
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

109 | P a g e

www.ijacsa.thesai.org

A Comparative Study on the Effect of Multiple

Inheritance Mechanism in Java, C++, and Python on

Complexity and Reusability of Code

Fawzi Albalooshi

Department of Computer Science

University of Bahrain

Kingdom of Bahrain

Amjad Mahmood

Department of Computer Science

University of Bahrain

Kingdom of Bahrain

Abstract—Two of the fundamental uses of generalization in

object-oriented software development are the reusability of code

and better structuring of the description of objects. Multiple

inheritance is one of the important features of object-oriented

methodologies which enables developers to combine concepts and

increase the reusability of the resulting software. However,

multiple inheritance is implemented differently in commonly

used programming languages. In this paper, we use Chidamber

and Kemerer (CK) metrics to study the complexity and

reusability of multiple inheritance as implemented in Python,

Java, and C++. The analysis of results suggests that out of the

three languages investigated Python and C++ offer better

reusability of software when using multiple inheritance, whereas

Java has major deficiencies when implementing multiple

inheritance resulting in poor structure of objects.

Keywords—Reusability; complexity; Python; Java; C++; CK

metrics; multiple inheritance; software metrics

I. INTRODUCTION

Inheritance is one of the fundamental concepts of object-
oriented (OO) software development. There are two types:
single and multiple. Single inheritance is the ability of a class
to inherit the features of a single super class with more than a
single inheritance level i.e. the super class could also be a
subclass inheriting from a third class and so on. Multiple
inheritance, on the other hand, is the ability of a class to inherit
from more than a single class. For example, a graphical image
could inherit the properties of a geometrical shape and a
picture. Stroustrup [1], [2] states that multiple inheritance
allows a user to combine independent concepts represented as
classes into a composite concept represented as a derived class.
For example, a user might specify a new kind of window by
selecting a style of window interaction from a set of available
interaction classes and a style of appearance from a set of
display defining classes.

There is wide debate on the usefulness of multiple
inheritance and whether the complexities associated with it
justify its implementation. Though some researchers such as
Stroustrup [1], [2] are convinced that it can easily be
implemented. He states that multiple inheritance avoids
replication of information that would be experienced with
single inheritance when attempting to represent combined
concepts from more than one class. Booch [3] asserts that it is
good to have inheritance when you need it. According to

Booch, there are two problems associated with multiple
inheritance and they are how to deal with name collisions from
super classes, and how to handle repeated inheritance. He
presents solutions to these two problems. Other researchers [4]
suggest that there is a real need for multiple inheritance for
efficient object implementation. They justify their claim
referring to the lack of multiple subtyping in the ADA 95
revision which was considered as a deficiency that was
rectified in the newer version [5]. It is clear that multiple
inheritance is a fundamental concept in object-orientation. The
ability to incorporate multiple inheritance in system design and
implementation will better structure the description of objects
modeling, their natural status and enabling further code reuse
as compared to single inheritance.

Java, C++, and Python are three widely used OO
programming languages in academia and industry. Java has
secured its position as the most widely used OO programming
language due to many reasons including its network-centric
independent platform and powerful collection of libraries
known as Java APIs (Application Programming Interface).
Nevertheless, Java has a limitation when it comes to
implementing multiple inheritance. C++ is another widely used
programming language and is considered to be the most
comprehensive due to its support to a variety of programming
styles such as procedural, modular, data abstraction, object-
oriented and generic programming [1], [2]. It supports single
and multiple inheritance in which a child class can inherit the
properties of a single parent class and multiple parents. Python
is a powerful object-oriented general-purpose programming
language created by Guido van Rossum [6]. It has wide range
of applications from Web development to scientific and
mathematical computing to desktop graphical user Interfaces.
It is a simple language; open source, portable across platforms,
extensible and embeddable, interpreted, and has large standard
libraries to solve common tasks. Similar to C++ single and
multiple inheritance is supported by Python. An empirical
study on the use of inheritance in Python systems was carried
out by Orru et al. [7]. More details about the implementation of
multiple inheritance in these languages are discussed in
Section 2.

To the best of our knowledge there has been no studies
comparing the complexity and reusability of commonly used
object-oriented programming languages. In this paper, we
present implementation of multiple inheritance and use CK

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

110 | P a g e

www.ijacsa.thesai.org

(Chidamber and Kemerer) [8] metrics to study the complexity
and reusability of multiple inheritance as implemented in
Python, Java, and C++. For this purpose, we used a sample
design and code from real-life systems involving multi-level
multiple inheritance and its implementation.

The rest of the paper is organized as: Section 2 presents the
implementation of multiple inheritance in Java, C++, and
Python. Section 3 details the complexity and reusability
analysis for the three languages. It discusses software metrics
and how they are applied in the measurement of the complexity
and reusability followed by a discussion of the results. In
Section 4 we address the current use of multiple inheritance in
open source software and the impact of such practice on its
complexity and reusability and Section 5 concludes the paper.

II. MULTIPLE INHERITANCE IMPLEMENTATION IN JAVA,

C++, AND PYTHON

In Java, a class can singly inherit the properties of another
class. Java does not support multiple inheritance of classes, but
it supports multiple inheritance of interfaces [9]. A strong
reason that prevents Java from extending more than one class
is to avoid issues related to multiple inheritance of attributes
from more than one level which is referred to as the „diamond
problem‟ [10]. This is a situation that occurs when
implementing multiple inheritance in which a class inheriting
from two or more super classes with a common ancestor. The
super classes inherit the common ancestor method(s) and/or
attribute(s). This results to their child class to inherit multiple
versions of the same method(s) and/or attribute(s) (one from
each super class). Thus, a conflict arises during program
execution involving the child class on which version of the
same inherited method/attribute to use. Java interfaces do not
have a state, thus do not pose such a threat. The more recent
Java 8 compiler resolves the issue of which default method a
particular class uses, however this solution has its limitations.
To overcome Java‟s shortcoming in implementing multiple
inheritance, researchers investigated compromised solutions.
Two of the most commonly used approaches are termed as
approximation [11] and delegation [12] of multiple inheritance.
C++ overcomes the diamond problem with the use of virtual
inheritance. Program 1(b) shows the implementation of
multiple inheritance in C++ for the Java example shown in
Program 1(a). In Python the diamond problem is nicely
resolved using the “Method Resolution Order” approach which
is based on the “C3 superclass linearization” algorithm.
Program 1(c) shows the implementation of multiple inheritance
in Python.

class A { // The primary class to be inherited

 public string a() { return a1();}

 protected string a1() {return “A”;}

}

interface IB {

// Second class to be inherited declared as an interface

 public string b(IB self);

 public string b1();

}

class B implements IB{

 // Implementation class for the interface IB

 public string b(IB self) {return self.b1(); }

 protected string b1() {return “B”;}

}

class C extends A implements IB {

// Subclass inheriting from A and implementing IB’s
interface

 B b; // Innerclass as composition relationship

 public string b(IB self) {return b.b(this); }

 protected string b1() {return “C”;}

 protected string a1() {return “C”;}

}

Program 1(a): Approximating multiple inheritance in Java.

class A { // The primary class to be inherited

 public string a() { return a1();}

 protected string a1() {return “A”;}

}

class B { // Implementation class for the interface IB

 public string b() {return self.b1(); }

 protected string b1() {return “B”;}

}

class C extends A, B {

 protected string b1() {return “C”;}

 protected string a1() {return “C”;}

}

Program 1(b): Multiple inheritance in C++.

class A:

 def a(self): (return a1();)

 def a1(): (return “A”)

class B(A):

 def b(self): (return b1();)

 def b1(): (return “B”)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

111 | P a g e

www.ijacsa.thesai.org

class C(A,B):

 def b1(): (return “C”)

 def a1(): (return “C”)

Program 1(c): Multiple inheritance in Python.

Thirunarayan et al. [11] proposed approximating multiple
inheritance in Java by enabling a subclass C to inherit from a
single superclass A and to implement an interface IB that is
implemented by a class B in an effort to simulate multiple
inheritance in Java. The example in Program 1(a) outlines the
authors‟ solution to approximating multiple inheritance in Java.
The class B is then incorporated as an inner class (with
composition relationship) in the class C. This approach
however suffers from a number of shortcomings such as,
limited code reuse, limited support for polymorphism and
difficult implementation of overriding. Polymorphism could
not be fully supported due to the fact that class C may not
support all methods in B. Any change in class B will require
changes to the interface IB and to the class C. Overriding
cannot easily be implemented with inner classes such as B and
may require the modification of the parent class.

Tempro and Biddle [12] suggest that delegation can be
used to simulate multiple inheritance in Java. Their solution is
similar to that presented by Thirunarayan et al. [11] as shown
in Program 1(a) in which the class B is incorporated as an inner
class within C and declaring an object b to implement it. They
demonstrate that protocol conformance can be achieved by
single inheritance and the use of Java‟s capability that allows
multiple implementation of Java interface classes. The
technique they use is called „interface-delegation‟ which
require a child class to inherit from a single parent class and
implements and delegates to as many interface classes resulting
to the child class reusing all the parent classes. There are a
number of drawbacks of this approach. The first is that in some
cases the amount of code needed to achieve reuse is almost as
much as the code being reused. The second is the difficulty in
accessing objects imposed by the solution which renders
classes to be highly coupled and less cohesive. Thirdly,
protected fields and methods of the delegation object are only
accessible to extending classes and, fourthly, the programmer
does not have control over class libraries such as Java Core
API thus creating interfaces for such classes is not possible;
and finally, delegation can be problematic in the presence of
self-calls. The authors recommend that every class intended for
reuse by inheritance (such as Java Core API library of classes)
should also have a matching interface to enable such an
approach in simulating multiple inheritance to be applicable. It
is important to note that the main use of interface classes in
Java is to define uniform interfaces. An interface class can only
have signatures of „public‟ operations with no data members.
When used for the purpose of inheritance all operations must
be defined in the class that implements the interface and so do
the attributes. This limitation results to repeated coding of the
interface operations and the definition of necessary attributes
whenever an interface is used. This act is the inverse advantage
of code reuse the primary advantage of inheritance.

III. COMPLEXITY AND REUSABILITY ANALYSIS OF PYTHON,

JAVA, AND C++

A number of software metrics have been proposed to
analyze the complexity and reusability of object-oriented
programming languages. In this section we review the metrics
and then we analyze the complexity and reusability of Python,
Java, and C++.

A. Software Metrics

A software metric measures or quantifies a software
characteristic such as number of classes or lines of code or the
number of operations, etc. They help software developers and
managers to track the status of software specification or
implementation [13]. Metrics for OO software have been a
major research topic for more than two decades. A survey
carried out by Genero et al. [14] presented nine different
initiatives to establish metrics for OO software such as CK [8],
Li and Henry [15], MOOD (Metrics for Object Oriented
Design) [16], Lorenz and Kidd[17], Briand et al. [18],
Marchesi [19], Harrison et al. [20], Bansiya and Davis [21],
and Genero et al. [22]. More recently other researchers such as
Amalarethinam and Hameed [23], Ibrahim et al. [24] and Abu
Bakar [25] have also reviewed metrics for OO software. The
CK [8] set of metrics has gained wide acceptance due to the
fact that it was empirically tested by many researchers such as
that reported in [26]-[29]. The originators of the CK [8] metrics
realized the need for software measures or metrics to manage
the software development process. They proposed a suite of six
metrics for OO design and demonstrated their feasibility for
process improvement. These are Weighted Methods per Class
(WMC), Depth of Inheritance Tree (DIT), Number of Children
(NOC), Coupling between Object Classes (CBO), Response
for a Class (RFC), and Lack of Cohesion in Methods (LCOM).
WMC is the number of methods defined in a class including
methods, constructors and destructor. The larger the number of
methods in a class the greater the impact on children this is due
to the fact that the methods will be inherited by the children.
Classes with large number of methods are application specific
which limits their reuse. DIT is calculated as the max path
from root to node. Deeper trees present greater design
complexities as more classes are inherited. The potential reuse
of inherited methods is increased but there is a risk in
predicting their behavior. The more NOC a class has the more
important it is and therefore must carefully be designed and
tested due its high impact on others. CBO is calculated as the
number of classes to which each class is coupled. The more
coupling the less a class becomes reusable due to its
dependability on other classes. RFC is calculated as the
number of methods in the class in addition to the number of
methods called by methods in the same class. The larger the
number of methods invoked as a response to a message the
more complex becomes a class in addition to increasing the
complexity of testing and debugging. LCOM is calculated as
the count of the number of methods pairs whose similarity is 0
minus the count of methods pairs whose similarity is not 0, or
more precisely (number of pair of methods that have no
common attribute)-(number of pair of methods that have
common attribute). Cohesiveness of a method is desirable since
it promotes encapsulation. Chidamber et al. [30] demonstrate
the use of CK metrics for managers responsible of software

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

112 | P a g e

www.ijacsa.thesai.org

development efforts. Their advantage in predicting parts of the
system that may be problematic as early as in the design or
during implementation stages is presented. The empirical
results across three financial services applications showed that
metrics data can be collected on systems that were written in a
variety of programming languages and on systems that were
not yet coded. Another set of popular metrics was the MOOD
[16] which was later extended to MOOD2 [31]. The set
consists of six metrics for OO software. For the measurement
of encapsulation Method Hiding Factor (MHF) and Attribute
Hiding Factor (AHF) are proposed. To measure inheritance
Method Inheritance Factor (MIF) and Attribute Inheritance
Factor (AIF) metrics are proposed. The Coupling Factor (CF)
measures coupling and the Polymorphism Factor (PF)
measures polymorphism. The authors demonstrate how they
can be used to measure systems. They assert that their set of
metrics operate at the system level and are complementary to
the CK metrics that operate at the class level.

B. The Sample Application

To determine the exact difference in implementing multiple
inheritance in Python, Java and C++, we devised a sample
application as shown in Fig. 1. There are eight classes all
together starting with Person, Student, and Parent classes at the
first level with each having one attribute and its associated get
and set methods. At the second level three more classes are
defined. They are: FullTimeEmployee, FullTimeStudent, and
FullTimeParent. FullTimeEmployee having an attribute and its
associated get and set methods. FulTimeStudent and
FullTimeParent are inheriting from two first level classes
(multiple inheritance) each. Unlike the FullTimeEmployee
class which declares the employee related attribute and inherits
from Person the FullTimeStudent and FullTimeParent in
addition to inheriting from Person each inherit from another
class Student and Parent, respectively. This is because the
Student and Parent classes are further reused by the
StudentEmployee and ParentStudentEmplyee classes, and to
avoid the “diamond problem” the Student and Parent classes
are independently declared (not inheriting from Person) which
will otherwise occur if one or more child classes inherit from
one of them and at the same time inherit from Person (or
another class that already inherits from it) such as
StudentEmployee and ParentStudentEmployee as shown in
Fig. 1. StudentEmpolyee class is at the second level and
ParentStudentEmployee is in the third with an attribute each
and set and get methods for each of the attributes.

Fig. 2 shows the Java implementation for the same set of

classes and similarly to the C++ implementation the “diamond

problem” between the classes is avoided. All Java classes have

the same set of attributes and their associated (set and get)

methods for the same classes in the C++ implementation.

However, to achieve multiple inheritance in the

FullTimeStudent, FullTimeParent, StudentEmployee, and

ParentStudentEmployee classes the inner-object approach was

used. Each of these classes would inherit from one and contain

an object of type the other class as shown in Fig. 2. For each

inner-object an additional data member and a set and a get

method had to be declared to access its attribute.

Fig. 1. C++ class diagram.

Thus each of the four classes had an additional attribute
(inner-object) and two additional methods (for the single
attribute in the inner-object) each Using the approach
recommended by Thirunarayan et al. [11] and Tempro and
Biddle [12] will require the declaration of additional interface
classes which for the purpose of our study will increase the
number of declared classes. We therefore chose to minimize
classes so that the comparison is more precise. Fig. 3 shows the
Python class diagram for the same implementation classes
presented in Fig. 1 and 2. The sample design used to measure
the difference in implementing multiple inheritance can easily
be implemented in the three languages and has four situations
of multiple inheritance to enable us to precisely calculate the
associated metrics in the different implementations.

C. Applying the Metrics

To compare the three implementations, we used the six CK
metrics [8] as discussed in Section 3.1. Table 1 shows the
values for CK set of metrics for the Python, Java and C++
implementations. The classes that inherit from more than one
super class are underlined. Details on how the tabulation values
are calculated are presented in the following two paragraphs:

For Java implementation WMC is 2 for the classes Person,
Student, Parent, FullTimeEmployee, FullTimeStudent and
FullTimeParent whereas WMC is 4 for StudentEmployee and
ParentStudentEmployee. DIT is 0 for Person, Student and
Parent classes. It is 1 for FullTimeEmployee, FullTimeStudent
and FullTimeParent, 2 for StudentEmployee and 3 for
ParentStudentEmployee. NOC is 3 for Person, 0 for Student,
Parent, FullTimeStudent, FullTimeParent and
ParentStudentEmployee. Its 1 for FullTimeEmployee and
StudentEmployee. CBO is 0 for Person, Student, Parent, and
FullTimeEmployee.

Person

name

setName()

getName()

FullTimeStudent FullTimeParent

StudentEmployee

studyleaveHours

setSLeaveHours()

getSLeaveHours()

FullTimeEmployee

workHours

setHours()

getHours()

Student

studyHours

setHours()

getHours()

Parent

childCareHours

setHours()

getHours()

ParentStudentEmployee

freeHours

setfreeHours()

getfreeHours()

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

113 | P a g e

www.ijacsa.thesai.org

Fig. 2. Java class diagram.

Fig. 3. Python class diagram.

It is one for FullTimeStudent, FullTimeParent,
StudentEmployee and ParentStudentEmployee. This is because
FullTimeStudent and StudentEmployee have an inner object of
type Student each so does FullTimeParent and
ParentStudentEmployee have an inner object of type Parent
each. RFC and LCOM measure for the classes is the same as
WMC due to the simplicity of our sample programme.

TABLE. I. CK METRICS FOR JAVA, C++ AND PYTHON CLASSES

As it is primarily designed to investigate the difference in

implementing multiple inheritance between the three
languages. For the Python and C++ implementation, WMC is
to 2 for Person, Student, Parent, FullTimeEmployee,
StudentEmployee and ParentStudentEmployee. In addition to
inheriting from Person, FullTimeStudent and FullTimeParent
inherit methods from Student and Parent classes respectively
therefore have no methods of their own and WMC for them is
0. In the same way StudentEmployee and
ParentStudentEmployee inherit from more than one class and
require to define less new methods than the Java
implementation. DIT measure remained the same as the Java
implementation, its 0 for Person, Student and Parent classes; 1
for FullTimeEmployee, FullTimeStudent and FullTimeParent;
2 for StudentEmployee; and 3 for ParentStudentEmployee.
NOC for Student and Parent classes differ than that in the Java
implementation, the rest of the classes have the same measure.
It is 3 for Person; 2 for Student and Parent; 1 for
FullTimeEmployee and StudentEmployee; and 0 for
FullTimeStudent, FullTimeParent and ParentStudentEmployee.
The Pyhton and C++ implementation has 0 coupling resulting
to a 0 CBO measure for all classes. Similarly to the Java
classes RFC and LCOM measure for the C++ classes is the
same as WMC, but the classes FullTimeStudent,
FullTimeParent, StudentEmployee and
ParentStudentEmployee measured less than the Java
implementation due to their ability to inherit from more than
one class without the need for extra methods. We used the
combined metrics to investigate the reusability of classes as
proposed by Goel and Bhatia [32] and the results are given in
Table 2.

TABLE. II. CK REUSABILITY METRICS FOR JAVA, C++ AND PYTHON

CLASSES

Person

name

setName()

getName()

Student

studyHours

setHours()

getHours()

Parent

childCareHours

setHours()

getHours()

FullTimeEmployee

workHours

setHours()

getHours()

StudentEmployee

studyleaveHours

study

setSLeaveHours()

getSLeaveHours()

setSHours()

getSHours()

FullTimeStudent

study

setHours()

getHours()

FullTimeParent

parenthood

setHours()

getHours()

ParentStudentEmployee

freeHours

parenthood

setfreeHours()

getfreeHours()

setPHours()

getPHours()

Person

 name

 setName()

getName()

FullTimeStudent FullTimeParent

StudentEmployee

 studyleaveHours

 setSLeaveHours()

getSLeaveHours()

FullTimeEmployee

 workHours

setHours()

getHours()

Student

 studyHours

 setHours()

getHours()

Parent

 childCareHours

 setHours()

getHours()

ParentStudentEmployee

freeHours

setfreeHours()

getfreeHours()

 1

Class WMC DIT NOC CBO RFC LCOM

Ja
v

a

C
+

+

P
y

th
o

n

Ja
v

a

C
+

+

P
y

th
o

n

Ja
v

a

C
+

+

P
y

th
o

n

Ja
v

a

C
+

+

P
y

th
o

n

Ja
v

a

C
+

+

P
y

th
o

n

Ja
v

a

C
+

+

P
y

th
o

n

Person 2 2 2 0 0 0 3 3 3 0 0 0 2 2 2 2 2 2

Student 2 2 2 0 0 0 0 2 2 0 0 0 2 2 2 2 2 2

Parent 2 2 2 0 0 0 0 2 2 0 0 0 2 2 2 2 2 2

FullTimeEmployee 2 2 2 1 1 1 1 1 1 0 0 0 2 2 2 2 2 2

FullTimeStudent 2 0 0 1 1 1 0 0 0 1 0 0 2 0 0 2 0 0

FullTimeParent 2 0 0 1 1 1 0 0 0 1 0 0 2 0 0 2 0 0

StudentEmployee 4 2 2 2 2 2 1 1 1 1 0 0 4 2 2 4 2 2

ParentStudentEmolyee 4 2 2 3 3 3 0 0 0 1 0 0 4 2 2 4 2 2

Total: 20 12 12 8 8 8 5 9 9 4 0 0 20 12 12 20 12 12

Class DIT+NOC CBO+LCOM WMC + RFC

J
a

v
a

C
+

+

P
y

th
o

n

J
a

v
a

C
+

+

P
y

th
o

n

J
a

v
a

C
+

+

P
y

th
o

n

Person 3 3 3 2 2 2 4 4 4

Student 0 2 2 2 2 2 4 4 4

Parent 0 2 2 2 2 2 4 4 4

FullTimeEmployee 2 2 2 2 2 2 4 4 4

FullTimeStudent 1 1 1 3 0 0 4 0 0

FullTimeParent 1 1 1 3 0 0 4 0 0

StudentEmployee 3 3 3 5 2 2 8 4 4

ParentStudentEmolyee 3 3 3 5 2 2 8 4 4

Total: 13 17 17 24 12 12 40 24 24

 1

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

114 | P a g e

www.ijacsa.thesai.org

D. Discussion

The metrics‟ values presented in Table 1 show that the Java
implementation has higher values for WMC, CBO, RFC, and
LCOM for all four classes inheriting from two parents. The
higher the value of each of these metrics, the less desirable is
the code as discussed in Section 3.1 resulting to the Python and
C++ implementations to be more desirable than Java. DIT
remained unchanged in all implementations. However, NOC in
the Python and C++ implementations is higher which is a
desirable characteristic due to the fact that classes could have
more than one child.

Reusability is the most fundamental benefit achieved with
the use of inheritance. According to Booch [3] any artefact of
software development can be reused, including code, design,
scenarios, and documentation, but classes serve as the primary
linguistic vehicle for reuse. Classes when properly designed
and implemented can be used again (reused) in new
development projects reaching up to 70% in some projects.
Thus the more classes are efficiently developed to be reusable
the more time and effort can be saved in new projects. More
recent researchers such as Gupta and Dashore [33] and Goel
and Bhatia [32] have also appreciated the importance of OO
software reusability. The first developed a tool to measure
reusability and the latter investigated the measurement of the
reusability of a class and in particular the use of the CK metrics
for this purpose. Goel and Bhatia [32] combined the six metrics
with each other and came up with three new metrics to measure
the reusability of a class. The first combined metric was the
DIT and NOC. They believe that the deeper the depth of a class
the more potential for reuse, thus DIT has a positive effect on
reusability. Also a particular value of NOC has a positive
impact on reuse. Therefore, the increase in DIT in combination
with NOC has a positive effect on reusability. The second
combined metric is CBO and LCOM. Coupling has negative
impact on reusability so does the lack of cohesion which
increases complexity and has negative effect on reusability.
Therefore, these two metrics have an inverse effect on
reusability, the higher CBO+LCOM the less reusable is the
class. The third was the combination of WMC and RFC
metrics. The higher the number of methods is (WMC) the more
is the impact on children. Such classes tend to be application
specific thus limiting their reuse. The higher RFC the more
complex a class is thus having negative effect on its reusability.
The higher WMC+RFC the less reusable a class is. Their
observations on the indications of the CK metrics of a software
system were formerly highlighted by the metrics originators
[8]. These set of metrics‟ values for our implementations are
presented in Table 2. The classes that inherit from more than
one class (thus implementing multiple inheritance) are
underlined.

Analysis of the results based on the combined metrics
approach proposed by Goel and Bhatia [32] clarifies the
differences between the three implementations further. Table 2
shows that the Python and C++ implementations have major
advantages. The DIT metric‟s values for all implementations
are identical, but the NOC‟s are different. The Python and C++
implementations have higher NOC value by 4 counts this is
because the Student and Parent classes have two children each
as a result of inheritance by the FullTimeStudent,

FullTimeParent, StudentEmployee and
ParentStudentEmployee classes as shown in Fig. 1 and 3. In
the Java implementation the same two classes are declared as
inner-objects for the same four classes. Therefore, the Python
and C++ implementations have a positive measure over Java
for this combined metric. For the second combined metric, the
CBO value for the Java implementation is 1 for each of the
four classes inheriting from two due to the fact that each
inherits from one and incorporates the other as an inner-object.
LCOM in the Java implementation as shown in Table 1 is also
higher by 8 due to the need for methods to access the data
members of the inner objects in the multiple inheriting four
classes, two for each inner object. Therefore, CBO+LCOM
values for the Java implementation double the Python and C++
by 12 counts as shown in Table 2. As a result, the Java
implementation is less reusable as discussed in the previous
section. The third metric is the combination of WMC and RFC.
They both have higher values in the Java implementation by 8
counts each for the same reason LCOM increased. Resulting to
the two metrics having 16 counts extra in the Java
implementation than in Python and C++ is shown in Table 2.
All four multiple inheriting classes increased by 4 each in the
Java implementation thus resulting for them to be considered
less reusable as discussed in the previous section.

IV. MULTIPLE INHERITANCE IN OPEN SOURCE SOFTWARE

In this section we present our investigation of the use of
multiple inheritance in big open source software. For this
purpose, we selected JRE and Eclipse, two of the largest open
source systems that were analyzed by Tempero et al. [34]. The
authors found substantial unnecessary overriding present in all
applications. Their results assert that in the applications they
examined the number of classes that inherit something in
addition to number of classes that override something are
roughly equivalent to the number of classes in the application
as a whole. Two of the biggest applications they presented
were JRE and Eclipse. Their empirical study was based on the
Qualitas Corpus [35] open source code repository.

Fig. 4. JRE class diagram.

 EventListener

BeanContextServiceRevokedListen

er

BeanContextServiceListener Serializable BeanContextCh

ild

DesignMode

BeanContext

Visibility

PropertyChangeListen

er

BeanContextChildSuppo

rt

BeanContextSupport

BeanContextServiceSuppor

t

BeanContextService

s

VetoableChangeListen

er

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

115 | P a g e

www.ijacsa.thesai.org

Fig. 5. Eclipse example design.

For our study, the source code of both the applications was
downloaded from SourceForge [36]. We used StarUML [37] to
reverse engineer the code to UML designs. Fig. 4 shows the
UML design reverse engineered from parts of Java code for the
Java beans context from JRE. Fig. 5 shows the UML design
reverse engineered from parts of open source code for the
Eclipse JDT. Both applications follow a similar approach to
implement multiple inheritance in which a class inherits from
another and delegates from one or more interfaces to simulate
multiple inheritance. The process of delegation requires the
inheriting class to implement the interface class(es).

A critical analysis of both implementations shows high DIT
reaching to six levels in Fig. 5 with a low number of direct
children-NOC for each subclass. Furthermore, delegation
necessitates interface class operations‟ definition in
inheriting/implementation classes which increases coupling
and reduces the class‟s cohesion thus increasing CBO, LCOM,
and WMC metrics as we discuss in Section 3.4. The increase in
WMC has a relative impact on the increase in RFC as shown in
our experimental results in Table 1. Both implementations
show high DIT thus an increase in design complexity. The
object-oriented programming community does not recommend
more than three levels due to the complexity it invites when
maintaining the code. On the contrary, high number of children
breadthwise is recommended and increases the importance of
the parent class, but due to the inheritance limitation imposed
by Java NOC is low resulting to a negative impact on reuse.
The increase in CBO and LCOM further negatively effects
reuse so does the increase in WMC and RFC. Both
implementations further suffer from the diamond problem. The
first implementation is in BeanContextSupport and
BeanContextServicesSupport classes and the second is in the
JavaElement, Member and BinaryType classes.

To further demonstrate the difference between Java and
C++/Phython implementations of multiple inheritance we
developed the class diagram shown in Fig. 6 as a possible
implementation in C++ of the design shown in Fig. 5 without
reducing the number of classes as they are part of a bigger
system. The new design improves the original implementation
in a number of ways. Firstly, the diamond problem is not
present anymore and the number of relationships dropped from
15 to 11.

Fig. 6. Redesign of the Eclipse example.

Fig. 7. Redesign of the JRE example.

Secondly, the operations of interface classes in Fig. 5 and
associated attributes in the implementation classes need to be
defined only once in Fig. 6. In affect coupling is reduced and
the classes are more cohesive thus, CBO and LCOM metrics
values are reduced. Furthermore, the number of operations
defined in the classes is reduced because they are now fully
inherited (with their implementations) which greatly reduces
the values of WMC and RFC metrics and finally DIT is
optimized. These major improvements to the partial code will
reduce its complexity and increase its reusability indicating that
much more benefits is gained if the whole application is to be
redesigned for it to be implemented in a language such as C++
or Python. An analysis of the redesign of the JRE example
shown in Fig. 7 presents a similar picture. The diamond
problem present in a number of classes in the design in Fig. 4
disappeared; the number of classes and relationships between
them is less; and operations and attributes need to be defined
only once resulting to less values for CBO, LCOM, WMC and
RFC for the design.

V. CONCLUSION

The paper presents an important issue faced by OO
software developers. Using Java, Python and C++, we

 IAdaptable

IJavaElement

ISourceReference

JavaElement

IMember

PlatFormObject

IType

SourceRefElement

Member

BinaryMember

BinaryType

SuffixConstants

 IAdaptable

IJavaElement

ISourceReference

JavaElement

IMember

PlatFormObject

IType

SourceRefElement

Member

BinaryMember

BinaryType

SuffixConstants

 EventListener

BeanContextServiceRevokedListene

r

BeanContextServiceListener Serializable BeanContextChi

ld

DesignMode

Visibility

PropertyChangeListen

er

BeanContextChildSuppor

t

BeanContextSupport

BeanContextServiceSupport

VetoableChangeListen

er

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

116 | P a g e

www.ijacsa.thesai.org

presented the effect of the programming language on the
resultant software. The case discussed in this paper in multiple
inheritance for which a program was designed to determine the
difference in the implementations. For a fair comparison, the
diamond problem was avoided in order not to advantage the
C++ and Python implementations. We used the CK metrics to
measure the complexity and the combined metrics proposed by
Goel and Bhatia to measure reusability. The results clearly
affirm that the Java implementation is less reusable. The
Python and C++ implementations have a higher NOC
indicating the ability of the classes to become better parents for
multiple classes, which is considered as positive measure of
reusability. CBO and LCOM in the java implementation
doubled the Python and C++ clearly suggesting that the latter
two implementations have better reusability. The higher count
of WMC in combination with RFC for the Java
implementation further asserts that the Python and C++
implementations are more reusable. The outcome of the
experiment presented in this paper confirms the concerns
raised by a number of researchers about the Java
implementation (or simulation) of multiple inheritance. We
also demonstrated the negative effect of the use of simulated
multiple inheritance in big open source industrial software.

REFERENCES

[1] Stroustrup, B. Multiple inheritance for C++. The C/C++ Users Journal,
1999.

[2] Stroustrup, B. The C++ Programming Language, Fourth Edition.
Addison-Wesley, 2013.

[3] Booch, G. Object-oriented analysis and design with applications, 2nd
Edition, Addison-Wesley, 1998.

[4] Ducournau, R.; Morandat, F.; Privat J. Emprical assessment of object-
oriented implementations with multiple inheritance and static Typing, in
OOPSLA 2009, Orlando, Florida, USA, October 25-29 2009, ACM.

[5] Taft, S. T.; Duff, R. A.; Brukardt, R. L.; Ploedereder, E.; Leroy, P. Eds.
Ada 2005 reference manual: language and standard libraries. In LNCS
4348 ,Springer, 2006.

[6] Lutz, M. Learning Python, 5th Edition. Published by O‟Reilly Media,
Inc. (June), CA, USA, 2013.

[7] Orru M.; Tempro E.; Marchesi M. (2015) How Do Python Programs
Use Inheritance? In A Replication Study. Software Engineering
Conference (APSEC), Asia-Pacific. 2015, 1-4 Dec.

[8] Chidamber, S. R.; Kemerer, C. F. A Metrics Suite for Object Oriented
Design, IEEE Transactions on Software Engineering, 1994, Vol 20, No.
6.

[9] Flanagan, D. Java in a NUTSHELL, 3rd Edition, O‟Reilly &
Associates, Inc.; 1999.

[10] Gosling, J.; Joy, B.; Steele, G.; Bracha, G.; Buckley, A. The Java
language specification – Java SE, 7th Edition, Oracle America, Inc.
2013.

[11] Thirunarayan, K.; Kniesel, G.; Hampapuram, H. Simulating multiple
inheritance and generics in Java, Computer Languages, 1999, Volume
25, Issue 4, 189-210, (Elsevier Science Ltd).

[12] Tempro E.; Biddle, R. Simulating multiple inheritance in Java, The
Journal of Systems and Software, 2000, 55, pp. 87-100, (Elsevier
Science Inc.).

[13] Vogelsang, A.; Fehnker, A.; Huuck, R.; Reif, W. Software Metrics in
Static Program Analysis. In the International Conference on Formal
Engineering Methods. Springer Berlin Heidelberg, 2010, pp 485-500.

[14] Genero, M.; Piattini, M.; Calero, C. A Survey of Metrics for UML Class
Diagrams, Journal of Object Technology, 2005, Vol. 4., No. 9, pp 59-92,
http://www.jot.fm/issues/issue_2005_11/article1, (ETH Zurich).

[15] Li, W.; Henry, S. Object-Oriented Metrics that Predict Maintainability,
Journal of Systems and Software, 1993, Vol. 23, No. 2, pp. 111-122.

[16] Harrison, R.; Counsell, S. J.; Nithi, R. V. An Evaluation of the MOOD
Set of Object-Oriented Software Metrics, IEEE Transactions on
Software Engineering, 1998, Vol. 24, No. 6.

[17] Lorenz, M.; Kidd, J. Object-Oriented Software Metrics: A Practical
Guide, Prentice Hall, Englewood Cliffs, New Jersey, 1994.

[18] Briand, L.; Devanbu, W.; Melo, W. An investigation into coupling
measures for C++. In 19th International Conference on Software
Engineering (ICSE 97), Boston, USA, 1997, pp. 412-421.

[19] Marchesi, M. OOA Metrics for the United Modeling Language. In 2nd
Euromicro Conference on Software Maintenance and Reengineering,
1998, pp. 67-73.

[20] Harrison, R.; Counsell, S.; R. Nithi, R. Coupling Metrics for Object-
Oriented Design. In 5th International Software Metrics Symposium
Metrics, 1998, pp. 150-156.

[21] Bansiya, J.; Davis, C. A. Hierarchical Model for Object-Oriented Design
Quality Assessment, IEEE Transactions on Software Engineering, 2002,
Vol. 28, No. 1, pp. 4-17.

[22] Genero, M.; Piattini, M.; Calero, C. Early Measures for UML Class
Diagrams, L‟Object, 2001, Vol. 6, No. 4, (Hermes Science
Publications), pp. 489-515.

[23] Amalarethinam D. I. George; Hameed P.H. Maitheen Shahul. Analysis
of Object Oriented Metrics on a Java Application. International Journal
of Computer Applications, 2015, Volume 123, Number 1.

[24] Ibrahim Ahmed Abd ElHalim; Kamal Amr; Hassan Hesham. Object
Oriented Metrics and Quality Attributes: A Survey. In INFOS‟16, Giza,
Egypt, May 09-11 2016, published by ACM.

[25] Abu Bakar N. S. A. The Analysis of Object-Oriented Metrics in C++
Programs. Lecture Notes on Software Engineering, 2016, Volume 4,
Number 1.

[26] Basili, V. R.; Briad, L. C.; Melo, W. L. A Validation of Object-Oriented
Design Metrics as Quality Indicators, IEEE Transactions Software
Engineering, 1996, vol. 22, pp. 751-761.

[27] Cartwright, M.; Shepperd, M. An Empirical Investigation of Object-
Oriented Software System, IEEE Transactions on Software Engineering,
2000, Volume 26, Issue 8, Page 786-796.

[28] Pant, Y.; Henderson-Sellers, B.; Verner, J. M. Generalization of Object-
Oriented Components for Reuse: Measurement of Effort and Size
Change, J. Object-Oriented Programming, 1996, vol. 9, pp. 19-41.

[29] Hirama Kechi. Software Complexity Analysis Based on Shannon
Entropy Theory and C&K Metrics. IEEE Latin America Transactions,
2016, Volume 14, Issue 5.

[30] Chidamber, S. R.; Darcy, D. P.; Kemerer, C. F. Managerial Use of
Metrics for Object-Oriented Software: An Exploratory Analysis, IEEE
Transactions on Software Engineering, 1998, Vol. 24, No. 8.

[31] Abreu, F. B.,; Cuche, J. S. Collecting and Analyzing the MOOD2
Metrics. In workshop on Object-Oriented Product Metrics for Software
Quality Assessment (ECOOP'98), Brussels, Belgium, pages 258-260,
July 21st 1998.

[32] Goel, B. M.; Bhatia, P. K Analysis of Reusability of Object-Oriented
System using CK Metrics. International Journal of Computer
Applications, 2012, Vol. 60, No. 10, pp 32-36.

[33] Gupta A.; Dashore P. An Approach to Analyse Software Reusability of
Object Oriented Code. International Journal of Research in Science &
Engineering, 2017, Volume 3, Issue 1.

[34] Tempero, E.; Counsell, S.; Noble, J. An Empirical Study of Overriding
in Open Source Java. In ACSC‟10 proceedings of the 33rd Australasian
Computer Science Conference, Brisbane, Australia, January 2010, pp 3-
12.

[35] Tempero, E.; Anslow, C.; Dietrich, J. The Qualitas Corpus: A Curated
Collection of Java Code for Empirical Studies. In Software Engineering
Conference (APSEC), 2010 17th Asia Pacific, January 2011, pp 336-
345.

[36] Sourceforge. Available online: https://sourceforge.net/ (12/4/2017).

[37] StarUml 5.0. Available online: http://staruml.software.informer.com/5.0/
(12/4/2017)

