative
controller gains, respectively.

( ).fPID

c

ky m

kykukε
kv+

-

( )
( )

1

1

B q

A q

−

−

kv ( )1
.f −

Fig. 2 – Nonlinear PID controller of a Hammerstein model [21].

This technique is valid only if the nonlinear fonction f (.)
is invertible.

B. Proposed PID controller based-on polynomial structure

The proposed method consisted to approximate the inverse
nonlinear gain using the polynomial structure, noted f−1

app (.).
It eliminated the effect of the nonlinear gain in the Hammer-
stein model. Hence, a new nonlinear PID, noted PIDNL, is
obtained wish is described as follow:

PIDNL = PID f−1
app (.) (12)

( ).fPID

c

ky
m

ky
kukε

kvkvɶ+

-

( )1
.appf

− ( )
( )

1

1

B q

A q

−

−

Fig. 3 – Proposed nonlinear PID controller of a Hammerstein
model.

Noting that ṽ(k) is an approximate signal of vk, we have
chosen the following structure of uk = f−1

app (ṽk):

uk = w3
1,k Vk + w̃3

2,k Ṽ
[2]
k + w̃3

3,k Ṽ
[3]
k +O(V

[4]
k ) (13)

with Vk =

(
ṽk
ṽk−1

)
, w3

1,k = ( β1,k β2,k ) ,

w̃3
2,k = ( β3,k β4,k β5,k ) and w̃3

3,k =
( β6,k β7,k β8,k β9,k ).

By the identification of equations 8 and 13, we obtain:

β1,k = 1; β2,k = −1; β3,k = −α1,k;
β4,k = 2 α1,k − α2,k; β5,k = α2,k − α3,k;
β6,k = 2 α2

1,k − α4,k;
β7,k = 3 α1,k α3,k − 6 α2

1,k + 3 α4,k − α5,k;
β8,k = −5 α1,k α2,k + 5 α2

1,k + 2 α1,k α2,k − 3 α4,k

− 2 α5,k − α6,k ;
β9,k = α4,k + 3 α2

1,k + α1,k α2,k + α2,k α3,k + 3 α5,k

+ α6,k.

V. ILLUSTRATE EXAMPLE: COUPLED TWO-TANK
SYSTEM

A two-tank system is used to illustrate the performance of
the proposed polynomial structures of the Hammerstein model
and the effectiveness of the proposed control approach.

A. System description

The system setup is a model of a chemical plant fragment.
Very often tanks are coupled through pipes and the reactant
level and flow has to be controlled. In the proposed work, only
pump 1, tank 1, tank 2, and corresponding sensors have been
used in SISO configuration, Fig. 4.

Pump

Tank 1

Tank 2

Basin

Fig. 4 – Diagram for two-tank system.
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B. Mathematical modeling

The coupled tank system is described by the following
nonlinear equations:

h1 = K sat (h11)

ḣ11 = η sat (u)− a1
A

√
2 g sat (h11)

h2 = K sat (h22)

ḣ22 = a1
A

√
2 g sat (h11)− a2

A

√
2 g sat (h22)

(14)

with:

sat (hii) =

{
hii if 0 ≤ hii ≤ 0.3
0.3 if hii > 0.3
0 if hii < 0.3

for i = 1, 2.

sat (u) =

{
u if 0 ≤ u ≤ 5
5 if u > 5
0 if u < 0

h1 and h2 denote the water level in the corresponding tank and
u is voltage applied to the pumps. a1 and a2 are the outlet area
of the tanks, η constant relating the control voltage with the
water flow from the pump, A is the cross-sectional area of
the tanks and g is the gravitational constant. The values of the
simulink system parameters are shown in the table I.

TABLE I – Parameters of the System [25]

Value Unit Description
u 0 − 5 V Voltage level of pump
A 0.01389 m2 Cross-sectional area
ai 50.265 10−6 m2 Outlet area of tank i
η 2.4 10−3 m3

V.s Water level of tank i
g 9.81 m−2 Gravitational constant
K 100 −− constant

C. Parametric estimation and control result
using the exact inverse function of f (.)

The input of the system is shown in Fig. 5. The signal is set
to [0 . . .+ 5V ]. It’s a pseudo-random binary sequence SBPA.
The value of the sampling period is Te = 1s.

0 500 1000 1500 2000 2500 3000
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

kT − iterations

Fig. 5 – SBPA signal uk.
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0

5

10

15

20

kT − iterations

h2
 (c

m
)

0 500 1000 1500 2000 2500 3000
−3

−2

−1

0

1

kT − iterations

Er
ro

r

Fig. 6 – Responses of the real (solid line) and estimated (dotted
line) output h2.

Fig. 6. shows the responses of estimated and real output.
Simulation results demonstrated that the error between the real
system and the identified structures is negligible.
The estimated model is described by:

yk =
B(q−1)
A(q−1) vk = 10−3 3.7633 q−1+3.7748 q−2

1−1.9518 q−1+0.9527 q−2 vk

vk = f (uk) = uk + 5 u2
k

(15)

PID

c

ky m

kykukε
+

-

kv ( )1
.f − Process

Fig. 7 – Nonlinear PID controller of a two-tank system.

Fig. 7 illustrates the diagram block of the nonlinear PID
controller of a two-tank system. It consists of:

• the inverse of the nonlinearity:

uk = f−1 (vk) = 0.1
(√

1 + 20 vk − 1
)
, for vk > −0.05

• the PID regulator:

(Kp, Ki, Kd ) = (4.5, 1 , 0)

0 500 1000 1500 2000 2500 3000
0

1

2

3

4

5

kT − iterations

u(
V

)

0 500 1000 1500 2000 2500 3000
0

5

10

15

20

25

30

kT − iterations

h2
(c

m
)

 

desired
mesured

Fig. 8 – Responses of u and h2 of identified model.
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Fig. 9 – Responses of u and h2 of system.

Figures 8 and 9 show the control signals and the responses
respectively of the mathematical model and the simulink
system using the first method. Simulation results show that
both follow the desired reference. To improve the results, we
can increase the order of the polynomial vk = f (uk). The
problem is the no-existence of the inverse of the nonlinear
function or the complexity of the computation of the inverse
f−1 (vk).

D. Parametric estimation and control result using polynomial
structures

We used the signal shown in Fig. 5 as input to estimate
the model described by:

yk =
B(q−1)
A(q−1) vk = 10−3 3.7657 q−1+5.1097 q−2

1−1.9518 q−1+0.9527 q−2 vk

vk = w̃1
1,k Uk + w̃1

2,k Ũ
[2]
k + w̃1

3,k Ũ
[3]
k +O(U

[4]
k )

(16)

with:
w̃1

2,k = ( 5 −0.0571 5 )

w̃1
3,k = ( 25 −0.2856 −0.2856 525 )

0 500 1000 1500 2000 2500 3000
0
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10

15
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m
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0

1

kT − iterations

Er
ro

r

Fig. 10 – Responses of the real (solid line) and estimated (dotted
line) output h2 using the proposed approach.

Fig. 10 presents the responses of estimated and real output
h2. Simulation results demonstrate that the proposed structure
describe very well the system behavior.

PID

c

ky m

kykukε
kvɶ+

-

( )1
.appf

−
Process

Fig. 11 – Proposed nonlinear PID controller of a two-tank
system.

Fig. 11 shows the diagram block of the proposed nonlinear
PID controller of a two-tank system. It is consists of:

• the inverse of the nonlinearity f−1
app (ṽk):

uk = w3
1,k Vk + w̃3

2,k Ṽ
[2]
k + w̃3

3,k Ṽ
[3]
k +O(V

[4]
k )

with:
w3

1,k = ( 1 −1 )

w̃3
2,k = ( −5 10 −5 )

w̃3
3,k = ( 25 75 76 25 )

• the PID regulator:

(Kp, Ki, Kd ) = (0.45, 0.7 , 0)
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Fig. 12 – Responses of u and h2 using the proposed method of
identified model.
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Fig. 13 – Responses of u and h2 using the proposed method of
system.
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The control signals and the results of the regulator are pre-
sented in figures 12 and 13. They proved that the PIDNL had
achieved a satisfactory performance in tracking the reference
signal.

VI. CONCLUSION

In this paper, a new strategy to identify Hammerstein
model has been proposed. A polynomial structure is used to
model the nonlinear static function. This structure provide a
good identification results. It has the advantage to approximate
the inverse of the nonlinear part of Hammerstein model. A
new design of PIDNL controller is successfully elaborated.
It is composed by a PID associated with the inverted of
the identified nonlinearity. A two-tank system is presented to
illustrate the effectiveness of the proposed approach.
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