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Abstract—Cluster sampling algorithm is a scheme for sequen-
tial data assimilation developed to handle general non-Gaussian
and nonlinear settings. The cluster sampling algorithm can be
used to solve a wide spectrum of problems that requires data
inversion such as image retrieval, tomography, weather prediction
amongst others. This paper develops parallel cluster sampling
algorithms, and show that a multi-chain version is embarrassingly
parallel, and can be used efficiently for medical image retrieval
amongst other applications. Moreover, it presents a detailed
complexity analysis of the proposed parallel cluster samplings
scheme and discuss their limitations. Numerical experiments are
carried out using a synthetic one dimensional example, and
a medical image retrieval problem. The experimental results
show the accuracy of the cluster sampling algorithm to retrieve
the original image from noisy measurements, and uncertain
priors. Specifically, the proposed parallel algorithm increases the
acceptance rate of the sampler from 45% to 81% with Gaussian
proposal kernel, and achieves an improvement of 29% over the
optimally-tuned Tikhonov-based solution for image retrieval. The
parallel nature of the proposed algorithm makes the it a strong
candidate for practical and large scale applications.

Keywords—Bayes’ theorem; Hamiltonian Monte-Carlo; Inverse
problems; Markov chain Monte-Carlo; Medical image reconstruc-
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I. INTRODUCTION

Signal retrieval from noisy measurements (observations)
involves solving an inverse problem. Inverse problems are
essential in many fields such as image reconstruction or re-
trieval, tomography, weather prediction, and other predictions
based on space-time models. The solution of inverse problems
usually employs a data assimilation (DA) methodology [2],
[5], [6], [10] [13], [16]. DA refers to the process of fusing
information about a physical system obtained from different
sources in order to produces more accurate conclusions about
the physical system of concern. Two approaches are widely
employed to solve an inverse problem. The first approach is
a variational approach that involves solving an optimization
problem with a regularized solution. The second approach is
the statistical formulation of the DA problem which incorpo-
rates a prior distribution that encapsulates the knowledge about
the system produced by the model, prior to the incorporation of
any other source of information. Given the prior information, a
likelihood function, the posterior is formulated as best estimate
of the truth. Markov Chain Monte-Carlo (MCMC) is one
of the most powerful simulation techniques for sampling a
high-dimensional probability distribution, given only it’s shape

function, without the intrinsic need to the associated scaling
factor. HMC sampling filter [3] is an accelerated Markov chain
Monte-Carlo (MCMC) algorithm for solving the non-Gaussian
sequential DA “filtering problem”. This algorithm works by
sampling the posterior distribution to produce description of
the system state along with associated uncertainty. Specifically,
these algorithms follow a Hamiltonian Monte-Carlo (HMC)
approach to sample the posterior.

Cluster sampling filters (C`HMC, and MC-C`HMC) [1]
are developed as extension of the Hamiltonian Monte-Carlo
(HMC) sampling filter presented in [3] where the true (un-
known) prior distribution is approximate using a Gaussian mix-
ture model (GMM). Given the current computational power,
it is natural to try to run Monte-Carlo simulations in paral-
lel. However, Markov chains in general have to satisfy the
so-called the “Markovian” property which makes the chain
generation an inherently sequential problem. This restriction
is mainly posed by the transition density function used to
generate a proposal state given the current state of the chain.
Two approaches have gained wide popularity to parallelize
MCMC samplers. The parallel-chain approach proceeds by
running several chains in parallel from different initial states.
The main disadvantage of this approach is that the burn-
in stage has to be carried out by all chains independently,
which limits the efficiency gained by running the chains on
different processors. Another difficulty with this approach is
the aggregation of samples generated on different processors
such that the combined ensemble correctly represents the mass
of the target distribution. The second approach is to parallelize
a single chain. The parallel chain approach turns out to be
surprisingly effective in practice. Moreover, if sufficient infor-
mation about the geometry of the target distribution is avail-
able, the parallel chains can be guided to sample effectively
from the target distribution. The accuracy of C`HMC filters to
handle nonlinearity in both model dynamics, and observational
mapping operator, puts it on the right direction of applicability
to practical problems. The cost of serial C`HMC is nearly
similar to the cost of the original HMC sampling filter, however
the MC-C`HMC algorithm is naturally parallel. Following a
Bayesian approach, C`HMC algorithm can be easily modified
and applied for image retrieval given noisy image and a
probabilistic representation of prior knowledge [8], [16]. This
can be very useful in settings where several medical snapshots
are collected for the same object, e.g. a tumor, of different
resolution or uncertainty levels. Mathematical regularization is
amongst the most popular methods for image reconstruction
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from noisy sources [7], [12], [17]. Among the regularization
methods, the Tikhonov scheme is most popular due to the
Gaussianity assumption about data noise, and the easiness to
incorporate prior information. Despite simplicity, the perfor-
mance of this approach is highly influenced by the choice
of the regularization parameter. Widely used methodologies
for solving the Bayesian image retrieval problem include the
algorithms discussed in [9], [15]. In [9], the authors investigate
statistical image reconstruction (SIR) with regularization based
on the Markov random field (MRF) model. While, regulariza-
tion approach is popular, it is sensitive to the choice of the
regularization parameter.

The main interest here is to develop highly accurate parallel
Bayesian sampling algorithms that can be efficiently used for
solving large-scale inverse problems, and show that they are
suitable for a wide spectrum of applications including medical
image retrieval. This work develops parallel cluster sampling
algorithms, and shows that a multi-chain version is embarrass-
ingly parallel, and can be used efficiently for medical image
retrieval amongst other applications. The approach discussed
in this work does not require regularization, and is designed
to work in both Gaussian, and non-Gaussian case, where
the computational expense is minimized via parallelization.
Specifically, this paper focuses on describing the complexity
analysis of a specific scenario where the MC-C`HMC is
parallelized by running several chains in parallel to sample
the posterior distribution. The algorithm proceeds by running
several Markov chains in parallel such that the number of
chains is specified by the the number of components in the
mixture model. This paper will focus on the case where an en-
semble of states, generated from an unknown prior distribution
is available, and the likelihood function relating observations
to target states is either a linear or a nonlinear map. The
prior distribution is approximated using a Gaussian mixture
distribution which parameters are approximated based on the
given prior ensemble by running an expectation maximization
(EM) algorithm.

Section II reviews the general iterative and Bayesian
frameworks for inverse problems and image reconstruction.
Section III formulates the problem, and reviews the C`HMC
filter formulation. Section IV discusses opportunities for paral-
lelization of C`HMC. Section V presents a detailed complexity
analysis of the proposed parallel version of C`HMC filter.
Numerical results are presented in Section VI. Conclusions
and future works are drawn in Section VII

II. ITERATIVE AND BAYESIAN IMAGE RECONSTRUCTION

As mentioned in Section I, one of the most popular
iterative reconstruction algorithms is Regularization-based al-
gorithms. For the sake of completeness, This paper reviews the
Tikhonov regularization approach [14], [17], then it presents
the Bayesian formulation. The Tikhonov regularization ap-
proach involves solving the following optimization problem:

xa = min
x
T (x) = ‖H(x)− y‖2R−1 + α‖x‖2C, (1)

where α is the regularization parameter, and C is the
regularization matrix and it can be chosen in many clever ways.
HereH is an observation operator that maps the model space to

the observation space. If the target state is directly observed
then H = I, where I is the identity operator. The weighted
norm in Equation (1) is described as follows:

‖c− d‖2M = (c− d)TM(c− d) (2)

The traditional approach to regularization is the varia-
tional formulation in which equation (1) is minimized w.r.t x.
Usually, derivative-based iterative minimization algorithms are
employed to solve the problem described by (1). The derivative
of the objective function T (H(x)) w.r.t the parameter ]x is
given by:

∇xT (Hx) = [∂H(x)]
∗
R−1(H(x)− y) + αCx, (3)

where [∂H]
∗ is the adjoint of the derivative, e.g. the

Jacobian-transpose, of the observation operator H. In the case
of a linear observation operator this is simply the transpose of
the observation operator.

In the statistical approach the underlying state x based
on a formulation constructed using Bayesian theory is in-
ferred, where the goal is to represent the state as a random
variable which distribution is of interest. Assume Pb(x) is
a prior probability density function (PDF) representing prior
knowledge about the state x. Assume also that P(y|x) is the
data likelihood function that describes the observational error
distribution. Using Bayes’ theorem, the probability of the state
x given the collected measurements is characterized by the
posterior distribution:

P(x|y) ∝ P(y|x)P(x) . (4)

A common practice is to assume that the prior distribution
is, generally speaking, a multivariate normal (Gaussian) distri-
bution centered around a a first-guess state, e.g. a fore-casted
state xb, and have a predefined covariance structure C, i.e.
x ∼ N (xb, C).

For Gaussian priors and consequently Gaussian posteriors,
the variational approach corresponds to finding the maximum
a posteriori probability (MAP) estimate of the posterior PDF.
The MAP is the maximizer of the posterior PDF, or equiva-
lently, the minimizer of its negative logarithm − log (P(x|y)).
Following Tikhonov regularization approach (1), and assuming
Gaussian noise, the likelihood function reads:

P(y|x) ∝ exp

(
−1

2
‖H(x)− y‖2R−1

)
. (5)

Without loss of generality, assuming x ∼ N(0,C), the
prior would be on the form

P(x) ∝ exp

(
−1

2
‖x‖2B

)
, (6)

where B is the precision matrix, i.e. the inverse of the
covariance B = C−1. The MAP estimator in this formulation
is the minimizer of

− logP(x|y) ∝ 1

2
‖H(x)− y‖2R−1 +

1

2
‖x‖2B . (7)

This shows the equivalence between Tikhonov regulariza-
tion approach with the Bayesian formulation in the Gaussian
linear settings.
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In the Bayesian approach, once the posterior is constructed,
a sampling mechanism is usually employed to estimate all the
desired statistics of the posterior PDF, such as the posterior
mean E(x|y) that can be used as a reliable estimate of the
state given the data. Moreover, the generated ensemble can
be used to estimate the posterior covariance that can be used
as a proxy prior error covariance for future applications of the
inverse problem. Sampling the posterior PDF is usually carried
out following a Monte-Carlo approach. The most powerful
Monte-Carlo sampling methodology is the general family
Markov-Chain Monte Carlo (MCMC) samplers. Sampling high
dimensional distribution however is a very expensive process,
and requires parallel efficient implementation to be considered
practical. As explained in the next Section, MCMC is not
limited to Gaussian or linear settings, and can be very efficient
if implemented in parallel.

III. CLUSTER SAMPLING FILTER

Let x ∈ RNvar is a discretized approximation of the true
state of the model, for example the intensities of an image
pixels.

The prior distribution Pb(x) encapsulates the knowledge
about the system state before additional information is incorpo-
rated. The likelihood function P(y|x) quantifies the deviation
of the prediction of model observations from the collected
measurements y ∈ RNobs , where Nobs ≤ Nvar.

From Bayes’ theorem, the posterior distribution Pa(x)
reads:

Pa(x) = P(x|y) = P(y|x)Pb(x)
P(y) ∝ P(y|x)Pb(x) ,

(8)

where Pb(x) is the prior distribution, P(y|x) is the like-
lihood function. P(y) acts as a scaling factor and is ignored
in in the MCMC context.

Assuming the prior distribution is approximated by a
Gaussian Mixture distribution, the prior takes the form:

Pb(x) =

Nc∑
i=1

τiN (µi, Σi)

=

Nc∑
i=1

τi
(2π)−

Nvar
2√

|Σi|
exp

(
−1

2
‖x− µi‖2Σi

−1

)
,

(9)

where the weight τi quantifies the probability that an
ensemble member x[e] belongs to the ith component, and
(µi, Σi) are the mean and the covariance matrix associated
with the ith component of the mixture model. Here x ∈ RNvar ,
where Nvar the dimension of the target state space.

Assuming the observation errors are characterized by a
Gaussian distribution N (0,R), the likelihood reads:

P(y|x) =
(2π)−

m
2√

|R|
exp

(
−1

2
‖H(x)− y‖2R−1

)
, (10)

where R ∈ Rm×m is the observation error covariance
matrix, and H : RNvar → Rm is the observation operator that

maps the state space to the observation space. Here y ∈ Rm is
the observation vector.

From Equations (8), (9), (10), the posterior takes the form:

Pa(x) ∝ exp

(
−1

2
‖H(x)− y‖2R−1

)
Nc∑
i=1

τi√
|Σi|

exp

(
−1

2
‖x− µi‖2Σi

−1

) (11)

This mixture distribution may not correspond to a Gaussian
mixture in general if the observation operator is a nonlinear
map.

The negative-logarithm (negative-log) of the posterior dis-
tribution kernel (11) is required by the HMC sampling algo-
rithm. Specifically, the posterior negative-log is viewed as the
potential energy function in the extended Hamiltonian phase
space. The posterior negative-log is given by:

J (x) =
1

2
‖H(x)− y‖2R−1

− log

(
Nc∑
i=1

τi√
|Σi|

exp

(
−1

2
‖x− µi‖2Σi

−1

)) (12)

The derivative of the posterior negative-log reads:

∇xJ (x) = HTR−1(H(x)− y)

+

∑Nc
i=1

τi√
|Σi|

(
exp

(
− 1

2‖x− µi‖
2
Σi
−1

))
Σi
−1(x− µi)∑Nc

i=1
τi√
|Σi|

exp
(
− 1

2‖x− µi‖
2
Σi
−1

) (13)

In this work, the posterior is sampled distribution (11)
following a parallel chains approach given only ensemble of
states generated from the prior distribution.

IV. PARALLELIZATION OF C`HMC FILTER

In this section, a brief review of the MCMC sampling
algorithm is presented, and discuss opportunities of running
C`HMC filter on parallel architecture. The parallelism of
C`HMC filter even if the Hamiltonian system is replaced with
a Gaussian proposal kernel build around the forecast also
discussed.

A. Markov Chain Monte-Carlo (MCMC)

MCMC is a sampling scheme capable of producing ensem-
bles from an arbitrary distribution given it’s shape function,
without the need for the associated scaling factor. The choice
of the proposal kernel has the greatest influence on the
performance of the sampler. Here, two proposal kernels are
chosen; a) a Gaussian density function centered around the
current state of the chain, b) Hamiltonian Monte Carlo (HMC).
The standard MCMC sampler is described in Algorithm 1.

The standard MCMC algorithm1 generally suffers from
random walk behavior, slow convergence to the target density,
low acceptance rate, and slow space exploration. Moreover,
the generated samples are highly correlated when the vanilla
MCMC algorithm is used. Many of these problems can be
addressed by using Hybrid Monte Carlo (HMC). HMC uses
a Hamiltonian system which plays the role of the proposal
density.
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Algorithm 1 MCMC algorithm to sample from π(x).
1: Input: An initial state for the chain (x0), and the proposal

kernel q
2: Input: An ensemble of states from the posterior distribu-

tion ∝ π(x)
3: while No sufficient samples collected do
4: Given current state xk, use q to propose x′
5: Calculate the acceptance probability (MH): ak =

min
(

1 , π(x
′)q(x′,xk)

π(xk)q(xk,x′)

)
6: Sample a uniform r.v. uk ∼ U(0, 1)
7: if ak > uk then
8: Accept the proposal: xk+1 = x′

9: else
10: Reject the proposal: xk+1 = xk

B. The multi-chain MCMC algorithm (MC-MCMC)

Although the traditional MCMC algorithm is inherently
serial, there are several modifications that can be made to
allow for parallelization. In the proposed approach, instead
of constructing a single long Markov chain to produces Nens
samples, generate several shorter Markov chains are generated
and divide the ensemble size Nens over these chains. The
constructed chains can run in parallel to sample different
regions of the target distribution independently. The parallel
(MC-MCMC) sampler starts by running an Expectation Max-
imization step to build a Gaussian Mixture Model (GMM)
approximation of the prior distribution. Once the GMM is
constructed on the root processor, the GMM information is
broadcasted to all the working nodes. Of course, if the number
of processors is exactly the same as the number of components,
each node is assigned one chain. If the number of processors
is less than the number of components/chains, several chains
can be assigned to each processor, e.g. based on the local
ensemble sizes or simply in a round-robin fashion. Caution has
to be exercised to maintain a balanced load. Once all chains
have generated their assigned local samples, the ensembles are
gathered to the root processor and returned as output. Of course
parallel output can be considered to reduce the communication
overhead. The steps of the proposed MC-MCMC scheme is
detailed in Algorithm 2.

By running a Markov chain starting at each component of
the mixture distribution, the proposed algorithm navigates all
modes of the posterior distribution, and covers all regions of
high probability.

While parallelization of HMC itself can be considered for
further increase in the performance, it has been avoided for
clarity and to simplify the idea. The Master-Slave parallel
pattern is elected to be used, where a master core sends the
information required for creating the individual chains.

V. COMPLEXITY ANALYSIS

This section provides a detailed theoretical discussion of
the computational cost of the proposed parallel algorithm.

A. Cost of sampling a Gaussian N (µ, Σ)

A scalar normal distribution can be sampled using many
accurate algorithms such as the Mersenne Twister, Box-Muller

Algorithm 2 MC-MCMC parallel sampling algorithm.
1: Input: Ensemble of prior states.
2: Output: An ensemble of states from the posterior Mixture

distribution (11).
3: Run an EM algorithm (possibly in parallel) to build a

GMM approximation of the prior distribution the given
ensemble

4: if EM is run in parallel then
5: GatherAll GMM information to all processors
6: else
7: Broadcast GMM information to all processors
8: Nc chains are assigned to the available processors
9: The local ensemble size (sample size per chain) can be

specified for example based on the weight of the prior
weight of the corresponding component, multiplied by the
likelihood of the mean of that component

10: Every chain is initialized to the mean of the corresponding
component in the prior distribution

11: The parameters of the proposal kernel, e.g. covariance
of the Gaussian kernel, or the mass matrix associated
with HMC sampler, are set locally based on the statistics
obtained from the prior ensemble under the corresponding
component in the prior mixture.

12: After each chain collects it’s assigned sample size, Gather
the ensembles generated by all nodes, and possibly weight
them according to the importance of each component

transform, Marsaglia polar method, and Ziggurat algorithm.
The least expensive is Ziggurat algorithm, where a typical
value produced only requires the generation of one random
floating-point value and one random table index, followed by
one table lookup, one multiply operation and one comparison.
The cost of generating an Nvar−dimensional standard normal
random vector x ∈ RNvar is O(Nvar). To generate a multivariate
normal (MVN) random vector Ziggurat algorithm from a
general Gaussian distribution N (µ, Σ) the following steps are
required:

1) Factorization of the covariance matrix Σ, to generate
Σ

1
2 , e.g. using Cholesky decomposition

2) Draw a standard normal random vector y ∈ N (0 I),
3) Scaling: x = Σ

1
2y + µ

If the covariance matrix Σ is diagonal, the factorization
costs O(Nvar), while the cost of Cholesky decomposition in
general is O(N3

var). If the covariance matrix Σ is diagonal, the
cost of the scaling step is O(Nvar), otherwise the scaling cost
is O(N2

var).

B. Cost of MCMC with a Gaussian proposal density

Assuming independent observations, evaluating the poste-
rior PDF at a given state requires the evaluation of Nc + 1
matrix-vector products. The cost of evaluating the posterior
PDF is O ((Nc + 1) Nvar) = O(Nvar) if the covariance matrices
of the components the GMM prior are diagonal, otherwise, the
cost is O(N2

var).

a) Cost of one MCMC step:: In the presence of a
Gaussian kernel, each step of the chain construction requires
the following:
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1) One MVN random vector drawn from the Gaussian
kernel,

2) Two function (posterior PDF) evaluations,
3) One draw from a uniform random distribution

U(0, 1),
4) One scalar comparison in the Metropolis-Hastings

step.

The cost of one MCMC step can be summarized as follows:

O(N2

var) +O(N2
var) +O(1) = O(N2

var) full GMM covariances, and full Gaussian kernel
O(N2

var) +O(Nvar) +O(1) = O(N2
var) full GMM covariances, and diagonal Gaussian kernel

O(Nvar) +O(N2
var) +O(1) = O(N2

var) diagonal GMM covariances, and full Gaussian kernel
O(Nvar) +O(Nvar) +O(1) = O(Nvar) diagonal GMM covariances, and diagonal Gaussian kernel

To find the total cost of MCMC sampling algorithm, it is
needed to evaluate the total number of steps in the Markov
chain. If the ensemble size is Nens, it is needed to construct
a chain of length bs + ms × Nens, where bs are burn-in
steps carried out to achieve convergence to the stationary
distribution, and ms are mixing steps introduced to improve
the sampler mixing and reduce the correlation between selected
ensembles

b) Total cost of MCMC sampling:: The total cost of a
serial MCMC with with a Gaussian proposal density reads:

Ts =

O
(

(bs +ms Nens) Nvar

)
diagonal prior covariances, and diagonal Gaussian kernel

O
(

(bs +ms Nens) N2
var

)
otherwise

C. Cost of HMC

The HMC sampler requires the evaluation of the gradient
of the negative-log of the target distribution.

a) Cost of one HMC step:: In the case of HMC, each
step of the chain construction requires the following:

1) One draw of a momentum p ∼ N (0,M) costs
O(Nvar) with diagonal M .

2) Forward propagation of the pair (p, x).

The cost of the second step is dominated by the cost
of evaluating a Jacobian-vector product O(N2

var). With step
parameters T = m×h, the cost is O(m N2

var), where m is the
number of steps in the Hamiltonian trajectory. Evaluating loss
of energy requires evaluating the negative-log of the posterior
shape function. Again, the cost of evaluating the posterior PDF
is O ((Nc + 1) Nvar) = O(Nvar) if the covariance matrices of the
components the GMM prior are diagonal, otherwise, the cost
is O(N2

var).

For Hamiltonian Monte Carlo (HMC), Assuming a diago-
nal mass matrix M the cost of one step of the chain is

{
O(Nvar) +O(m N2

var) +O(Nvar) +O(1) = O(m N2
var) diagonal prior covariances

O(Nvar) +O(m N2
var) +O(N2

var) +O(1) = O(m N2
var) non-diagonal prior covariances

(14)

b) Total cost of HMC sampling:: Following the dis-
cussion above, the cost of serial HMC sampler is Ts =

O
(

(bs +ms Nens) m N2
var

)
.

D. Cost of MC-MCMC sampling

The serial complexity Ts of MC-MCMC is summarized as
follows:

Ts =


O ((bs +ms Nens) Nvar) ; diagonal or spherical covariances of

GMM, and proposal density
O
(
(bs +ms Nens) N2

var

)
; otherwise

}
Gaussian
proposal

O
(
(bs +ms Nens) m N2

var

) }
Hybrid Monte Carlo

(15)

a) Parallel cost:: The parallel complexity can be stud-
ied clearly under a simplified (ideal) assumption, where each
chain is to sample Nens

Nc
ensemble points. In this case, since there

are Nc chains the parallel cost (discarding the communication
cost) of MC-MCMC is given by:

Tp =



O

(
Nc

p

(
bs +ms

Nens

Nc

)
Nvar

)
; diagonal, or spherical covariances of

GMM, and proposal density

O

(
Nc

p

(
bs +ms

Nens

Nc

)
N2

var

)
; otherwise

 Gaussian
proposal

O

(
Nc

p

(
bs +ms

Nens

Nc

)
m N2

var

) }
Hybrid
Monte Carlo

(16)

b) Speedup:: The speedup of MC-MCMC is given by:

S = Ts

Tp
= (bs+ms Nens)

Nc
p (bs+ms

Nens
Nc )

= p (bs+ms Nens)

Nc (bs+ms
Nens

Nc )
(17)

c) Parallel efficiency:: The parallel efficiency of MC-
MCMC is given by:

E = S
p = (bs+ms Nens)

Nc (bs+ms
Nens

Nc )
(18)

If the burn-in stage is discard , i.e. set bs = 0, the speedup,
and the parallel efficiency simplify to:

S =

{
p ; p ≤ Nc

Nc ; p > Nc
, and, E = S

p =

{
1 ; p ≤ Nc
nc
p ; p > Nc

.

It follows that both speedup, and parallel efficiency are
independent from the state space dimension Nvar.

d) Communication overhead:: Assuming serial GMM
run on the root node, the cost of broadcasting GMM informa-
tion to all nodes is the cost of broadcasting, the means, the
covariance and/or precision matrices, and the weights.

Assuming a linear communication model [11], and assum-
ing that ts, and tw are the startup, and the per-word transfer
times respectively, the cost of broadcasting GMM information
to p nodes is given by:

(
ts + tw ((2Nvar + 1) Nc)

)
log (p) ; diagonal, or spherical GMM co-

variances(
ts + tw

(
(

N2
var

Nc
+ Nvar + 1) Nc

))
log (p) ; tied GMM covariances(

ts + tw
(
(N2

var + Nvar + 1) Nc
))

log (p) ; full GMM covariances

(19)

After sampling in parallel, the collected
ensembles are gathered on the root node, at a cost
(ts + tw (Nens × Nvar)) log (p) . Consequently, the total
communication cost reads:

(
2ts + tw

[((
Nens
Nc

+ 2
)

Nvar + 1
)

Nc

])
log (p) ; diagonal, or spherical GMM co-

variances(
2ts + tw

[((
Nens+Nvar

Nc
+ 1
)

Nvar + 1
)

Nc

])
log (p) ; tied GMM covariances(

2ts + tw

[
( Nens×Nvar

Nc
+ N2

var + Nvar + 1) Nc

])
log (p) ; full GMM covariances

(20)
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e) Total parallel cost:: It follows immediately from the
discussion above, that the total parallel cost of MC-MCMC
sampling algorithm simplifies to:

pTp =





(
2ts + tw

[((
Nens
Nc

+ 2
)

Nvar + 1
)

Nc

])
p log (p) +O

(
Nc

(
bs +ms

Nens
Nc

)
Nvar

)
; diagonal, or spherical covariances of

GMM, and proposal density(
2ts + tw

[((
Nens+Nvar

Nc
+ 1
)

Nvar + 1
)

Nc

])
p log (p) +O

(
Nc

(
bs +ms

Nens
Nc

)
N2

var

)
; tied covariances of GMM

(
2ts + tw

[
( Nens×Nvar

Nc
+ N2

var + Nvar + 1) Nc

])
p log (p) +O

(
Nc

(
bs +ms

Nens
Nc

)
N2

var

)
; otherwise


Gaussian
proposal

O

(
Nc

(
bs +ms

Nens

Nc

)
m N2

var

)
+



(
2ts + tw

[((
Nens
Nc

+ 2
)

Nvar + 1
)

Nc

])
p log (p) ; diagonal, or spherical GMM covari-

ances(
2ts + tw

[((
Nens+Nvar

Nc
+ 1
)

Nvar + 1
)

Nc

])
p log (p) ; tied GMM covariances

(
2ts + tw

[
( Nens×Nvar

Nc
+ N2

var + Nvar + 1) Nc

])
p log (p) ; full GMM covariances


HMC

(21)

f) Total overhead:: The total overhead function (To =
PTp − Ts) of MC-MCMC reads:

To =





(
2ts + tw

[((
Nens
Nc

+ 2
)

Nvar + 1
)

Nc

])
p log (p) +O ((Nc − 1) bs Nvar) ; diagonal, or spherical covariances of

GMM, and proposal density(
2ts + tw

[((
Nens+Nvar

Nc
+ 1
)

Nvar + 1
)

Nc

])
p log (p) +O

(
(Nc − 1) bs N2

var

)
; tied covariances of GMM

(
2ts + tw

[
( Nens×Nvar

Nc
+ N2

var + Nvar + 1) Nc

])
p log (p) +O

(
(Nc − 1) bs N2

var

)
; otherwise


Gaussian
proposal

O
(
(Nc − 1) bsm N2

var

)
+



(
2ts + tw

[((
Nens
Nc

+ 2
)

Nvar + 1
)

Nc

])
p log (p) ; diagonal, or spherical GMM covari-

ances(
2ts + tw

[((
Nens+Nvar

Nc
+ 1
)

Nvar + 1
)

Nc

])
p log (p) ; tied GMM covariances

(
2ts + tw

[
( Nens×Nvar

Nc
+ N2

var + Nvar + 1) Nc

])
p log (p) ; full GMM covariances


HMC

(22)

g) Isoefficiency:: Assuming the burn-in stage is dis-
carded, i.e. set bs = 0. With Nens ≥ 2Nc, the isoefficiency
function W (p) = E

1−ETo = kTo simplifies to (the dominant
terms):

W (W,p) =



k tw Nens Nvar p log (p) ;
diagonal, or spherical GMM covariances, and
HMC, or Gaussian proposal with diagonal covari-
ance

k tw (Nens + Nvar) Nvar p log (p) ;
tied covariances of GMM, and HMC, or
Gaussian proposal

k tw (Nens + Nvar Nc) Nvar p log (p) ;
full covariances of GMM, and HMC, or
Gaussian proposal

(23)

VI. NUMERICAL EXPERIMENTS AND PERFORMANCE
ANALYSIS

This section presents numerical experiments to assess the
complexity analysis provided in Section V. As mentioned
above, the speedup, and parallel efficiency are independent
of problem dimensionality. The computational cost and the
performance are discussed using one dimensional examples.
The GMM distribution is fitted to the ensemble using Python
code borrowed from the PYTHON DA testing suite DATeS [4].

To execute the Markov chains in parallel, the
MPI4PY package is used, which provides bindings
of the Message Passing Interface (MPI) standard for
the PYTHON programming language, allowing any
PYTHON program to exploit multiple processors.

Numerical experiments are presented to assess the com-
plexity analysis provided in Section V. Specifically, numerical
results are shown for the parallel C`HMC flavors discussed in
this paper using one dimensional synthetic example, and a two
dimensional image retrieval experiment.

A. One-dimensional example:

Following the strategy described in [1], starting with a syn-
thetic prior ensemble generated from a GMM with Nc = 5. A
GMM approximation of the true prior probability distribution
is constructed using the EM algorithm. The model selection
criterion used here is AIC. The parameters of the true GMM
prior are:

{(τi; µi, σ2
i )}i=1,...,5 = {(0.09; −6.0, 0.20),

(0.19; −2.5, 0.28), (0.09; 0.0, 0.08),

(0.28; 2, 5, 0.24), (0.15; 6.0, 0.28),

(0.15; 6.5, 0.08), (0.03; 7.5, 0.12),

(0.02; 8.0, 0.04) } .

(24)

Assume the observation errors follow Gaussian distribution
with zero mean, and variance 2.2. Assuming a synthetic
observation y = −1.0, the observation likelihood function
given by:

P(y|x) =
1√

2.2
√

2π
exp

(
−1

2

(x− y)
2

2.2

)
. (25)

The generated GMM approximation of the prior has Nc = 7
and the following parameters:

{(τi; µi, σ2
i )}i=1,...,7 = {(0.111; −5.78, 0.123),

(0.177; −2.49, 0.223), (0.045; −1.49, 0.001),

(0.065; 0.12, 0.061), (0.146; 2.05, 0.032),

(0.225; 2.78, 0.148), (0.231; 6.12, 0.164) } .

(26)

Figure 1 shows the results of sampling a one dimensional
posterior (11) with seven components. Since this paper is
mainly interested in asymptotic behavior of the sampler, and
to avoid the effect of sampling error, the ensemble size here
is set to 1000. Despite the good mass distribution resulting
from the use of a Gaussian density with the serial MCMC
sampler 1a, the acceptance rate is ≈ 45% resulting in a large
amount of wasted calculations. On the other hand, the parallel
MC-MCMC with Gaussian proposal kernel 1b improves the
acceptance rate to ≈ 81%. The acceptance rate is increased
due to the local adjustment of the sampler hyper-parameters
based on the local ensemble under the corresponding prior
component in the mixture.

While the Gaussian-based MCMC sampler represents an
acceptable mass distribution, it suffers from random walk
behavior leading to the demonstrated low acceptance rate.
One the other hand HMC sampling results in general in high
acceptance rate. Unfortunately, as explained by the results
in Figure 1c is unable to sample all probability modes. The
acceptance rate in the serial C`HMC sampler here is 96%.
By running C`HMC sampling methodology in parallel, the
acceptance rate drops to 81% (which is still very high).
However, the mass distribution is much better than the serial
case. This is supported by results in Figure 1d compared to
Figure 1c.

Figure 2 shows the CPU time and speedup results of the
clustering sampling algorithms with Gaussian and HMC pro-
posal mechanisms. As suggested by the analysis in Section V,
the CPU time becomes flat once the number of processors
reaches 7, the number of components in the mixture.
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(a) Gaussian Proposal, Serial
MCMC
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(b) Gaussian Proposal, Parallel
MCMC
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(c) HMC Proposal, Serial
MCMC
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(d) HMC Proposal, Parallel
MCMC

Figure 1. Sampling results of a one dimensional posterior with seven
components. The results of the serial MCMC and MC-MCMC with two
proposal mechanisms are shown. The mode (serial vs. parallel) and the
proposals are shown under each panel. The ensemble size here is 1000

Figure 2. Sampling results of a one dimensional posterior with four
components. The CPU time, and speedup results of MC-MCMC with two
proposal mechanisms are plotted. The ensemble size here is 1000

The parallel efficiency results are shown in Figure 3.
The numerical results shown here suggest that, running the

Figure 3. Sampling results of a one dimensional posterior with four
components. The parallel efficiency results of MC-MCMC with two proposal
mechanisms are plotted. The ensemble size here is 1000

clustering filters in parallel not only results in computational
saving, but also can potentially increase the sampling accuracy.
While the discussed parallelization of the sampler reduces the
computational time, the numerical results suggest that more
parallelization effort is needed in order to achieve higher
efficiency. In the current settings, the chains are assigned to
processes in a round-robin fashion. The performance of the
sampler can be greatly enhanced if the a smart scheduler is
used such that the parallel chains are assigned to processors
based on the sample size per chain.

B. Two-dimensional example

The parallel C`HMC sampling algorithm as a tool for
statistical medical image retrieval is tested here and employing
a non-linear Gaussian convolution filter as a forward operator
H. The convolution filter is applied to a two-dimensional
image resulting in a blurred image, then Gaussian noise is
added to collect synthetic measured/observed image. Here, the
vector x represents intensities of the image pixels arranged
in a column vector. The observation noise level is set to
be 9% of the average intensity of the original image. This
formulation clearly results in a nonlinear inverse problem that
can be challenging for traditional approaches such as Tikhonov
regularization. For , the Jacobian of the convoluted image with
respect to the intensities of the image pixels is found to be a
Toeplitz matrix.

The goal here is to retrieve the original image given the
noisy measurement, and a sample drawn from the probability
distribution from which the blurred image is drawn. This is is a
relevant problem description in many cases, where several low
resolution or blurred images are taken along with the collected
measurement.

Figure 4 shows the original (true) image, the blurred image
constructed by the convolution filter, and the noisy image, i.e.
the blurred image with additive noise.

(a) Original Image. (b) Blurred Image. (c) Data: Blurred Im-
age with added noise.

Figure 4. Inputs to the sampling filter. Original image x, blurred image
H(x), and noisy image y.

To create a synthetic non-Gaussian sample, 50 images
was sampled from a Gaussian distribution centered around
the blurred image with variances equal to 8% of the average
intensity of the original image. To create a synthetic prior
sample, Nens = 30 uniformly random distributed images
have been selected from the generated Gaussian sample. This
procedure is guaranteed to result in a non-Gaussian prior, and
is powerful to test the GMM prior assumption.

The C`HMC sampling algorithm with both Gaussian and
Hamiltonian kernels performed similarly. The acceptance rates
however were quite different. Specifically, the rejection rate in
the case of Gaussian proposal was 56% resulting in wasted
computations, while HMC rejection rate was 7%.

The initial state of each chain is chosen as the mean of
the corresponding component in the prior mixture, and the
parameters of the Hamiltonian system are tuned empirically
to give acceptable acceptance rate. 30 sample members are
collected from the posterior distribution.

The mean and median of posterior samples collected using
the parallel C`HMC sampling algorithm are shown in Figure 5
(panels 5b, and 5c). For the sake of comparison to one of the
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most popular and widely used approaches, the results obtained
using Tikhonov regularization approach with regularization
parameter are shown as they optimally tuned following an L-
curve approach. The Tikhonov-regularized solution is shown
in panel 5a of Figure 5.

(a) Tihonov regularized
solution

(b) C`HMC: sample
mean

(c) C`HMC: sample
mean

Figure 5. Inverse problem solution using Tihonov regularization and the
parallel C`HMC posterior sample. Mean and Median, of the collected 30
sample members using parallel C`HMC. The method and statistic used are
shown under each panel.

By comparing results in Figure 5, to the blurred (prior)
image 4b and the noisy image 4c, one can see that the posterior
samples produce statistics those are closer to the original
image. Moreover, the retrieved results using the non-Gaussian
C`HMC (serial or parallel) algorithm is much better than the
solution obtained by the traditional Tikhonov regularization
approach. The relative error of the mean obtained using the
parallel C`HMC sampling algorithm is 0.01663, while the rel-
ative error of the regularized solution is 0.021447. The relative
error is defined as ‖x−x

true‖
‖xtrue‖ , where x is the retrieved image,

and xtrue is the true image. The proposed parallel algorithms
achieve an improvement of 29% over the optimally tuned
Tikhonov-based solution. These results show the capability and
accuracy of the C`HMC sampling algorithm in non-Gaussian
settings.

While the blurred image has been shown in Figure 4, it is of
utmost importance to highlight the fact that the formulation and
the sampler is unaware of this blurred image. This is mainly
due to the fact that that has uniformly sampled the Gaussian
sample centered around this blurred image.

VII. CONCLUSIONS AND FUTURE WORK

This work developed parallel cluster sampling algorithms
for solving Bayesian inverse problems. Specifically, a set
of parallel sampling algorithms, based on the non-Gaussian
cluster non-Gaussian sampling filter (C`HMC), have been pro-
posed. The presented methodologies can be efficiently used for
solving various large-scale inverse problems including medical
image retrieval from noisy observations. Detailed complexity
analysis of the proposed algorithms (MC-C`HMC) with mix-
ture model representation of the prior information has been
introduced. Generally speaking, aside from parallelization, the
parallel versions of the algorithm result in higher acceptance
rates. Specifically, the parallel C`HMC increased the accep-
tance rate of the sampler from 45% to 81% with Gaussian
proposal kernel, leading to massive saving of computations.
The proposed sampling algorithms have also achieved an
improvement of approximately 29% over the optimally-tuned
Tikhonov-based solution for image retrieval. The algorithm
can run significantly faster than the serial sampler in ideal

settings, where the load is equally distributed among all work-
ing nodes. In future work, we will investigate the possibility
of parallelizing other components of the sampling algorithm
such as the likelihood function and the proposal mechanisms.
For example a parallel version of EM can be considered to
construct the GMM approximation to the prior distribution.
In the case of HMC, the symplectic integrator can also be
parallelized. Methods for parallelizing a single chain can be
considered for an additional level of parallelization.
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