
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

45 | P a g e

www.ijacsa.thesai.org

Visualizing Composition in Design Patterns

Zaigham Mushtaq, Kiran Iqbal, Ghulam Rasool

COMSATS Institute of Information Technology, Defence Road, Lahore, Pakistan

Abstract—Visualization of design patterns information play a

vital role in analysis, design and comprehension of software

applications. Different representations of design patterns have

been proposed in literature, but each representation has its

strengths and limitations. State of the art design pattern

visualization approaches are unable to capture all the aspects of

design pattern visualization which is important for the

comprehension of any software application e.g., the role that a

class, attribute and operation play in a design pattern.

Additionally, there exist multiple instances of a design pattern

and different types of overlapping in the design of different

systems. Visualization of overlapping and composition in design

patterns is important for forward and reverse engineering

domains. The focus of this paper is to analyze the characteristics,

strengths and limitations of key design pattern representations

used for visualization and propose a hybrid approach which

incorporates best features of existing approaches while

suppressing their limitations. The approach extends features

which are important for visualizing different types of

overlapping in design patterns. Stereotypes, tagged values,

semantics and constraints are defined to represent the design

pattern information related to attributes and/or operations of a

class. A prototyping tool named VisCDP is developed to

demonstrate and evaluate our proposed.

Keywords—Design patterns; Visualization; Program

Comprehension; Reverse engineering; Composition

I. INTRODUCTION

Design patterns are proven solutions and they are
composed with each other for the development of software
applications [1, 2, 3]. The composition of design patterns [4, 5]
when applied in an effective manner solves many generic and
specific problems related to any object oriented programming
domain. The visualization of pattern related information in
UML diagrams and visualization of overlapping in recognized
design patterns plays an important role for the program
comprehension during forward as well as reverse engineering.
The importance of composite visualization of design patterns is
also highlighted by authors [32, 33, 34]. Mostly, design
patterns are modeled using visual and formal languages such as
UML [6], DPML [23], LePUS [26], RSL [31] etc. UML is a
semiformal type of modeling language which is widely
accepted by the academia and industry. It has a collection of
visual notation techniques to build, specify, visualize, modify
and document the visual models of software systems.

It is realized by Dong et al. [7] that standard UML is unable
to keep track of the roles each modeling element plays in a
design pattern and other design pattern related information.
Therefore, some authors presented extended UML based
design pattern specification and visualization approaches [3, 9,
13, 27, 28, 30]. The alternate visual and/or textual notations are

also proposed to visualize the pattern related information in the
software design. Porras et al. [8] concluded that all existing
approaches are not capable to include all design pattern related
information that is important for the comprehension of a
software design. Therefore, it is important to carefully
investigate all the notations. Authors in [8] presented a
framework to compare the current and future notations based
on participation, role and compositions of artifacts which play
key roles in designing and composition of design patterns.
They realized that different notations have their strengths and
limitations. The limitations of existing notations provide
opportunities to researchers for devise new notations that
would further overcome identified limitations while combining
the best features of current notations. We critically analyze
state of the art design pattern representation approaches in the
literature review Section 2.

The selection of an appropriate notation is important for
designers, maintainers and reverse engineers. We selected
Pattern: Role notation [3] and stereotype enhanced UML
diagrams presented by Dong et al. [9] as baselines to propose
our hybrid approach. These two notations are most
representative and they are also used by other researchers [8].
Pattern: Role Notation is highly readable and informative, but
it cannot represent the roles that an operation and attribute
plays in a design pattern. This notation also cannot distinguish
the multiple instances of the same design pattern. Stereotype
enhanced UML diagrams are defined mainly by presenting a
new UML profile for the representation and the visualization of
the design patterns in their composed form. This approach
represents the role each modeling element plays in a design
pattern, but it is strongly textual thus text overload can
considerably increase the size of the classes as well as make
the classes harder to read. Furthermore, both these approaches
do not focus on the visualization of different types of
overlapping in design patterns which are important for the
comprehension of software applications. When different roles
(patterns, classes, operations, attributes) of a design pattern are
reused in other patterns in the same application design, we call
these roles overlapping. Such overlapping are very common in
software applications as discussed by [4, 15, 16, 24, 25]. While
analyzing results of different design pattern recovery tools, we
recognized that proven composite patterns are present with
different overlapping. For example, the Java AWT framework
is composed of different patterns. Similarly, we found
overlapping in different roles of Abstract Factory pattern and
visitor pattern as mentioned in well know book by Gamma et
al. [35]. Overlapping in design patterns give information about
the level of coupling in different patterns and their roles. The
detection and visualization of overlapped pattern roles are
important for maintenance, comprehension and change impact
analysis.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

46 | P a g e

www.ijacsa.thesai.org

In order to overcome the limitations of design pattern
visualization techniques [3, 9], this paper is intended to
propose an approach that integrates the best features of Pattern:
Role notation [3] and stereotype enhanced UML diagrams [9]
while surpassing their limitations. Our approach extends new
features for highlighting different types of overlapping and it is
equally beneficial for forward and reverse engineering
activities. The presented approach helps to visualize the
following pattern related information in the recognized design
patterns as contribution of this work:

 To visualize the role that a class, attribute and operation
play in a design pattern;

 To visualize the multiple instances of a design pattern
in class diagrams;

 To visualize One to one, one to many and many to
many overlapping in design patterns;

 A proposed hybrid approach supplemented with
prototyping tool VisCDP to support above mentioned
claims;

 Evaluation and comparison of approach on a case study.

The rest of paper is structured as follows: We discuss state
of the art on design patterns visualization approaches in
Section II. Section III presents the comparison of existing
approaches based on different attributes. A proposed hybrid
approach used for visualization of composition in design
patterns is laid down in Section IV. The prototyping tool used
to validate concept of the proposed approach is discussed in
Section V. Section VI discusses evaluation of approach with
the help of a case study. Finally, we conclude and sketch future
directions in Section VII.

II. RELATED WORK

Design patterns are widely used in open source and
industrial applications as they are known solutions to recurring
problems [10]. Generally, the software developers come across
with the certain kinds of problems repeatedly in their daily
routines. They evaluate such problems and their context by
referring to some existing design patterns and select a
particular design pattern based on their needs and
requirements. The reuse of a design pattern helps the software
architect to reuse the knowledge that has already been
documented and tested in order to improve the quality of their
products. The visualization of design patterns information in
large and complex software systems is decisive for the
comprehension of software applications [21]. The better
visualization of design patterns information enables better
comprehension of examined applications [29]. Different
authors proposed different approaches for the visualization of
design patterns in software designs which are discussed as
follows:

Smith [11] proposed a hierarchical approach called Pattern
Instance Notation (PIN) to visually represent the composition
of patterns. This notation provides a simple visualization
approach which is not only for design patterns, but it is also for
other abstractions of software engineering. A suitable graphical
notation based on boxes and lines is devised in this approach,

defining three modes namely collapsed, standard and
expanded. The boxes are simple round corner rectangles
having a pattern name in the center. Each box represents a
specific design pattern instance. The pattern instances are
connected to the different elements of a class through
unidirectional arrows. PIN kept things simple and focus on the
multiple design pattern instances and their roles. The proposed
approach is still at infancy stages and work is in progress as
mentioned by the author.

Dong et al. [9] presented a new UML profile for the
representation and the visualization of the design patterns in
their composed form. Few new stereotypes, their
corresponding tagged values and constraints are defined in this
extended UML notation to explicitly visualize pattern related
information in any software design. UML meta-model is used
to define such extension in UML profile. This new UML
profile represents the role each modeling element (class,
attribute, operation) plays in a design pattern. This approach
also distinguishes the multiple instances of a design pattern. In
addition, authors developed a tool called VisDP [12] for the
dynamic visualization of design patterns information. Such
information is displayed dynamically when the user moves the
cursor on the screen. The applied approach is only limited to
the visualization of design patterns information for forward
engineering. Furthermore, authors did not focus on the
visualization of different types of overlapping in the presented
methodology.

Dong [13] proposed another new graphical notation that is
an extension to UML. This approach provides a mechanism to
visualize each individual pattern in the composition of design
patterns by adding the tagged values. These tagged values
contain the pattern and/or instance(s) and/or participant
name(s) associated with the given class and its operations and
attributes. The format of a tag is ―pattern [instance]: role‖ =
True/False. For example, if a class is tagged with notation
―Adapter [1]: Adaptee‖ then the class plays a role of Adaptee
in the first instance of the Adapter pattern. For the sake of
simplicity only the participant name can be shown as it does
not create any ambiguity. The author himself determined its
limitation as the pattern related information is not as noticeable
as the ―pattern: role‖ notation with shading, but he consider it
as a tradeoff. This approach provides a mechanism to
determine one to one overlapping, but it does not focus on the
other two types of overlapping.

Vlissides et al. [3] proposed a notation to explicitly
visualize the pattern related information. In this notation, each
class is tagged with a gray shaded box containing the pattern
related information in the form of ―pattern: role‖. Each box,
associated with a class, contains the pattern name and the role
name that this class plays in the associated design pattern. If a
class participates in more than one design pattern then all the
design patterns in which this class participates will be
presented in the same box. For the sake of simplicity, if the
class role name is the same as of the design pattern then the
design pattern name can be omitted. This notation is more
scalable, highly readable and informative. However, the size of
the original diagram can significantly be increased as each
class has an associated gray box with it. This notation also does
not represent the role that an attribute and operation play in a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

47 | P a g e

www.ijacsa.thesai.org

design pattern. There occur multiple instances of a design
pattern in a class diagram, but this approach cannot distinguish
the multiple instances of a design pattern. Moreover, Dong et
al [9] identified the problems related to scanning and reading
on the printed media because of gray backgrounds.

Schauer et al. [14] developed a prototype to make the
program comprehension simple and efficient by recognizing
design patterns and their visualization. For the visualization of
design patterns, they proposed pattern enhanced class diagrams
that use different colored borders to identify different patterns.
This approach provides ease for identifying all the classes
participating in a design pattern as this approach is strongly
visual. However, this approach cannot identify the role a class,
attribute and operation plays in a given design pattern.
Moreover, it is really difficult to identify all the design patterns
in which a class participates. Authors argue that they enhanced
UML representation, but statistically it is difficult to measure
improvement in the presented approach. The examples selected
for experiments are very small and generalization of approach
for large and complex systems is questionable.

Vlissides [3] presented an alternative notation that
addresses the limitations of Venn diagram notation. In this
notation, dashed ellipses are used to represent the design
pattern names. Each ellipse (design pattern) is connected with
its participating classes through dashed lines. These dashed
lines contain the role names each class plays in a specific
design pattern. This approach gives a major breakthrough over
Venn diagram notation by specifying the role each class plays
in a design pattern. However, the role that attribute or operation
plays in a design pattern is not covered in this approach. In
addition to this, the scalability issue arises as the system size
grows. The design pattern information and the class structure
get intermingled and the cluttered lines make it really hard to
read and identify the required information [9 13].

Vlissides [3] introduced another intuitive approach to
explicitly visualize the design patterns participating in a design
diagram in the same report. To distinguish the design patterns
from each other, all the classes participating in a design pattern
are bounded with different shades of colors. Hence, all the
classes participating in a design pattern are easily identified.
This approach works well for small number of patterns in the
system, but the scalability issue arises when the system size
grows. It becomes very difficult to differentiate the overlapping
among different design patterns when different classes
participate in multiple design patterns. Moreover, this notation
does not clearly depict role of different artifacts in the
corresponding design patterns. The major focus of authors is to
identify the boundary of each design pattern [9, 13].

The concept of composition of design patterns using formal
specification is presented by Bayley et al. [4]. Authors applied
idea of composition of patterns based on lifting and
specialization operations on patterns. The meta-modeling
notation GEBNF [16] is used for specification of composition
in the design patterns. The applied approach has key focus on
composition and formal verification of patterns which can be
used for detection of design patterns, but it has no link with the
visualization of design patterns during forward and reverse

engineering phases which is a major focus of our approach.
Composition of patterns is explained using Composite,
Strategy and Observer design patterns.

Marie et al. [20] presented a design pattern visualization
approach based on different pattern matching views. They used
class view, pattern view and Abstract syntax view to represent
and visualize information related with design patterns. User
can compare candidate patterns with the specification. The
experiments are performed on an Observer design pattern using
JHotdraw [22] and generalization of composition with other
patterns need investigation. The approach did not focus on
visualization of operations and different types of overlapping in
recognized design patterns. The approach is also limited to
visualization for reverse engineering purpose.

III. COMPARISION OF EXISTING APPROACHES

UML and non-UML based notations are presented by
different researchers for the specification and visualization of
information related with design patterns. Non-UML based
notations provide option of reasoning, verification and tool
support, but they lack support for integration with other tools.
These notations also have limitations to specify all features of
design patterns. For example, LePUS is not cable to specify all
GoF design patterns and their variants [26]. Standard UML
based notations are also not capable to model all properties of
design patterns, but still they are widely used due to integration
of UML tools with other tools. While comparing different
notations in this paper, we focus on UML based notations.

An empirical study conducted by Porras et al. [8]
concluded that none of the existing notations fits all possible
tasks. Therefore, it is important to carefully investigate all the
notations. Authors suggested a framework to compare the
current and future notations. The findings of study reflect that
different notations have their strengths and limitations thus
providing a ground to devise new notations that would further
overcome identified limitations while combining the best of
current notations. We compare the features of existing
notations that are presented by different authors [3, 9, 11, 13,
14, 20] on the basis of attributes suggested by the existing
framework [8] and by adding new attributes as indicated in
Table 1. The major focus in our evaluation is visualizing
different types of overlapping in the design of software
systems.

Venn diagram-style pattern annotation and Pattern
Enhanced Class Diagram are strongly visual approaches, but
they do not specify the role each modeling element plays in a
design pattern. They are just used to identify the boundary of a
design pattern. UML Collaboration Notation is both visual and
textual approach representing the role a class plays in a design
pattern. However, the role that an attribute or operation plays in
a design pattern is not covered in this approach. In addition to
this, the scalability issue arises as the system size grows. The
design pattern information and the class structure get
intermingled and the cluttered lines make its comprehension
really hard. Pattern: Role Notation also does not represent the
role that an attribute and operation play in a design pattern.
This approach is not able to distinguish the multiple instances
of a design pattern.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

48 | P a g e

www.ijacsa.thesai.org

Tagged Pattern Annotation, Tagged Pattern Annotation
with shading, Tagged Pattern Annotation with bounding,
Tagged Pattern Annotation with new compartments and
Stereotype enhanced UML diagrams represent the role each
modeling element plays in a design pattern, but the notations
make the information really hard to read. Pattern Instance
Notation represents the roles each modeling element plays in a
design pattern and focus on the multiple design pattern
instances, but this approach is still in progress. Furthermore, all
these notations do not focus on the visualization of different
types of overlapping in design patterns. We present an
extended evaluation framework which compare features of all
existing notations as given in Table 1.

There are no standard metrics to measure and compare
features of different notations such as comprehension,

complexity and flexibility. We deeply analyzed features of
existing notations and defined our self-scales to measure these
features for the purpose of visualization. For example, we
defined three scales for measuring the comprehension. These
scales are easy, moderate and hard. The easy scale means that
comprehension of a notation is user friendly and it is not
complex to understand. The moderate scale means that
comprehension is between easy and hard scales. The hard scale
means that comprehension of a notation is difficult. Similarly,
other features are also measured based on our self-scales. The
major challenge for visualization approaches is generalization
of scalability feature for the visualization of design patterns
information. The existing approaches ensure scalability for
small and medium size of software packages, but the
scalability for large software applications is challenging.

TABLE. I. COMPARISON OF DESIGN PATTERN REPRESENTATION APPROACHES BASED ON DIFFERENT VISUALIZATION ATTRIBUTES

Approaches/

Attributes

Venn

diagram-

style

pattern

annotation

[3]

UML

Collabo

ration

Notatio

n [3]

Pattern:

Role

Notatio

n [3]

Pattern

Enhanc

ed Class

Diagra

m[14]

TPA

[13]

TPA

with

shading

[13]

TPA

with

boundin

g [13]

TPA with

new

compart

ments[13]

Stereoty

pe

Enhance

d UML

diagram

s [9]

Pattern

Instance

Notatio

n [11]

Pattern

Matchin

g Views

[20]

Representation

Style

Strongly

visual

Visual

&
Textual

Visual &

Textual

Strongly

visual

Strongly

visual

Visual

&
Textual

Visual &

Textual

Visual &

Textual

Strongly

textual

Visual &

Textual
Visual

Visualization

Scope
Static Static Static Static Static Static Static Static

Static &

Dynamic
Dynamic

Static &

Dynamic

Level of
Complexity

Low Medium Low Low Medium Medium Medium Medium High Medium Medium

Comprehensi-

on
Easy Hard Easy Easy

Moderat

e

Moderat

e
Moderate Moderate Hard

Moderat

e

Moderat

e

Tool Support No No No No No No No No Yes No Yes

Scalability Small Small Medium Small Medium Small Small Medium Medium Medium Small

Flexibility Less Less Medium Less Good Good Good Good Good Good Good

Participation Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Composition Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Role No Yes Yes No Yes Yes Yes Yes Yes Yes Yes

Class Role No Yes Yes No Yes Yes Yes Yes Yes Yes Yes

Attribute

Role
No No No No Yes Yes Yes Yes Yes Yes Yes

Operation

Role
No No No No Yes Yes Yes Yes Yes Yes No

Multiple

Instance
No No No No Yes Yes Yes Yes Yes Yes No

1-1

Overlapping
No No No No Yes Yes Yes Yes Yes No No

1-M

Overlapping
No No No No No No No No No No No

M-M
Overlapping

No No No No No No No No No No No

TPA: Tagged Pattern Annotation

It is visible from features of the state of the art design
pattern visualization notations in Table1that there is no
notation that can visualize all types of overlapping. The
comprehension of different notations varies when the size of an
application increases. In order to overcome the limitations of

above mentioned design pattern visualization techniques, this
paper is intended to propose an approach that integrates the
best features of Pattern: Role notation[3] and stereotype
enhanced UML diagrams[9] while overcoming their
limitations. The proposed approach also appends new
functionality regarding visualization of different types of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

49 | P a g e

www.ijacsa.thesai.org

overlapping in UML class diagrams which is important for the
comprehension of software applications.

IV. PROPOSED HYBRID APPROACH

It is apparent from discussion in Sections 2 and 3 that the
current design pattern visualization approaches are unable to
capture all the aspects of design pattern visualization which is
important for the comprehension of any software application
e.g., the role that a class, attribute and operation play in a
design pattern. Similarly, there exist multiple instances of a
design pattern and different types of overlapping among
different classes. The key motivation for this approach is to
represent and visualize the pattern related information in the
composition of design patterns. Our hybrid notation is
elaborated in the following three subsections.

A. Building on Pattern:Role Notation

Our proposed notation is given below:

Pattern [Pinstance]: Role [Rinstance]

Where Pattern represents the design pattern name in which
a class participates. Pinstance represents the instance of a
specific design pattern as there can be multiple instances of a
design pattern in the software design. Role represents the role
name a class plays in the associated design pattern. Rinstance
represents the multiple instances of a class role. We will use
this field to visualize different types of overlapping among
different classes. A note box containing design pattern
information is attached to each class. For the sake of simplicity,
if there is only one instance of a design pattern then Pinstance
can be omitted. Similarly if there are not multiple instances of a
class role then Rinstance can be omitted for ease. For example,
file class plays the role of leaf in composite design pattern as
shown in Fig. 1. As there is only one instance of leaf therefore
Rinstance can be omitted. Also if the design pattern and the
class role names are same then the class role can be omitted.
For example, directory class plays the role of composite in the
Composite design pattern and there is only single instance of
the composite design pattern. Thus for the sake of simplicity,
the role and the Pinstance fields are omitted as shown in Fig. 1.

The following example further explains how our notation
represents information when a single class plays more than one
role in different design patterns:

Adapter [1]:Adaptee[1]

Strategy [2]: Context [1]

Bridge [1]:Implementor[1]
Suppose above notational information is attached to a Class

A. The notations reflect that Class A plays the role of Adaptee
in the first instance of an Adapter design pattern. The same
Class A plays the role of Context in the second instance of
Strategy design pattern and a role of Implementor in the first
instance of Bridge design pattern. The ‗1‘ on the right hand
side of above notations state that Class A is overlapped in three
design patterns with different roles.

Fig. 1. File System Class Diagram based on our Integrated Approach

B. Incorporating UML Profile for Design Patterns

Visualization

Stereotypes are used to extend UML profile by defining
tagged values and constraints. These tagged values and
constraints corresponding to a stereotype get attached to
modeling element to which that stereotype is branded [17].
Two stereotypes <<Pat>> for Pattern attribute and <<Pop>>
for Pattern operation are defined to explicitly visualize the role
that an attribute and operation performs in a design pattern.
Each element is associated with its respective stereotype e.g.,
stereotype <<Pat>> is associated to all such attributes of a class
that plays a specific role in a design pattern. Similarly,
<<Pop>> stereotype is associated with all operations of a class
that are the participants of a design pattern. The tagged values
corresponding to these stereotypes are defined in Table 2. The
semantics and constraints on applied stereotypes are discussed
below:

1) Semantics
The detailed semantics of the stereotypes and their

corresponding tagged values are given in Table 2. <<Pat>> and
<<Pop>> stereotypes are defined to be associated with the
attributes and operations of a class that play specific roles in a
design pattern respectively. Each stereotype is applied on the
corresponding modeling element and the role of that element is
identified by the tagged value. The format of the tagged value
is Pattern [Pinstance]: Role, Pattern specifies the design pattern
name in which this attribute or operation participates, Pinstance
specifies the number of design patterns instance to which this
attribute or operation belongs to, Role specifies the certain role
name that this attribute or operation plays in the design pattern.
For example, in Fig. 1, getName () operation of class Node
plays the role of Request in Proxy design pattern. There is only
one instance of Proxy in the given system. Therefore, the
stereotype <<Pop {Proxy [1]: Request}>> is branded to the
getName () operation of class Node. It may be possible that an
attribute or operation play different roles in different design
patterns.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

50 | P a g e

www.ijacsa.thesai.org

TABLE. II. STEREOTYPES AND TAGGED VALUES ON ATTRIBUTE AND

OPERATION

Stereotypes Applies to Tagged value Description

<<Pat>> Attribute
Pattern[Pinstance]:

Role

Identifies that the
associated attribute

performs the role of

Role in this specific
instance Pinstance of a

design pattern named

Pattern

<<Pop>> Operation
Pattern[Pinstance]:

Role

Identifies that the
associated operation

performs the role of

Role in this specific
instance Pinstance of a

design pattern named

Pattern

2) Constraints
We discuss in detail the constraints that are imposed on the

stereotypes used by our approach. As stereotypes are
associated with modeling elements (attribute and/or operation),
constraints also get associated with them. These constraints
compel certain kinds of restrictions on the modeling elements.
We used Object Constraint Language OCL [18] to write these
constraints formally. To define constraints for <<Pat>> and
<<Pop>>, we will use standard properties of OCL such as
self.a, where a can be a reference or any base class. The
constraints for the stereotypes <<Pat>> and <<Pop>> are
defined as follows:

<<Pat>>:

self.baseClass = Attribute and self.taggedValue -> exists

(tv:taggedValue | tv.name = ―Pattern[Pinstance]:Role‖ and

tv.dataValue = Boolean)

<<Pop>>:

self.baseClass = Operation and self.taggedValue -> exists

(tv:taggedValue | tv.name =―Pattern[Pinstance]:Role‖ and

tv.dataValue = Boolean)

The Pattern and the Role fields of the tagged values in

<<Pat>> and <<Pop>> cannot be empty.

<<Pat>>:

self.taggedValue.name.Pattern -> notEmpty

<<Pop>>:

self.taggedValue.name.Pattern -> notEmpty

<<Pat>>:

self.taggedValue.name.Role -> notEmpty

<<Pop>>:

self.taggedValue.name.Role -> notEmpty

The Pinstance field of the tagged values in <<Pat>> and

<<Pop>> can be omitted if there is only one instance of a

design pattern. See for example below:

<<Pat>>:

self.taggedValue.name.Pinstance -> isEmpty or

self.taggedValue -> exists

(tv:taggedValue | tv.name.instance -> notEmpty)

<<Pop>>:

self.taggedValue.name.Pinstance -> isEmpty or

self.taggedValue -> exists

(tv:taggedValue | tv.name.instance -> notEmpty)

The Pinstance field of the tagged values in <<Pat>> and

<<Pop>> cannot be omitted if there are multiple instances of a

certain design pattern. For example;

<<Pat>>:

self.taggedValue.name -> exists (n1, n2: name | n1.name =

n2.name) implies (n1.Pinstance -> notEmpty and n2.Pinstance

-> notEmpty and n1.Pinstance != n2.Pinstance)

<<Pop>>:

self.taggedValue.name -> exists (n1, n2: name | n1.name =

n2.name) implies (n1.Pinstance -> notEmpty and n2.Pinstance

-> notEmpty and n1.Pinstance! = n2.Pinstance)

C. Visualization of Composition

Design patterns are mostly used in a composed form and
multiple types of overlapping occur among different instances
of design patterns. Visualization of the overlapping in
recognized design patterns play an important role for the
program comprehension during forward as well as reverse
engineering. When the design patterns are composed with each
other, there may occur three types of overlapping namely one
to one, one to many and many to many overlapping. State of
the art design patterns visualization approaches did not pay
attention to detect and visualize overlapping. In this paper, our
focus is on visualizing all three types of overlapping for
forward as well as reverse engineering purposes. We want to
clarify that our approach takes extracted result of design
pattern recovery tools and then visualize information related
with design patterns. One to one overlapping: If there is only
one leaf class in the Composite pattern and the composite
pattern is composed with the Adapter pattern in such a way that
this leaf class is adapted by the adapter then that is a one-to-one
overlap. In this case, the same class plays two different roles in
two different design patterns. One to many overlapping: If
there are multiple leaves of Composite pattern and the
Composite and Adapter patterns are composed with each other
in such a way that two or more leaves of the Composite pattern
are adapted by the same Adapter pattern then this is called one-
to-many overlapping. Finally, many to many overlapping: this
type of overlapping occurs among patterns when more than one
role in a pattern are reused more than one time in another
pattern. Zhu et al. [19] presented the composition of Composite
and Adapter design patterns with many to many overlapping.
In this composition, there are multiple instances of component
leaf of Composite design pattern. There are some instances of
Leaf class that are adapted by multiple instances of target of
Adapter design pattern. Hence, there are multiple targets for
multiple leaves. This is an example of many (Targets) to many
(Leaves) overlapping.

Figs. 2, 3 and 4 give a view of visualization of one to one,
one to many and many to many types of overlapping using our
hybrid approach.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

51 | P a g e

www.ijacsa.thesai.org

Fig. 2. Visualization of One to One Overlapping in Java.awt

Fig. 3. Visualization of One to Many Overlapping

Fig. 4. Visualization of Many to Many Overlapping

V. PROTOTYPING TOOL

A prototype tool, VisCDP is developed for the realization
of proposed approach. VisCDP is used to visualize design
pattern information related to classes, operations and/or
attributes in the composition of recognized design patterns. It
provides static as well as on demand (dynamic) visualization in
UML class diagrams. On demand option is used for filtration
and highlighting information about roles participating in

different design patterns. For example, by moving the cursor in
a class, operation/attribute name, a box with highlighted design
pattern information is displayed. These highlighted boxes
improve the visibility and comprehension of information.
VisCDP supports filtration option on both class and design
pattern names and the user can view any specific class and/or
design pattern information in a tabular form.

 class one to one ov erlapping example

Component

Canvas Container

AWTEventListener

LightWeightDispatcher

Checkbox

Choice

Composite[1]:Component[1]

Composite[1]:Leaf[1]

Composite[1]:Leaf[2]
Composite[1]:Leaf[3] Composite[1]:Composite[1]

Adapter[1]:Adaptee[1]

Adapter[1]:Target[1]

Adapter[1]:Adapter[1]

1..*

 class OnetoMany

Component

AdaptedLeaf1 AdaptedLeaf2

Composite

Adapter1

Adaptee1

Composite[1]:Component[1]

Composite[1]:Leaf[1]

Adapter[1]:Target[1]

Composite[1]:Leaf[2]

Adapter[2]:Target[1]

Composite

Adapter[1]:Adapter[1]

Adapter[1]:Adaptee[1]

Leaf3

Composite[1]:Leaf[3]

 class manyToMany

Component

AdaptedLeaf1 AdaptedLeaf2 Composite

Adapter1

Adaptee1

Composite[1]:Component[1]

Composite[1]:Leaf[1]

Adapter[1]:Target[1]

Composite[1]:Leaf[2]

Adapter[2]:Target[1]

Composite

Adapter[1]:Adapter[1]

Adapter[1]:Adaptee[1]

Leaf3

Composite[1]:Leaf[3]

Adapter2

Adaptee2

Adapter[2]:Adapter[1]

Adapter[2]:Adaptee[1]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

52 | P a g e

www.ijacsa.thesai.org

Fig. 5. Architecture of VisCDP

The user enters the class and associated design pattern
information manually into the tool and then he/she can
visualize the output in pictorial and tabular view according
tohis/her requirements. Fig. 5 presents the architectural
overview of VisCDP. The Visual Studio.NET is used to create
the Web forms. The presentation layer for VisCDP is VB.NET

forms with user controls. VisCDP takes the input from the user
through these forms and then stores this information in a
database (MS Access). The user can define the classes, their
relationships and all the design pattern information related to
classes, operations and attributes. VisCDP displays the original
UML diagram and UML diagram with design pattern
information related to class and/or operations. It also generates
the tabular view of design pattern information related to classes
and facilitates on demand visualization.

VisDP is also capable to display design pattern information
in a tabular form which is important to know the impact of
each class in different design patterns as shown in Fig. 6. The
first column in Fig. 6 shows name of a class and the second
column show name of design pattern in which a particular class
exists. The third column shows the number of design pattern‘s
instance in which a class exists. The last column in Fig. 6
shows that how many roles a particular class is playing in
different design patterns.

Fig. 6. Design Patterns Information in Tabular Form (Class Wise)

VI. EVALUATION OF APPROACH

The presented approach is evaluated on a JHotDraw-
5.1software package which is implemented using different
design patterns. This version of JHotDraw-5.1[22] contains
136 classes and total lines of source code are 30860. We
partially selected a set of nine classes from this software
package to demonstrate our approach as proof of concept. We
also implemented other two approaches [3, 9] using same
software package. The partial software package design is
composed of five design patterns: two instances of Adapter and
a single instance of Strategy, Composite and Bridge design
patterns. Figure class, playing three roles in three different
design patterns, is a central abstraction of the drawing editor
framework. It represents a graphical figure that users can work
with. The objective of selecting this software package is to
evaluate our hybrid approach and to compare the results with
the other two approaches [3, 9]. Although, we compare eleven
different pattern representation approaches in Table 1, but we
selected these two approaches for evaluation and comparison
with our approach as these are most representative approaches.

Pattern: Role notation (Gamma‘s Approach) does not
represent the role that an attribute and operation play in a
design pattern. Multiple instances of a design pattern may exist
in a class diagram, but this approach cannot distinguish the
multiple instances of a design pattern. Fig. 7 represents the
resulting diagram after implementing the Gamma‘s approach
on our case study.

Stereotype enhanced UML diagrams (Dong‘s Approach)
represent the roles that a class, operation and attribute plays in
a design pattern. This approach also distinguishes the multiple
instances of a design pattern, but the text overload considerably
increases the size of the classes and consequently it becomes
really hard to read a design pattern related instances of a design
pattern, but the text overload considerably increases the size of
the classes and consequently it becomes really hard to read a
design pattern related information. in different types of
overlapping. Fig. 8 presents the resulting diagram after
implementing the Dong‘s approach on our case study.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

53 | P a g e

www.ijacsa.thesai.org

Fig. 7. Gamma‘s Approach Implemented on JHotDraw-5.1

The proposed approach representing design pattern
information on a subset of JHotDraw-5.1 classes is shown in
Fig. 9. The notation ―Bridge [1]: ConcreteImplementor[1]‖
attached to class Drawing represents that Drawing class plays
the role of ConcreteImplementor in the Bridge. ―Bridge
[1]:ConcreteImplementor[2]‖ attached to class TextFigure
represents that TextFigure class is the second instance of
ConcreteImplementor in the same instance of design pattern
Bridge.

Table 3 presents the comparison of Gamma, Dong and our
hybrid approach based on the key features used by
visualization approaches. One of the major characteristics of
our hybrid notation is to represent the multiple instances of a
class role that a class plays in different design patterns. This
feature exactly determines different types of overlapping i.e.
one to one, one to many and many to many which differentiate
our approach from state of the art approaches.

Fig. 8. Dong‘s Approach Implemented on JHotDraw-5.1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

54 | P a g e

www.ijacsa.thesai.org

Fig. 9. 1 Hybrid Approach Implemented on JHotDraw-5

TABLE. III. COMPARISON OF GAMMA, DONG AND OUR HYBRID APPROACH

BASED ON KEY FEATURES

Our proposed approach has visualization support for
forward as well as for reverse engineering cycles as compared
with approaches of Gamma and Dong. We support all types of
overlapping which are important for comprehension of
visualization for different instances of design patterns in any
software.

Similarly, our approach uses combination of visual and
textual aspects of design patterns information for better
visualization as compared to previous approaches. Finally, our
approach achieved the comprehension at moderate level. We
validated comprehension of our approach through a
questionnaire. We sent a questionnaire to 20 master students
that were studying a course on software visualization at
COMSATS Institute of Information Technology. We sent three
samples of visualization styles for our approach and other two
approaches [3, 9] as a part of the questionnaire. 85% of the
students rated comprehension feature of our approach
moderate.

Validity is the major concern for researchers and
practitioners to validate the results of information retrieval
techniques. Regarding construct validity, one of the major
threats to the results of our approach is related to design
patterns identification from source code and analysis of
dependencies as there is a lack of standard definitions for
design patterns. The structural and implementation variations

 class CaseStudy_3

ConnectorAbstrctConnector

Figure

fFigures

CompositeFigure

AbstractFigure

FigureChangeListener

TextFigureDrawing

Adapter[2]:Target[1]Adapter[2]:Adapter[1]

Adapter[1]:Target[1]
Adapter[2]:Adaptee[1]
Composite[1]:Component[1]

Composite[1]:Composite[1]

Composite[1]:Leaf[1]

Adapter[1]:Adapter[1]
Strategy[1]:Context[1]
Bridge[1]:Abstraction[1]

Adapter[1]:Adaptee[1]
Strategy[1]:Strategy[1]
Bridge[1]:Implementor[1]

Bridge[1]:ConcreteImplementor[1] Bridge[1]:ConcreteImplementor[2]

<<Pop{Adapter[2]:Request}>>containsPoint()
<<Pop{Adapter[2]:Request}>>displayBox()

<<Pop{Adapter[2]:Request}>>containsPoint()
<<Pop{Adapter[2]:Request}>>displayBox()

<<Pop{Adapter[1]:Request}>>changed()
<<Pop{Adapter[1]:Request}>>invalidate()
<<Pop{Adapter[1]:Request}>>released()
<<Pop{Adapter[2]:SpecificRequest}>>containsPoint()
<<Pop{Adapter[2]:SpecificRequest}>>displayBox()
<<Pop{Composite[1]:Add}>>add()
<<Pop{Composite[1]:Remove}>>remove()
<<Pop{Composite[1]:Operation}>>draw()

<<Pop{Composite[1]:Add}>>add()
<<Pop{Composite[1]:Remove}>>remove()
<<Pop{Composite[1]:Operation}>>draw()

<<Pop{Composite[1]:Operation}>>draw()
<<Pop{Adapter[1]:Request}>>changed()
<<Pop{Adapter[1]:Request}>>invalidate()
<<Pop{Adapter[1]:Request}>>released()

<<Pop{Adapter[1]:SpecificRequest}{Bridge[1]:OperationImp}>>figureChanged()
<<Pop{Adapter[1]:SpecificRequest}{Bridge[1]:OperationImp}>>figureInvalidated()
<<Pop{Adapter[1]:SpecificRequest}{Bridge[1]:OperationImp}>>figureReleased()

<<Pop{Bridge[1]:OperationImp}>>figureChanged()
<<Pop{Bridge[1]:OperationImp}>>figureInvalidated()
<<Pop{Bridge[1]:OperationImp}>>figureReleased()

<<Pop{Bridge[1]:OperationImp}>>figureChanged()
<<Pop{Bridge[1]:OperationImp}>>figureInvalidated()
<<Pop{Bridge[1]:OperationImp}>>figureReleased()

DP

Representation

Features

Gamma’s

Approach [3]

Dong’s

Approach[9]

Our

Hybrid

Approach

Visualization

Style
Visual Strongly Textual

Both
Textual and

Visual

Overlapping type No 1-1
All three

types

Visualization

support

Forward

Engineering

Forward

Engineering

Forward
and

Reverse

Engineering

Participation Yes Yes Yes

Composition Yes Yes Yes

Class Role Yes Yes Yes

Attribute Role No Yes Yes

Operation Role No Yes Yes

Multiple instances

of a design pattern
No Yes Yes

Multiple instances

of a Class Role
No No Yes

Level of
Complexity

Low High Medium

Comprehension Easy Hard Moderate

Tool Support No Yes Yes

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

55 | P a g e

www.ijacsa.thesai.org

are key factors which impact the accuracy of design pattern
detection tools. We reduced this threat as we used results of
extracted patterns which are already verified. To ensure
internal validity, we used JHotDraw-5.1 as a case study.
JHotDraw-5.1 is a drawing editor and it is developed by using
different design patterns. The source code is available freely
for validation of results. However, threats to external validity
are related to what extent we can generalize our results. Thus in
case of large scale systems, our results for class view may be a
threat to the external validity of our visualized results.
Regarding reliability validity, we used JHotDraw-5.1 which is
open source software and is publically available.

VII. CONCLUSION AND FUTURE WORK

The comprehension of large and complex systems based on
design patterns is a challenging problem. Different
representations of design patterns have been proposed, but each
representation has its strengths and limitations. Current design
pattern visualization approaches are unable to capture all the
aspects of design patterns visualization which is important for
the comprehension of any software application e.g., the role
that a class, attribute and operation plays in a design pattern.
Similarly, there exist multiple instances of a design pattern and
different types of overlapping among different classes.

With the critical analysis of state of the art design pattern
visualization approaches, we propose an approach that
integrates the best features of Pattern: Role notation [3],
stereotype enhanced UML diagrams [9] and appends new
features to visualize the design patterns in class diagrams. The
proposed hybrid notation is used to represent design pattern
information related to roles and to visualize different types of
overlapping. Stereotypes, their associated tagged values,
semantics and constraints are defined to represent the design
patterns information related to attributes and/or operations of a
class. We used a subset of open source software JHotDraw-5.1
to evaluate our approach and compared the results with the
other approaches. The proposed approach improves the
visualization of design patterns as compared with previous
approaches [3 9]. A prototyping tool named VisCDP is
implemented to support our research work and to validate the
concept of our hybrid approach. VisCDP is used to visualize
design pattern information related to classes, operations and/or
attributes in the composition of recognized design patterns. It
provides static as well as on demand (dynamic) visualization in
class diagrams. It is worthwhile to mention that our current
approach is limited only to the visualization of design pattern
information in class diagrams and we do not focus on
visualization of information in sequence, collaboration and
other types of diagrams. We evaluated our approach on a
subset of the small scale case study (i.e., JHotDraw-5.1) and
scalability of approach for large scale systems is questionable
which will be investigated in future. The approach is also
limited to visualize the standard representations of GoF
patterns and we do not consider variants of same design
patterns. In future, we plan to evaluate the scalability of our
hybrid approach on large and complex systems.

REFERENCES

[1] Taibi, T. and D. C. L. Ngo. 2003. Formal Specification of Design
Patterns - A Balanced Approach. Journal of Object Technology.
(Zurich, Switzerland). 2(4): 127-140.

[2] Dong, J., P. S. Alencar and D. D. Cowan. 2000. Ensuring Structure and
Behavior Correctness in Design Composition. In Proc. of 7th IEEE Int.
Conf. and Workshop on the Engineering of Computer Based Systems.
(Ontario, Canada). pp. 279–287.

[3] Vlissides, J. 1998. Composite Design Patterns (They aren‘t What You
Think). C++ Report. Published by SIGS Publications Group. (NY,
USA). 10(4): 45–47.

[4] Bayley, I. and H. Zhu. 2008. On the Composition of Design Patterns. In
Proc. of 8th IEEE Int. Conf. on Quality Software. (Washington DC,
USA). pp. 27-36. ISBN: 978-0-7695-3312-4.

[5] Hericko, M. and S. Beloglavec. 2005. A Composite Design-Pattern
Identification Technique. The Slovene Society Informatica.
(Yugoslavia). 29 (4): 469-476. ISSN: 0350-5596

[6] Booch, G., J. Rumbaugh and I. Jacobson. 2005. The Unified Modeling
Language User Guide. 2nd Ed. Addison-Wesley. (NY, USA). pp. 104-
110. ISBN : 0321267974.

[7] [Dong, J. and K. Zhang. 2003. Design Pattern Compositions in UML.
Software Visualization From Theory to Practice. Kluwer Academic
Publishers. (Massachusetts, USA). pp. 287–308. ISBN: 1-4020-7448-4.

[8] Porras, G. C. and Y. Gueheneuc. 2010. An Empirical Study on the
Efficiency of Different Design Patterns Representations in UML Class
Diagrams. Journal of Empirical Software Engineering. (Hingham,
USA). 15(5): 493-522.

[9] Dong, J., Y. Sheng and Z. Kang. 2007. Visualizing Design patterns in
their Applications and Compositions. IEEE Transactions on Software
Engineering. (Los Alamitos, CA, USA). 33(7): 433-453. ISSN: 0098-
5589.

[10] Fowler, M. 2002. Patterns of Enterprise Application Architecture.
Addison-Wesley. (NY, USA). pp. 45-60. ISBN: 978-0-321-12742-6.

[11] Smith, J. M. 2009. The Pattern Instance Notation: A Simple Hierarchical
Visual Notation for the Dynamic Visualization and Comprehension of
Software Patterns, In Proceedings of the Workshop Visual Formalisms
for Patterns at VL/HCC, pp. 1-12.

[12] Dong, J., Y. Sheng and Z. Kang. 2005. VisDP: A Web Service for
Visualizing Design Patterns on Demand. In Proc. of the 6th Int. Conf. on
Information Technology: Coding and Computing. (Dallas, Texas, USA).
Vol. 2. pp. 385-391.

[13] Dong, J. 2003. Representing the Applications and Compositions of
Design Patterns in UML. In Proc. of ACM Symp. on Applied
Computing (SAC‘03). (NY, USA). pp. 1092-1098. ISBN: 1-58113-624-
2.

[14] Schauer, R. and R. K. Keller. 1998. Pattern Visualization for Software
Comprehension. In Proc. of 6th IEEE Int. Workshop on Program
Comprehension. (IWPC‘ 98). (Ischia, Italy). pp. 4–12. ISSN: 1092-
8138.

[15] Taibi, T. 2006. Formalizing Design Patterns Composition. IEE
Proceedings Software. (UK). 153(3): 127–136.

[16] Bayley I., and Zhu. H., Formalising design patterns in predicate logic. In
5th IEEE International Conference on Software Engineering and Formal
Methods, 2007.

[17] Berner, S., M. Glinz and S. Joos. 1999. A Classification of Stereotypes
for Object-Oriented Modeling Languages. In Proc. of 2nd Int. Conf. on
Unified Modeling Language. (Berlin, Germany). pp. 249-264

[18] Warmer, J. B. and A. G. Kleppe. 1998. The Object Constraint
Language: Precise Modeling with UML. 1st Ed. Addison-Wesley.
(Boston, USA). pp. 60-90. ISBN: 0201379406.

[19] Zhu, H. and I. Bayley. 2012. An Algebra of Design Patterns. ACM
Transactions on Software Engineering and Methodology. (NY, USA).
Vol. 20. pp. 1-38. ISSN: 1557-7392.

[20] Marie Christin Platenius, Markus von Detten, Dietrich Travkin ,
Visualization of Pattern Detection Results in Reclipse. Proceedings of
the 8th International Fujaba Days, pp. 33-37, May 2011.

[21] Ball, T and Eick, S.G. 1996. Software visualization in the large. IEEE
Computer, Vol. 29, issue 4, pp. 33-43.

[22] JHotDraw Home Page: http://www.jhotdraw.org/.

[23] Maplesden, D., Hosking, J.G. and Grundy, J.C., A Visual Language for
Design Pattern Modelling and Instantiation, Chapter 2 in Design

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ball,%20T..QT.&searchWithin=p_Author_Ids:37314318300&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Eick,%20S.G..QT.&searchWithin=p_Author_Ids:37282570100&newsearch=true

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 4, 2017

56 | P a g e

www.ijacsa.thesai.org

Patterns Formalization Techniques, Toufik Taibi (Ed), Idea Group Inc.,
Hershey, USA, March 2007.

[24] Cacho, N., Sant'Anna, C. Figueiredo E. Garcia A. Batista T. Lucena C.,
Composing Design Patterns: A Scalability Study of Aspect-Oriented
Programming, Proceedings of the 5th international conference on
Aspect-oriented software development, pp. 109-121, 2006.

[25] Yacoub, S. M. and H. H. Ammar. 2003. Pattern-Oriented Analysis and
Design: Composing Patterns to Design Software Systems. 1st Ed.
Addison Wesley Professional. (NY, USA). ISBN: 0201776405.

[26] Amnon, H. Eden, Codecharts: Roadmaps and Blueprints for Object-
Oriented Programs. Wiley/Blackwell, 2011.

[27] Byelas, H., Telea, A., 2006. Visualization of Areas of Interest in
Software Architecture Diagrams, In SoftVis ‘06: Proceedings of the
2006 ACM symposium on Software visualization, pp. 105–114.

[28] France, R. B, Kim D-K, Ghosh S, Song E (2004), A UML-based pattern
specification technique. IEEE Transaction in Software Engineering,
30(3):193–206.

[29] Kamruddin M. N., Hasan S., Software Visualization Tools for Software

Comprehension, The Fourth International Conference on Software,
Knowledge, Information Management and Applications, pp. 185-191.

[30] Fontoura, Marcus and de Lucena 2001, Extending UML to improve the
representation of design patterns, Journal of Object Oriented
Programming, 13(11), pp. 12-19.

[31] Flores, A., Cechich, A., & Aranda, G. 2007, A generic model of object-
oriented patterns specified in RSL. Design Patterns Formalization
Techniques. IGI Publishing, Hershey, pp. 44-72.

[32] Javed, W. and Elmqvist, N. 2012, Exploring the design space of
composite visualization. In Pacific Visualization Symposium
(PacificVis), pp. 1-8.

[33] Rasool, G., Umair, M., & Talib, R. 2012, Extended Visualization of
Overlapping in Recognized Design Patterns. Journal of Basic and
Applied Scientific Research, 2(9), pp. 9080-9087.

[34] Heer, J. and Agrawala, M., 2006, Software design patterns for
information visualization, IEEE Transactions on Visualization and
Computer Graphics 12(5), pp. 853–860.

[35] Gamma, E., Helm, R., Johnson, R. and Vlissides, J., Design Patterns:
Elements of Reusable Object-Oriented Software, Addison Wesley, 1994.

