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Abstract—Bluetooth technology is particularly designed for a 

wireless personal area network that is low cost and less energy 

consuming. Efficient transmission between different Bluetooth 

nodes depends on network formation. An inefficient Bluetooth 

topology may create a bottleneck and a delay in the network 

when data is routed. To overcome the congestion problem of 

Bluetooth networks, a Cross-layer-based Adaptive Traffic 

Control (CATC) protocol is proposed in this paper. The 

proposed protocol is working on backup device utilization and 

network restructuring. The proposed CATC is divided into two 

parts; the first part is based on intra-piconet traffic control, 

while the second part is based on inter-piconet traffic control. 

The proposed CATC protocol controls the traffic load on the 

master node by network restructuring and the traffic load of the 

bridge node by activating a Fall-Back Bridge (FBB). During the 

piconet restructuring, the CATC performs the Piconet 

Formation within Piconet (PFP) and Scatternet Formation 

within Piconet (SFP). The PFP reconstructs a new piconet in the 

same piconet for the devices which are directly within the radio 

range of each other. The SFP reconstructs the scatternet within 

the same piconet if the nodes are not within the radio range. 

Simulation results are proof that the proposed CATC improves 

the overall performance and reduces control overhead in a 

Bluetooth network. 

Keywords—Bluetooth; scatternet; multi-layer; resolving 

bottleneck; reducing control overhead component 

I. INTRODUCTION 

Improvements in wireless technologies have enhanced our 
daily life. A number of mobile devices can interconnect 
through wireless technology and exchange different types of 
data (text, voice, and video) [1]. Bluetooth is an open standard 
that has the ability to connect heterogeneous mobile devices. A 
basic communication unit of Bluetooth is piconet, which 
consists of eight active Bluetooth nodes. A piconet is created 
through sharing the same frequency hopping sequence and 
synchronization, where one Bluetooth node becomes the 
master and remaining nodes act as slaves. An active Bluetooth 
device may perform the role of master, slave or bridge. Slave 
nodes cannot communicate directly with each other; they 
always need a master node support for communication, as the 
master node always handles all communications within a 
piconet [2], [3]. The communication within a piconet is also 

called intra-piconet communication. Bluetooth devices transmit 
their data packets over Time Division Duplex (TDD) [4]. 

Bluetooth also allows communication within multiple 
piconets, which is known as a scatternet. Where a relay or 
bridge device provides communication among different 
piconets, a bridge node can be Master-Slave (M/S) or Slave-
Slave (S/S) [5]. A bridge node is responsible for transporting 
messages between piconets so that the resources should not be 
restricted [6]. Bluetooth efficient communication can be 
achieved through a role switching technique [7], which can be 
used for different requirements.  A role switching operation 
divides one piconet into multiple piconets; splitting operation 
increases the number of piconets and bridge nodes. Using an 
example in Fig. 1(a), before executing a splitting role switch 
operation, there is one piconet having one master with six slave 
nodes. Fig. 1(b) shows how a role switch operation splits one 
piconet into two piconets P1 and P2 by changing the roles of 
the devices, where node C and F perform the master role and 
node A is used as a bridge between two piconets. 

A merge role switch operation combines different piconets 
into a single piconet [8], [9]. As shown in Fig. 1(b), two 
piconets (P1 and P2) are connected through an intermediate 
node A. Nodes (B, C, D, E, F, G) are in the range of node A. 
According to the role switch operation, node A performs the 
master role and merges two piconets into a single piconet. 
Fig. 1(a) shows how a bridge node becomes a master and 
masters (C and F) change their roles from master to slave. A 
role switch operation can be applied on Bluetooth device to 
take over the resource of other device. During this operation, 
devices can change their roles from slave to master and vice 
versa. As shown in Fig. 1(c), node D and G become masters 
and node A acts as a slave node, with two independent 
piconets. 

Many researchers proposed scatternet formation protocols 
[10]-[14] to decrease scatternet formation time or increase the 
probability of making a scatternet, but an efficient scatternet 
formation protocol is missing. This paper designs a well-
organized protocol for a Bluetooth scatternet that minimizes 
the delay and efficiently uses the network resources. The 
proposed CATC controls and shares the traffic load of master 
and bridge nodes in a distributed manner. The role-switching 
operations are performed dynamically for congestion handling 
on an affected link. 

Deanship of Scientific Research (DSR) in King Abdulaziz University, 
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Fig. 1. Different configurations of Bluetooth network. 

The paper is organized as: The background is discussed in 
Section 2. To control traffic load in Bluetooth network, a 
protocol is proposed in Section 3. The results of the proposed 
CATC are presented in Section 4 using NS-2 [15] and UCBT 
[16]. The paper is concluded in Section 5. 

II. RELATED WORK 

The traffic bottleneck is an important issue in Bluetooth, 
which is caused by a master or bridge node. Within a piconet, 
all slaves communication is possible through the master node, 
while scatter communication is achieved through intermediate 
relay node [17]. A huge number of devices may cause 
congestion and delay in the Bluetooth scatternet. The slave 
device cannot communicate with each other, master is always 
involved in intra-piconet communication among slaves. 
Therefore, master’s energy and mobility have a critical role in 
the piconet.  In the same way, bridge node mobility and energy 
has a crucial role for inter-piconet communication. Failure of a 
bridge node may disconnect the whole network. Many 
researchers have proposed different techniques for a Bluetooth 
scatternet, i.e., relay optimization, congestion avoidance, and 
scheduling. Each technique has its own benefits and limitations 
[1], [18], [19]. Through a literature survey, some relevant 
existing research works have been analyzed in this research 
work. 

Dynamic piconet restructuring protocol (PRP) [20] is 
proposed for Bluetooth networks. PRP locally regulates the 
traffic on the master node. PRP shares master node load by 
forming new piconets of slave nodes that can communicate 
directly, where one slave node acts as a master and others act 
as slaves. During the restructuring operation, the slave node 
with light traffic flow will be selected as the new master. For 
example, as shown in Fig. 2(a), nodes (A, B), (E, F) and (B, C) 
are communicating through a master G. According to PRP, 
when traffic load is detected by the master node, it performs 
piconet restructuring using a role switching operation as shown 
in Fig. 2(b). 

It is analyzed that PRP provides a solution for congestion 
problem on a master node through sharing the load, but it 
creates serious problems. It loses active member addresses due 
to breaking the existing link between slaves and master. During 
transmission, if new joins the piconet, the master assigns all 
remaining active member addresses to new nodes.  Once the 
communication is over the nodes cannot join the existing 
master due to unavailability of active member address. 
Frequent piconets construction also consume extra resources. 

At it creates new piconets for all communicating pairs without 
considering whether they are frequently communicating or not. 
The new nodes cannot communicate with the node already 
changed their state, therefore, the new nodes have to wait until 
nodes to return to their original states. 
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Fig. 2. Traffic flow analysis before and after role switching. 

Subsequently, Dynamic Congestion Control (DCC) [21] 
has been proposed as another solution for avoiding bottleneck 
problems in a scatternet through backup relay (BR). If several 
links use a single bridge it creates a bottleneck. The master 
monitors the load and delay on the bridge node. The master 
gets relay load and a number of links from relay table. When 
the master observes bottleneck in the piconet, it shares the load 
through BR. As shown in Fig. 3, multiple links passing through  
M1 the data traffic load can be determined by the master. As 
different piconets are communicating through bridge node B1, 
the master activates the BR to share the load. It provides a 
solution for intra-piconet congestion inter-piconet congestion it 
still missing. When there is a bottleneck on B1, but the master 
in P1 cannot find the congestion due to distributed traffic, it 
fails to avoid inter-piconet congestion. As shown in Fig. 3, all 
traffic load is passing through B1. Although BR is available the 
load is distributed, BR is not activated by M1. In distributed 
load, DCC does not allow parallel transmissions. 
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Fig. 3. Scatternet formation using DCC Protocol. 
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III. THE PROPOSED CROSS-LAYER-BASED ADAPTIVE 

TRAFFIC CONTROL (CATC) PROTOCOL 

This section discusses the proposed CATC protocol for 
intra-piconet and inter-piconet congestion avoidance. The 
proposed protocol consists of two parts; in the first part, role 
switching techniques are used to overcome the problem of 
intra-piconet congestion avoidance. In the second part, FBB is 
used to control the bridge load that overcomes the bottleneck 
problem of inter-piconet congestion. 

A. Intra-piconet traffic load and dynamic role switching 

operation 

In this section, intra-piconet traffic load handling is 
presented. The intra-piconet traffic load is handled through 
PFP and SFP. 

1) Intra-piconet load handling through Piconet 

Formation within Piconet 
Large numbers of connections passing through the master 

node within a piconet may create congestion. The incoming 
data traffic is called Download Traffic (DTr), and the outgoing 
data traffic is called Upload Traffic (UTr). The traffic load in a 
piconet is calculated as follows: 

 

where DTr and UTr calculate incoming and outgoing traffic 
respectively. The total traffic (TT) load on a master node is 
calculated through the sum of (1) and (2). 

The proposed protocol maintains a Master Traffic Flow 
Table (MTFT) to monitor traffic load. The MTFT maintains the 
information of all incoming and outgoing data traffic going 
through the master within a piconet as recorded in Table 1. A 
threshold ( ) value is used for congestion handling on the 
master node. When a master gets TT it compares to  , where   
= 90 slots. The traffic load is calculated after receiving or 
transmitting data between a new pair. In the next step, master 
marks the most frequent (MF) communicating nodes that reach 
the limit of the threshold value. Hence, the CATC performs 
network restructuring using a taking-over role switching 
operation. When the master node determines higher traffic load 
is greater than  , it performs a role switch operation by sending 
a request packet to the pair of MF communicating nodes within 
the piconet. When the master node receives uplink data, it 
checks in the MTFT; if the number of active connections is 
more than three, the master node calculates TT. A pair of nodes 
having the highest traffic load is marked as the MF 
communicating pair. 

The role switch request packet contains the node ID and 
clock-offset of the nodes. On receiving the role switch request, 
the source node enters into Page state and destination node 
enters into Page Scan state to create a new piconet. In the next 

step, the master node changes both nodes mode into park 
mode, to save active member addresses and reduce 
unnecessary switching control overhead. Once the 
communication ends, the nodes come back into their original 
states and send a request to the master node to restore their 
original states as active slaves. As the master node maintains 
the list of nodes for temporary connections, the original active 
member addresses are reserved by the master node. Hence, the 
nodes can come back to their original states without losing 
their connection. 

Using an example, Fig. 4(a) shows, node (I, J) and (A, B) 
are marked as MF communicating pairs by M1 and M2 
respectively. Therefore, a piconet restructuring request is sent 
to the slave nodes by the master nodes. As a result, after 
piconet restructuring, slave nodes J and A become auxiliary 
masters; the new connections of the most frequently 
communicating nodes are shown in Fig. 4(b). The data traffic 
flow of the M2 is maintained in Table 1 among different nodes, 
where MF represents a heavy traffic flow, 1 is used for normal 
traffic, and Ø means there is no data exchange between nodes. 
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Fig. 4. (a) Before role switching operation (b) After role switching 

operation. 

TABLE. I. DATA TRAFFIC FLOW ANALYSIS ON MASTER M2 

ID A B C D E F B1 M2 

A Ø MF Ø Ø Ø Ø Ø 1 

B MF Ø 1 Ø Ø Ø Ø 1 

C Ø Ø Ø 1 1 Ø Ø 1 

D Ø Ø 1 Ø 1 Ø Ø 1 

E Ø Ø 1 1 Ø Ø Ø 1 

F Ø Ø Ø Ø Ø Ø Ø Ø 

B1 Ø Ø Ø Ø Ø Ø Ø Ø 

M2 1 1 1 1 1 Ø 1 Ø 
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2) Intra-piconet traffic load handling through Scatternet 

Formation within Piconet (SFP) 
The proposed SFP creates a scatternet within a piconet. On 

receiving a role switch request, source and destination nodes 
enter Page and Page Scan state respectively and try to create a 
new link. As the paging procedure needs 1.28 s, after executing 
twice paging procedure if nodes fail to establish the new link. 
The source node sends a link fail message to the master node. 
On receiving the source node link fail message, the master 
requests connected slave nodes to enter into Inquiry state and 
create a new connection, where all slave nodes enter into the 
Inquiry Scan state and listen to the source and the destination 
nodes. A node that can connect both source and destination 
nodes performs a bridge role and executes a splitting role 
switching operation by making a scatternet within a piconet. 
During SFP operation, an intermediate node is selected as an 
auxiliary bridge (AxB) and a pair of source and destination 
nodes are selected as auxiliary masters. An intermediate node 
between source and destination can be selected as an auxiliary 
bridge. 

The SFP operation is explained through Fig. 5. Nodes H 
and F are marked as MF communicating nodes in the piconet 
but both are not within the direct radio range of each other. 
Thus, node G performs an A x B role, while the source node H 
and the destination node F perform an AxM role. In Table 2, 
according to the Fig. 5, the master node updates the Node 
Information Table (NIT) for MF communicating nodes, which 
are in the same piconets but cannot communicate directly so 
they need an intermediate node. 

TABLE. II. NODE INFORMATION TABLE (NIT) FOR P1 AFTER SFP 

ID Clock-offset Device-role Download traffic Upload traffic 

F C-offset (F) AxM 70 80 

G C-offset (G) AxB 150 150 

H C-offset (H) AxM 80 70 
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Fig. 5. Sharing of traffic load by making scatternet within the piconet. 

B. Inter-piconet traffic load handling on the bridge node 

through Fall-Back Bridge (FBB) 

When multiple piconets are connected through a single 
bridge, it may create a bottleneck in the network due to the 
unavailability of a bridge. The inter-piconet problem is solved 
through FBB. At the same time, a maximum of seven master 
devices can connect to a bridge device. According to the 
Bluetooth specification, a bridge node shares its time with all 
connected masters. Therefore, at the same time, only one 
master node's traffic can flow through the bridge node. Due to 
unavailability of a bridge node, inter-piconet congestion 
seriously affects network performance. The proposed CATC 
maintains a Bridge Traffic Flow Table (BTFT) (Table 3) to 
store the traffic load of masters that passes through the bridge 
node. As the bridge device receives/transmits data from master 
devices if a bridge device receives the data from a master 
device, it is called Bridge Download Traffic (BDTr); similarly, 
if the bridge device transmits data to the master device, it is 
called Bridge Upload Traffic (BUTr). The traffic load on a 
bridge (CB) device can be calculated as follows: 

             

  ∑    

 

    

 ∑                                      ( )

 

    

 

If higher traffic load is detected by a bridge node, it 
requests masters to activate a backup node. On receiving the 
request, master finds a FBB; if any master node has a FBB, 
then it sends a request to the bridge node to activate its 
connection with the required master node. The FBB is 
activated when a single bridge node is not sufficient for an 
efficient communication between piconets. Thus, parallel 
transmissions are allowed between piconets for well organized 
and smooth communication. Meanwhile, the master node sends 
the active bridge node into the park mode. As shown in 
Fig. 3(a), B1 connects multiple nodes and creates a bottleneck. 
The heavy traffic flow does not allow parallel transmission in a 
scatternet, and thus, B1 creates the bottleneck, as one master 
node sends data through B1, and others wait for B1 to become 
free. As shown in Fig. 6, node A is selected as FBB for P2 and 
P3 and node D is selected as FBB for P1 and P2. The dotted 
lines show the temporary links where traffic is shared and the 
bottleneck problem is resolved through activation of FBB. 
Master nodes update the NIT and send FBB to park mode; once 
communication ends successfully, FBBs return to their original 
states. 

TABLE. III. BRIDGE TRAFFIC FLOW TABLE FOR B1 

ID M2 M3 M4 M5 B1 

M2 Ø  MF 1 1 1 

M3 MF 1 1 1 1 

M4 1 1 Ø 1 1 

M5 1 1 1 Ø 1 

B1 1 1 1 1 Ø  
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Fig. 6. Scatternet formation after activation of FBB. 

IV. PERFORMANCE ANALYSIS 

The proposed protocol is compared against PRP and DCC 
protocols. To assess the performance, the CATC is simulated 
in the University of Cincinnati Bluetooth (UCBT) [16], which 
is a ns-2 [15] based Bluetooth simulator. UCBT is an open 
source and publicly available which can support mesh-formed 
Bluetooth scatternet and implemented most Bluetooth protocol 
stacks [22]. The time interval between different frequencies is 
625μs. 

A. Simulation setup 

The parameters used in the proposed protocol simulation 
are listed in Table 4. For simulation, the number of Bluetooth 
nodes is varied from 10 to 100 and 48 node pairs are used [23]. 

TABLE. IV. SIMULATION PARAMETERS 

Parameters Assessment 

Traffic Model 

Number of nodes 

Bluetooth nodes pairs  

Simulation time                                 

Network Dimension 

Data packet type  

Communication range 

Scheduling algorithm 

Bridge scheduling algorithm  

 

Packet size 

Inquiry time 

Paging time 

Packet interval 

Queue length 

CBR 

10 - 100 

48 

1000 s 

80 m x 80 m 

DH3, DH5 

10 m 

Round Robin 

Maximum Distance Rendezvous 
Point 

349 Bytes 

10.24 s 

128 – 256 s  

0.15  

50 packets  

 

B. Simulation results and discussion  

In this sub-section, the simulation results are discussed. The 
simulation was run ten times and results are obtained using 
those ten simulations. After getting the comparison results, it 
was found that the proposed CATC protocol outperformed the 
existing PRP and DCC protocols. 

During the communication, it was observed that, when the 
number of passing links increased through a single bridge 
node, the proposed CATC activates a FBB that shares the 
traffic load. The CATC allows the parallel transmission to 
reduce the wait time and improve network performance. In the 
holding mode when one pair of devices transmits remaining 
pairs are blocked. As DCC and PRP both are proposed to 
handle congestion, but, it is observed that the DCC is efficient 
for intra-piconet traffic load. When traffic load increases on a 
master node, it activates a bridge node for load balancing. In 
the contrary, the PRP solves bottleneck problem by creating 
extra piconets within the piconet. It creates a new piconet for 
each new communicating pairs. As shown in Fig. 7, the CATC 
shares the traffic load more efficiently compared to DCC and 
PRP. There are total twenty available bridges and 84 
connections, the PRP uses 12 bridges, the DCC 14, and the 
CATC uses 18 bridge nodes. Therefore, the traffic load has 
been successfully shared; which improves the overall 
performance. 

 

Fig. 7. Average links passing through bridge nodes vs. Number of bridges. 

A large number of nodes in a scatternet increasing the 
master polling time. To increase efficiency, PRP frequently 
performs piconet restructuring for all connections. It provides 
the solution for congestion on the master node, but it increases 
the network delay. On the contrary, DCC avoids congestion, 
within an intra-piconet but it does not provide any solution 
inter-piconet. It is analyzed a large number of connections 
passing through a bridge node create a bottleneck and increase 
network delay. The CATC shares the traffic load on the master 
and bridge nodes. The total delay of protocols is shown in 
Fig. 8 and it is observed that CATC has less delay compared to 
PRP and DCC protocols. The throughput of the CATC, PRP, 
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and DCC protocols was compared and it was observed that the 
CATC protocol showed better results than the PRP and DCC 
protocols. The PRP and DCC protocols consume more control 
packets compared to the CATC protocol. The CATC allows 
the parallel transmission because it efficiently manages traffic 
load in the intra-piconet and inter-piconet to improve overall 
network throughput. When a bridge creates bottleneck the 
CATC activates the FBB for an efficient communication 
between the piconets. As shown in Fig. 6, when a larger 
number of links pass through B1 it creates a bottleneck, to 
avoid bottleneck node A is selected as a FBB for P2 and P3, and 
node D is selected as FBB for P1 and P2. Fig. 9 shows the 
throughput of the CATC is higher compared to PRP and DCC. 

 
Fig. 8. Average delay vs. Number of nodes. 

 

Fig. 9. Network throughput vs. Time. 

Bluetooth has limited resources, and therefore, efficient 
resource utilization is key to network performance. The CATC 
does not frequently perform the network restructuring within 
the piconet, and therefore, it uses a lower number of control 
packets. The PRP frequently creates new piconets within the 

piconet and makes new links so that each time during 
synchronization, the Bluetooth devices use extra control 
packets. In contrast, the DCC protocol overcomes the delay 
problem within the piconet through activating a backup device 
that is utilizing extra control packets. Fig. 10 shows that the 
PRP and DCC’s inefficient resource utilization causes more 
control packets compared to the CATC protocol. Also the 
number of blocking users increases due to the unavailability of 
intermediate nodes. As PRP makes new piconets frequently 
within the piconet and if other devices need to communicate 
with the devices which have changed their roles, it could block 
more users. The CATC protocol creates efficient links for 
intra-piconet and inter-piconet communication so it decreases 
the rate of blocking users. When the CATC protocol performs 
network restructuring, it changes the mode of the device in the 
park mode. After successful transmissions, it changes back into 
the original states. From Fig. 11, it can be seen that the CATC 
protocol performs better than the PRP and DCC protocol in 
terms of blocking connections about 15%. 

 

Fig. 10. Control packet overhead vs. Number of nodes. 

 
Fig. 11. Blocking users vs. Number of nodes. 
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V. CONCLUSIONS AND FUTURE WORK 

This paper has proposed a Cross-layer-based Adaptive 
Traffic Control protocol for Bluetooth network. The proposed 
CATC protocol shares the master load through network 
restructuring and the bridge load through FBB. The CATC 
creates PFP if nodes are within the range. If the source and 
destination are not within 10 m CATC creates SFP to reduce 
traffic load on the master node. On the contrary, the CATC 
activates FBB to overcome bottleneck problem of a bridge 
node and allow parallel transmission in the scatternet. 
Simulation results show that the CATC protocol outperforms 
existing protocols in terms of minimizing the total delay, 
control overhead, and a number of blocked users. 

In future work, this research work will be extended by 
using some additional parameters for comparison. In addition, 
the network traffic load can be shared by reducing the hop 
count based on the role switch operations. 
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