
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

214 | P a g e

www.ijacsa.thesai.org

EVOTLBO: A TLBO based Method for Automatic

Test Data Generation in EvoSuite

Mohammad Mehdi Dejam Shahabi

Software Engineering Lab., Department of Computer

Engineering and Information Technology

Shiraz University of Technology

Shiraz, Iran

S. Parsa Badiei

Software Engineering Lab., Department of Computer

Engineering and Information Technology

Shiraz University of Technology

Shiraz, Iran

S. Ehsan Beheshtian

Software Engineering Lab., Department of Computer

Engineering and Information Technology

Shiraz University of Technology

Shiraz, Iran

Reza Akbari

Software Engineering Lab., Department of Computer

Engineering and Information Technology

Shiraz University of Technology

Shiraz, Iran

S. Mohammad Reza Moosavi

Department of Computer Science, Engineering and Information Technology

Shiraz University

Shiraz, Iran

Abstract—Now-a-days software has a great impact on

different aspects of human life. Software systems are responsible

for safety of major critical tasks. To prevent catastrophic

malfunctions, promising quality testing techniques should be

used during software development. Software testing is an

effective technique to catch defects, but it significantly increases

the development cost. Therefore, automated testing is a major

issue in software engineering. Search-Based Software Testing

(SBST), specifically genetic algorithm, is the most popular

technique in automated testing for achieving appropriate degree

of software quality. In this paper TLBO, a swarm intelligence

technique, is proposed for automatic test data generation as well

as for evaluation of test results. The algorithm is implemented in

EvoSuite, which is a reference tool for search-based software

testing. Empirical studies have been carried out on the SF110

dataset which contains 110 java projects from the online code

repository SourceForge and the results show that the TLBO

provides competitive results in comparison with major genetic

based methods.

Keywords— EvoSuite; TLBO; test data generation

I. INTRODUCTION

In order to reduce software testing cost, automated test
generation methods are used. These methods could be
categorized into three classes based on the test data generation
method used: random search algorithms, dynamic symbolic
execution, and evolutionary optimization algorithms.

Dynamic Symbolic Execution (DSE) is the interpretation of
programs using symbolic values for input arguments to explore
code paths. A path is distinguished by logical conditions on the
input values. A model for the condition is defined by a
program input that follows the path described by the condition

[1]. The drawback is path explosion which means that the
number of feasible paths grows exponentially with an increase
in program size.

Evolutionary algorithms are used to formulate the testing
problem as an optimization problem. Search algorithms are
used to find answers based on a cost function. These
evolutionary algorithms, such as genetic and simulated
annealing, try to find the best test suite that maximizes the
coverage in the software under test. The commonly used
evolutionary algorithm in the literature is the GA and its
extensions (i.e., 73% of related papers). The mentioned reason
is just the popularity of GA and its applications in various
problems and fields [2]. There is no evidence to prove GA
superiority in performance.

In our research, we applied other meta-heuristic algorithms
and the proposed TLBO method is based on swarm
intelligence for the evolutionary purpose of test data
generation. Moreover according to the surveys on type of
testing in software engineering, almost 75% of the researches
done in this field discuss results on structural testing [2].
Despite what the majority of papers discuss, object oriented
testing is used in this paper to evaluate the performance of our
method. This is due to the recent trend in object oriented
design, programming and object oriented testing in software
engineering in the recent years.

Search-based techniques are appropriate for the automated
generation of unit tests. There are search-based tools like
AUSTIN for C programs [3] or EvoSuite for Java programs
[4]. EvoSuite is a promising tool for automatic software testing
that optimizes whole test suites towards satisfying a coverage

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

215 | P a g e

www.ijacsa.thesai.org

criterion [5]. A coverage criterion represents a finite set of
coverage goals (described in Section II-B).

The TLBO algorithm is implemented based on EvoSuite
tool. The performance of the TLBO algorithm on the SF100
corpus of open source classes shows enhanced coverage in 4
coverage criterions in the generated test data.

The rest of the paper is organized as: In Section II, basic
concepts have been described. Section III provides related
works and the background for the proposed method. The
TLBO algorithm is proposed in Section IV. In Section V the
empirical studies for the proposed method is presented and
finally in Section VI the paper is concluded and some ideas
have been suggested to inspire future researches.

II. BASIC CONCEPTS

A. Test Data Generation

The objective of test data generation is to have a test suite
that maximizes a coverage criterion [6]. A test suite contains a
set of test cases each of which specifies the inputs, a sequence
of statements and execution conditions to test different
behaviors of the code under test, and the predicted results.
Finding test input data is a challenging task. Constraint based
techniques and search based methods are two promising
methods in test data generation. Constraint based techniques
use static and dynamic symbolic execution methods to generate
appropriate input for test cases. The disadvantages of constraint
based techniques include low scalability, inability to manage
the dynamic aspects of a unit under test, and the type of
constraints they can handle.

On the other hand, using search algorithms, an optimization
problem is solved to generate test cases and suitable input for
them. Search based methods can handle a variety of domains
and are very scalable. However these methods get stuck in
local optima and degrade when the search landscape offers
insufficient guidance. Our approach for automatically
generating test input data is a search based evolutionary
algorithm, guided by a fitness function.

B. Coverage Criteria

Coverage criterions determine the goals to be covered for
the search algorithm. Each test suite is optimized for
performance in a certain criterion. There are many criterions in
software testing (e.g., line, mutation, and exception). Based on
the previous works in unit testing, four criterions have been
used in this paper, namely: line coverage, branch coverage,
method coverage and output coverage [7]. Line coverage
presents the executed lines in the code. Branch coverage [8] is
the number of branches covered by the test, like branches of
conditional statements. Method coverage represents the
methods invoked by the test case and Output coverage is a
complementary coverage to the method coverage as it checks
the output of the methods and tries to capture different outputs
by changing the corresponding input [7].

C. Fitness Function

In search based software testing a fitness function
determines how good a test suite is regarding the optimization

objective, which is usually defined by a certain coverage
criterion. In addition to checking whether a coverage goal is
achieved, a fitness function also provides additional
information to guide the search toward covering it.

Method coverage is among basic coverage criteria. This
criterion requires the test suite to invoke every method in the
class under test at least once. This can be done by direct calls in
test cases which appears as a statement or by indirect calls. For
regression test suites, it is important that each method is also
invoked directly. For a set of goals in a particular coverage
criterion, X, the search algorithm generates a test suite that
maximizes the number of the covered goals. Fitness functions
calculate a fitness value to guide the search toward a goal.
Usually the approach level A and branch distance d are
employed for this purpose.

The approach level A(t,x) for a given test t on a coverage
goal x ∈ X is defined as the minimal number of control
dependent edges in the control dependency graph between the
target goal and the control flow that is represented by the test
case. The branch distance d(t,x) means how far a predicate in a
branch x is from being evaluated as true [9].

In branch coverage criterion, the fitness function to
minimize the approach level and branch distance between a test
t and a branch coverage goal x is defined as:

 

Where, v is any normalizing function in the range (0, 1)
[10].

Another basic coverage criterion is line coverage which
will satisfy by executing all the lines in the class under test [7].
For this purpose, a fitness function for the line coverage
criterion uses branch distance to estimate how far a predicate is
from evaluating to the expected outcome. For example, given a
predicate x==10 and an execution with value 5, the branch
distance for the expected outcome being true would be |10-
5|=5. Branch distances can be calculated by applying a set of
standard rules [8], [11]. To optimizing a test suite (rather than a
single test case) toward satisfying line coverage criterion, the
fitness function needs to calculate the branch distance for all
branches. The line coverage fitness value of a test suite can be
calculated by executing all test cases, and for each executed
statement calculating the minimum branch distance among all
of the branches that are control dependencies to that statement.
Hence, the line coverage fitness function is defined as:

 | |
∑ ∈ 

Where, v is any normalizing function, dmin(b,suite) is the
minimum distance and B is the set of control dependent
branches.

For some methods, method coverage, line and branch have
similar fitness values. In this case, unit tests are written to
cover not only the input values of methods but also the output
(returned) values. This criterion can help to improve fault

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

216 | P a g e

www.ijacsa.thesai.org

detection capability [12]. To determine output criterion
coverage goals, the following function maps methods‟ return
type to abstract values.

{

{ }
{ }
{ }
{ }



To satisfy this criterion for each abstract value V∈O(type),
a test suite should contain at least one test case which when
executed calls a method that returns a value that is
characterized by V.

D. Problem representation

Evolutionary algorithms, employing global search methods,
are used for optimization of test data generation problem. The
representation used in our proposed method is the same
problem representation used in EvoSuite. Test suites and test
cases are both formulated as chromosomes containing genes. A
test suite chromosome consists of test cases that test a class in a
specific criterion. A test case respectively includes statements
that cover a goal or set of goals in that criterion. Statements are
categorized into five groups: method calls; primitive statements
that declare a variable; constructor statements that create
classes; field statements that access public members of a class
and assignment statements which assign a value to a variable.

E. Mutation

Mutation is the occasional random alteration of a gene in a
chromosome which alters some features with unpredictable
effect on coverage. In a test-suite level, mutation is done by
randomly generating test cases and adding them to the set. This
random generation is similar to the initial population
generation in an evolutionary algorithm. In test-case level,
mutation is done by adding or removing or changing the
statements in the test case [13], [14].

For method call statements this is done by adding extra
method calls or removing the existing ones. The change is
completed by calling a method with a different value for its
arguments. For constructor statements either a different object
is created or another constructor of the class is used or the input
value for the constructor is changed. For primitive statements
mutation can be done by changing the type of the variable or
declaring new ones. Mutation on field statements can be done
by accessing a different member of the class with the same or
different type. In mutating an assignment statement, the
assigned value can be changed.

III. RELATED WORKS

Automatic test data generation has been proposed to both
increase the precision of software testing and decrease the cost
of software testing. Various tools are available based on the
proposed methods. In a survey presented by Ali, et al. 450
articles have been reviewed and almost 75% of them have
carried out their research on unit testing [2]. They mentioned
that 73% of the papers used genetic algorithms and 14% of the
papers used simulated annealing algorithms. Although genetic
algorithms perform better than local search algorithms, but

there is no evidence to show that they perform better than
global search algorithms. On top of all the reasons mentioned,
there are lots of ready tools that adopt GA and are easily
accessible for everyone.

In another survey by Harman, et al. the history of test data
generation and automatic test data generation using
evolutionary algorithms has been reviewed [15]. Harman have
some recommendations in the paper: using search algorithms
on generating test data for testing non-functional features in a
software; using search algorithms on establishing the test
strategy; using multiple-goal algorithms on generating test data
to optimize multiple features in a software.

The literature review of automatic test data generation can
be categorized under three subsections of random test data
generation, dynamic symbolic execution and search based
software testing. However we focus on the search based
software testing. One of the major issues of test data generation
is the generation of the initial population. The initial population
has an influence on both the final solution and the number of
generations [16]. In the paper presented by Pachauri and
Srivastava [17], three methods were introduced to sort
branches to be chosen as goals for coverage.

The work presented by Fraser and Arcuri [5], shows that
the whole test suite approach achieves up to 18 times the
coverage than the traditional approach which would target
coverage goals individually. This method also generates test
suites that are up to 44% smaller due to the prevention of the
search redundancy and overlapped coverage of goals. In
traditional methods for selecting one goal at a time, it is
assumed that all the importance of goals is equal and the goals
are independent. In contrary the whole test suite generation
method targets a coverage criterion rather than a coverage goal.
This solves several issues including the collateral coverage
problem (i.e., the accidental coverage of the remaining targets
[18]), and the effect of selecting goals in a specific order is
inevitable in the traditional method.

In the work done by Suresh and Rath [19], a method was
proposed to extract basic paths from Control Flow Graph
(CFG) by genetic algorithms. In this method after identifying
the basic paths, test data is generated to cover them. In the
work presented by Bueno, et al. [20], a new method was
proposed to generate the test cases as different from each other
as possible. In this method a cost function that determines the
difference between test cases tries to maximize this difference.
In addition to solving this function with their own proposed
algorithm, it has also solved with genetic and simulated
annealing algorithms and the results have been compared.

In another work by Hermadi, et al. [21], a new stopping
condition has been introduced. This method stops the search if
there are paths in the software and there is no test case that can
reach them. These conditions have been tested in 20 software
data sets and the results are compared with other stopping
conditions. In the work done by Pachauri, et al. [22], a parallel
algorithm has been proposed based on master-slave model and
genetic algorithm to generate test data. In this method master
selects a path for each slave based on “Path prefix” strategy.
Slaves then generate test data to cover that

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

217 | P a g e

www.ijacsa.thesai.org

path using genetic algorithm. The results on two software show
high precision in the generated data. It is noticeable that this
method uses distributed techniques to generate test data.

Another paper on optimizing meta-heuristic algorithms has
been presented by YueMing, et al. [23]. In this method that is
based on particle swarm algorithms, the particles are divided
into two groups, each having its own search method. This
method has shown better performance both in execution time
and in the quality of generated test cases. In the proposed
method by Hoseini, et al. [24], the sequence diagram has been
used as the input instead of the control flow graph. This
method identifies basic paths in the software and generates test
data to cover them using genetic algorithm. One key feature of
this method is that is carries out the test before the
development phase.

Reference [25] has used genetic algorithm to generate a
sequence of method and constructor invocations of a class to
test it. Then using a multiple-goal approach optimizes the
length and the number of instructions in the test cases. Another
idea in this article is to use previously generated test data as the
initial population for the genetic algorithm to optimize them
further. Results show a better performance than the manual
method and some of other automatic methods. Change analysis
test is technique that puts bugs in a software deliberately to
realize if the generated test cases can detect it. If not, existing
test cases should be modified or further test cases are required.

Zeller [26] have proposed a method to generate test data for
detecting changes in object oriented classes. In this method test
data are optimized for finding the most bugs rather than having
the most coverage. In this work „NTEST‟ has been introduced
as way of generating test data for change analysis test, based on
object oriented programs. Using change analysis test rather
than structural testing, not only the place in code that needs
testing is acquired but also what should be tested there is
specified.

To combine the two methods of test data generation, search
based algorithms and constrained based algorithms, a hybrid
solution is proposed by Fraser [27] that works based on genetic
algorithm. The algorithm evolves a set of answers chosen by
the fitness function toward gaining the most coverage. To
speed up the algorithm and avoid the search being confined to
local optimizations, a mutation operator was introduced to be
added to the GA. What this mutation does is the dynamic
execution based on limitations. Instead of random alternations
in the chromosomes genes (bytes) or blindly changing the input
for methods in the generated test cases, the mutation is done
based on the execution path‟s properties of the chromosome.
By doing this a new path is formed in the search space and as a
result increases the coverage. Results show a 28%
improvement compared to search based methods and a 15%
improvement to the limitation based methods. In the work done
by Koleejan, et al. [28], a method is presented based on genetic
and particle swarm algorithms. The main goal of this paper is
to optimize the performance of the previous methods by
generating multiple test cases in every iteration. Results show
that the implemented algorithms perform better than the
previous methods.

Arcuri and Fraser have shown the challenges of applying
EvoSuite to randomly selected open source projects from
SourceForge [29]. This research is of importance because
many similar tools are tested with just a few hand selected
cases and as a result they are optimized for those specific
classes and are not to be generalized. Working with automated
search based software testing tools in a real and industrial level
project is the ultimate goal of software testing, which is
achieved by EvoSuite, however there are challenges that
require the testers‟ attention. The everlasting problems like
seeding, tuning and bloat control have been fairly addressed in
EvoSuite due to its years of development and surprised
encounters with unexpected behaviors the developers had to
deal with. Moreover for an industrial scale software regression
testing is vital. This is achieved by generating test cases with
assertions which capture the current behavior of the software.
In addition to that test cases need to be readable by users,
because no matter how good a test case is in finding failures, a
user needs to check the test cases to ensure that failures found
are caused by real faults and not because of the violation of a
precondition and also to check the assertions to make sure that
the captured behavior is correct. This readability is achieved by
several methods. For example In case of variables with large
values, EvoSuite tries to make them smaller using a binary
method. Moreover naming the variables with proper
understanding names or dedicating individual lines to them are
also deliberated to make the generated test case as clear and
readable as possible. To make analyzing the data easier, test
data coverage results are in the form of CSV (comma separated
values) files. Every column represents a coverage criterion and
every row represents a class in the project.

In recent years many successful applications of swarm
intelligence based methods have been reported by researchers.
It seems that these methods have the potential to be applied in a
broad range of software engineering problems such as software
testing. Based on our knowledge there are a few swarm
intelligence based methods applied for test data generation in
EvoSuite. Hence, this work is aimed to design a swarm
intelligence based method for automatic test data generation in
EvoSuite.

IV. THE PROPOSED METHOD

In this section, the proposed EvoTLBO algorithm is
described in details. The pseudo code of the proposed
algorithm is represented in Fig. 1. The proposed EvoTLBO
algorithm is based on standard TLBO which is known as a
swarm intelligence algorithm [30]. TLBO has been presented
to optimize continues problems. Hence, we need to adapt it for
discrete search space. In other words, the movement operator
of TLBO is changed to suit moving of individuals in a discrete
space. The algorithm has three phases: initialization, update,
and termination.

Solution representation plays an important role in success
of a population based method. Here, as mentioned before in
Section II-D, the same representation which is presented by
EvoSuite is used. As can be seen from Fig. 2, every individual
is represented as a chromosome and attributes of each
individual is determined by its genes. In terms of test data

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

218 | P a g e

www.ijacsa.thesai.org

generation, test cases and test suites are both represented as
chromosomes. On the test suite level, a chromosome‟s genes
correspond to test cases. On the test case level, genes are

statements in a test case. Statements can be method call,
constructor, primitive statement, filed, assignments, etc.

Initialize number of students, termination condition

While (termination condition not met)

Calculate the mean of decision variables

Identify the best solution as teacher //in our case the best test case or test suite based on the criterion

Identify the movement percentage based on the average and a random number //sets the movement parameter

Modify solution based on best solution //moving towards the teacher

 //movement formula based on the movement percentage

If the new solution better than existing

Accept the solution //continues to move toward a student

Mutate the solution

Else

Reject the solution //doesn‟t change the solution

End If

Select two solutions randomly and

If better than

 () //move toward a better student or solution

Else

 () //move away from a worse student or solution

End If

If the new solution better than existing

Accept the solution

Mutate the solution

Else

Reject the solution

End If

End While

Return best solution

Fig. 1. Pseudo code of the proposed EvoTLBO algorithm.

A. Initialization

The algorithm receives number of individuals and
termination condition as inputs. The process starts with a
randomly generated initial population. For this purpose, the
initial solutions generated by the EvoSuite are used.

B. Update (teaching phase)

The algorithm has two main phases of teaching and
learning that simulates the teaching and learning in a
classroom. The teacher is the best student of the class. The
whole class works together to reach the best level of
knowledge (best answer).

This means that social knowledge is shared between
individuals through best solution ever found. In the teaching
phase, every student moves toward the teacher. For this
purpose, the average of decision variable is computed and each
individual is updated using the following equation:

 



Fig. 2. Solution representation

Where, and are the new and old position of the

Test Suite

TC1 TC
2
 TC

n-1
 …. TC

4
 TC

3
 TC

n

St
1
 St

2
 St

k-1
 …. St

4
 St

3
 St

k

Method call

Primitive statement

Constructor

Assignment

Field

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

219 | P a g e

www.ijacsa.thesai.org

individual, is a random number, is the position of
the teacher, and is the mean of decision variables.
This parameter shows that the knowledge of all the individuals
are used to update solutions. Using social knowledge in
appropriate way (as used in EvoTLBO) can help the algorithm
perform better in search space.

The movement operator in EvoTLBO is changed in a way
that makes it applicable to a discrete search space of the test
data generation problem. The proposed movement strategy
changes each individual‟s attributes with regards to another
member to make one look similar to the other. This change is
done by obtaining attributes of one individual and adding a
portion (set as a parameter) of them to the other one.

The general model for movement considers that individual
 wants to move towards individual . Each individual
represents a test suite which is consisted of an array of test
cases. The number of test cases in an individual is considered
as its position in the search space. For the sake of simplicity, an
example is presented in Fig. 3.

Fig. 3. An example of movement pattern.

Assume that individual i contains 5 test cases and
individual j contains 14 test cases where both of them have two
test cases in common. The positions of individuals i and j are 5
and 14 in the search space respectively. The difference
between these two individuals is 7 because they have 2
common test cases. Based on this assumption, any movement
pattern such as (4), (5), and (6) can be used.

What happens when moving one member closer to the
other one is that some of the destination‟s attributes (i.e., test
cases or statements) are copied and added to the source,
leaving the destination as it is. Adding test cases or statements
from one individual to the other is done by copying genes
between chromosomes.

This movement works on both test suite and test case
levels. On the test suite level, to decide which test cases are
added to a test suite, they are prioritized based on their
coverage. Test cases with exclusive goal coverage have higher
priority. However, on test case level there is no prioritization.

After movement, the updated solutions are mutated using
the same scenario given in Section II-E. The mutation helps the
method to explore more regions to find better solutions.

C. Update (learning phase)

The teaching phase is followed by the learning phase in
which the students tutor each other. In the teaching phase, all
the members move toward the teacher. In the learning phase, a
classmate is chosen randomly for each individual, and then

they are compared in terms of their fitness. Actually, in case of
the teaching phase, the individual is paired with the teacher in
the movement operator meaning that it would get more like the
teacher in that phase. If the random classmate‟s score (fitness
value) is higher, then the individual moves toward it using
following equation:

 ()

In contrary if the randomly selected classmate has a lesser
score, the individual gets further from it and closer to the
teacher as:

 ()

The unified random selection of the classmates results in
searching a wider range of the search area, because not all the
students move particularly toward the best-known member.
Also, as in every movement operator, during movement the
two individuals involved are maintained and no new members
are generated.

After movement, the updated solutions are mutated using
the same scenario given in Section II-E.

D. Termination

At the end of every iteration, the whole population is
evaluated and if the minimum requirement (i.e., specific
coverage percentage) is found in a member, the algorithm ends.
On the other hand if there is no such member, the algorithm
chooses the best individual as the teacher and continues into its
evolutionary iterations. As these iterations can go on
continually, in addition to the members‟ qualification, there are
other stopping conditions like the number of iterations or time
limit.

V. PERFORMANCE STUDY

The performance of the proposed movement strategy is
studied in this section. As shown in the results, there have been
improvements in four criteria.

A. Tool Selection

The automation of software testing is done by various tools.
The performance study of the proposed method is done by
implementing and integrating it into the “EvoSuite” platform.
Three of the well-known tools are briefly introduced here. One
of the tools that also works on java programs is “Randoop”
which generates the test cases mostly random and making
assertions based on the feedback it gets from the execution of
the test cases. Another random based tool is “T3”. The basis of
this tool is on random generation of test data sequences these
sequences are saved and can be used for regression testing. In
addition to that, T3 also performs “pair-wise” testing.
“JTExpert” is another tool for java programs which uses search
algorithms to generate a test suite. The drawback of this tool is
that it only generates tests for branch coverage criterion and
also has a lower overall performance in comparison to
EvoSuite.

Regarding EvoSuite‟s performance among other similar
tools, it has participated in the “9th International Workshop on

5 14 9 0

P
o

s.
o

f
in

d
.

i

P
o

s.
o

f
in

d
.

j

Valid range for movement

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

220 | P a g e

www.ijacsa.thesai.org

Search-Based Software Testing” and has achieved the highest
overall score on the benchmark classes among the other tools
[31]. It is noticeable that EvoSuite has close coverage to the
manual method but at a fraction of time in generating them.

B. EvoSuite

EvoSuite is the tool of focus in this research. This tool
generates test cases for codes written in java by using
assertions to examine the integrity of the code [4].

To achieve this, EvoSuite has a hybrid method to generate
test suites and optimizes them through an evolutionary process
to satisfy a coverage criterion. EvoSuite suggests oracles for
the generated test suites in the form of assertions. These small
but effective assertions capture the behavior of the software to
help the developer detect potential deviation. EvoSuite works
on byte code which means that it doesn‟t need the source code.
Test cases are evolved using evolutionary algorithms like
Genetic and TLBO. One of the advantages of EvoSuite to other
competitors is that it uses a whole test suite approach in which
the evolutionary process tries to satisfy multiple coverage goals
at the same time. This method and other challenges of using
this tool in the real world are explained further, later in this
section.

EvoSuite works on a master-slave architecture which
enables parallel processing. This feature means that for
example, calculating fitness value for a population can be done

on different cores of a system or even on separate systems.
This feature can help the performance of this tool effectively
specially in large projects. In this architecture, a main process
starts multiple sub-processes that do the actual search for the
best test data. The communication between these processes is
done by TCP, which makes EvoSuite independent from the
signals of the operating system it is running on.

C. Dataset

Given that proving the performance of evolutionary
algorithms is mathematically almost impossible, the
performance in these cases is measured by empirical studies.
There are challenges in using empirical methods. One of the
important ones is to make sure that a technique which performs
well under certain circumstances in the laboratory can also
perform as well in real world problems. In literature, most of
the works don‟t use a systematic method to choose the data set.
In the matter of test data generation, there are many open
source software available online. In [32] SF110 a set of 110
java projects were randomly selected from SourceForge code
repository for automatic test data generation studies. This data
set is also used by the EvoSuite development team. Since
studying all the 22 thousand classes of this data set could take
up to 1000 days, 50 random classes from SF110 is randomly
selected to study the performance of the proposed EvoTLBO
algorithm. The selected classes are shown in the table below.
Classes are numbered in order to compare the coverage results.

TABLE. I. 50 CLASSES USED FOR TEST DATA GENERATION

Class # Class Name

1 geo.google.mapping.AddressToUsAddressFunctor

2 com.werken.saxpath.XPathLexer

3 httpanalyzer.ScreenInputFilter

4 corina.formats.TRML

5 corina.map.SiteListPanel

6 lotus.core.phases.Phase

7 org.dom4j.tree.CloneHelper

8 org.dom4j.util.PerThreadSingleton

9 macaw.presentationLayer.CategoryStateEditor

10 org.fixsuite.message.view.ListView

11 com.browsersoft.openhre.hl7.impl.config.HL7SegmentMapImpl

12 com.lts.caloriecount.ui.budget.BudgetWin

13 com.lts.io.ArchiveScanner

14 com.lts.swing.table.dragndrop.test.RecordingEvent

15 com.lts.swing.thread.BlockThread

16 de.outstare.fortbattleplayer.gui.battlefield.BattlefieldCell

17 org.sourceforge.ifx.framework.complextype.RecChkOrdInqRs_Type

18 org.sourceforge.ifx.framework.complextype.PassbkItemInqRs_Type

19 umd.cs.shop.JSListSubstitution

20 jigl.image.utils.LocalDifferentialGeometry

21 org.sourceforge.ifx.framework.element.Fee

22 com.lts.xml.MapElement

23 weka.gui.beans.TrainTestSplitMaker

24 weka.filters.unsupervised.attribute.RandomProjection

25 com.lts.swing.table.rowmodel.tablemodel.RowModelTableModel

26 net.sourceforge.squirrel_sql.fw.datasetviewer.ColumnDisplayDefinition

27 org.gudy.azureus2.core3.util.ShellUtilityFinder

28 org.gudy.azureus2.core3.torrentdownloader.impl.TorrentDownloaderManager

29 jcmdline.UsageFormatter

30 net.sourceforge.squirrel_sql.fw.sql.ISQLExecutionCallback

31 br.com.jnfe.base.ICMSST

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

221 | P a g e

www.ijacsa.thesai.org

Class # Class Name

32 glengineer.agents.setters.FunctionsOnSequentialGroupAndElement

33 org.sourceforge.ifx.framework.element.ForExDealStatusInqRq

34 org.sourceforge.ifx.framework.element.BankAcctTrnImgRevRs

35 com.aelitis.azureus.core.download.DownloadManagerEnhancer

36 corina.browser.Row

37 corina.graph.DensityPlot

38 com.browsersoft.openhre.hl7.impl.parser.HL7CheckerStateImpl

39 org.bouncycastle.asn1.DERUTCTime

40 module.RuleSet

41 net.kencochrane.a4j.DAO.Cart

42 org.petsoar.security.Address

43 org.sourceforge.ifx.framework.pain001.simpletype.DocumentType1Code

44 corina.prefs.components.BoolPrefComponent

45 jaw.gui.ProcessarEntidades

46 org.jcvi.jillion.fasta.pos.PositionFastaRecord

47 de.huxhorn.lilith.data.access.AccessEvent

48 com.sap.netweaver.porta.mon.StopCommand

49 org.sourceforge.ifx.framework.element.DevDepType

50 org.sourceforge.ifx.framework.complextype.DepAcctStmtRevRs_Type

D. Algorithm Configurations

All of the algorithms start with an initial population of size
50 which is generated with the random method mentioned in
the literature. The algorithms have 2 minutes to run each time.
In addition to timeout, a certain coverage percentage (i.e.,
100%) is also a stopping condition. Each of the classes have
been processed in 10 iterations to ensure reliable results.

The total time required for runs is calculated as follows:

In addition to the common settings, each algorithm has its
own specific configurations which are set as follows: for the
genetic algorithm, selection is rank and crossover is single
point. In the proposed EvoTLBO method, the teaching factor is
selected as 0<random<2.0.

E. Experimental Results

Standard GA and Monotonic GA which are built into the
EvoSuite tool by its developing team are used for comparing
the results of the proposed EvoTLBO algorithm in 4 coverage
criterions of Branch, Line, Method and Output. Two factors
have been used for performance comparison, the number of
classes which the algorithm has achieved the highest coverage

in and the percentage of the total number of covered goals.
These two factors are shown in the last row of the table for
each algorithm. For every table the first column is the class
number correspondent to Table 1. For every algorithm the first
column is the coverage percentage in that class and the second
column is the ratio of the covered goals to the total number of
goals for that class in the specified criterion.

Branch coverage: The results of applying the EvoTLBO
algorithm with the suggested movement operator in it are
presented in Table 2. The table shows the results in branch
coverage criterion. Standard GA has the highest score in terms
of covering the most number of classes. This algorithm has the
highest coverage in 36 classes in 12 of which achieving
exclusive coverage that no other algorithm has. The monotonic
GA algorithm gets the second rank by achieving highest
coverage in 28 classes and exclusive coverage in only 3 cases.
The proposed EvoTLBO algorithm does not show a good
performance compared to the two genetic algorithms, it
achieves the highest coverage in 24 classes alongside with the
other two and it has exclusive coverage in only two classes.
Regarding the goal coverage independent of which class they
are in, all three algorithms have close performance. There are a
total of 2101 goals in this criterion in all of the classes
combined. Although the ranking stays the same, but the
62.67% of standard GA at first is close to 59.21% of the
EvoTLBO at last.

TABLE. II. BRANCH COVERAGE RESULTS

Standard GA Monotonic GA EvoTLBO

1 20.00% (6/30) 20.00% (6/30) 20.00% (6/30)

2 85.99% (416.2/484) 86.84% (420.3/484) 85.12% (412/484)

3 100.00% (5/5) 94.00% (4.7/5) 98.00% (4.9/5)

4 24.78% (22.3/90) 21.89% (19.7/90) 19.56% (17.6/90)

5 0.65% (1/153) 0.65% (1/153) 0.59% (0.9/153)

6 72.86% (20.4/28) 100.00% (28/28) 100.00% (28/28)

7 100.00% (4/4) 100.00% (4/4) 100.00% (4/4)

8 85.71% (6/7) 85.71% (6/7) 85.71% (6/7)

9 8.33% (1/12) 7.50% (0.9/12) 7.50% (0.9/12)

10 5.26% (4/76) 5.26% (4/76) 4.21% (3.2/76)

11 100.00% (12/12) 100.00% (12/12) 100.00% (12/12)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

222 | P a g e

www.ijacsa.thesai.org

Standard GA Monotonic GA EvoTLBO

12 12.50% (4/32) 12.50% (4/32) 10.63% (3.4/32)

13 71.33% (32.1/45) 69.78% (31.4/45) 57.78% (26/45)

14 99.67% (29.9/30) 100.00% (30/30) 97.67% (29.3/30)

15 98.89% (8.9/9) 97.78% (8.8/9) 98.89% (8.9/9)

16 82.54% (58.6/71) 81.83% (58.1/71) 65.07% (46.2/71)

17 100.00% (34/34) 100.00% (34/34) 100.00% (34/34)

18 100.00% (28/28) 100.00% (28/28) 100.00% (28/28)

19 92.86% (6.5/7) 88.57% (6.2/7) 90.00% (6.3/7)

20 91.56 (181.2/198) 88.28 (174.7/198) 95.70 (189.4/198)

21 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

22 100.00% (1/1) 100.00% (1/1) 100.00% (1/1)

23 66.23% (70.2/106) 64.62% (68.5/106) 54.72% (58/106)

24 41.71% (65.9/158) 41.39% (65.4/158) 37.34% (59/158)

25 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

26 90.41% (44.3/49) 90.82% (44.5/49) 91.02% (44.6/49)

27 80.00% (7.2/9) 88.89% (8/9) 88.89% (8/9)

28 78.82% (40.2/51) 74.31% (37.9/51) 71.18% (36.3/51)

29 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

30 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

31 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

32 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

33 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

34 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

35 8.53% (9.3/109) 3.85% (4.2/109) 7.34% (8/109)

36 57.59% (33.4/58) 58.79% (34.1/58) 50.17% (29.1/58)

37 17.65% (3/17) 17.65% (3/17) 17.65% (3/17)

38 92.86% (97.5/105) 91.24% (95.8/105) 80.86% (84.9/105)

39 99.71% (33.9/34) 99.12% (33.7/34) 98.53% (33.5/34)

40 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

41 23.08% (9/39) 23.08% (9/39) 23.08% (9/39)

42 100.00% (11/11) 100.00% (11/11) 100.00% (11/11)

43 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

44 0.00% (0/6) 0.00% (0/6) 0.00% (0/6)

45 100.00% (1/1) 100.00% (1/1) 100.00% (1/1)

46 100.00% (18/18) 100.00% (18/18) 100.00% (18/18)

47 100.00% (134/134) 100.00% (134/134) 92.54% (124/134)

48 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

49 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

50 100.00% (26/26) 100.00% (26/26) 100.00% (26/26)

 36 62.67% 28 62.55% 24 59.21%

Line coverage: In Table 3 the results are based upon the
line coverage criterion. The monotonic GA has achieved the
highest coverage in 30 cases 7 of which were exclusive to this
algorithm. The standard GA holds the second place closely
with just 1 less class. Although EvoTLBO algorithm has the

third place but it still has competitive results as it achieves the
highest coverage in 25 classes along with others and has
exclusive coverage in 4 classes. The same ranking goes for
goal coverage percentage. The two genetic algorithms have
close scores with less than 1 percent difference and the
EvoTLBO algorithm has coverage more than 2 percent lower.

TABLE. III. LINE COVERAGE RESULTS

Standard GA Monotonic GA EvoTLBO

1 27.03% (10/37) 27.03% (10/37) 26.76% (9.9/37)

2 86.74% (308.8/356) 87.67% (312.1/356) 87.08% (310/356)

3 98.18% (10.8/11) 97.27% (10.7/11) 98.18% (10.8/11)

4 44.87% (70/156) 48.53% (75.7/156) 31.41% (49/156)

5 0.43% (1/232) 0.43% (1/232) 0.39% (0.9/232)

6 100.00% (20/20) 100.00% (20/20) 100.00% (20/20)

7 38.46% (5/13) 38.46% (5/13) 38.46% (5/13)

8 79.13% (18.2/23) 80.00% (18.4/23) 78.26% (18/23)

9 0.00% (0/46) 0.00% (0/46) 0.00% (0/46)

10 3.64% (8/220) 3.64% (8/220) 3.64% (8/220)

11 100.00% (26/26) 100.00% (26/26) 100.00% (26/26)

12 26.92% (28/104) 26.92% (28/104) 26.92% (28/104)

13 81.36% (53.7/66) 81.97% (54.1/66) 62.88% (41.5/66)

14 94.19% (69.7/74) 94.05% (69.6/74) 96.89% (71.7/74)

15 72.69% (18.9/26) 73.08% (19/26) 72.69% (18.9/26)

16 78.85% (102.5/130) 87.08% (113.2/130) 72.54% (94.3/130)

17 100.00% (51/51) 100.00% (51/51) 100.00% (51/51)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

223 | P a g e

www.ijacsa.thesai.org

Standard GA Monotonic GA EvoTLBO

18 100.00% (42/42) 100.00% (42/42) 100.00% (42/42)

19 93.00% (9.3/10) 90.00% (9/10) 93.00% (9.3/10)

20 87.66 (326/372) 87.25 (324.5/372) 92.47 (343.9/372)

21 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

22 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

23 70.38% (112.6/160) 67.94% (108.7/160) 65.81% (105.3/160)

24 52.68% (125.9/239) 53.35% (127.5/239) 50.54% (120.8/239)

25 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

26 95.80% (95.8/100) 95.80% (95.8/100) 96.00% (96/100)

27 93.75% (7.5/8) 100.00% (8/8) 100.00% (8/8)

28 90.20% (45.1/50) 89.00% (44.5/50) 88.80% (44.4/50)

29 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

30 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

31 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

32 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

33 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

34 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

35 10.16% (18.6/183) 5.79% (10.6/183) 13.28% (24.3/183)

36 66.63% (57.3/86) 65.93% (56.7/86) 58.95% (50.7/86)

37 8.51% (4/47) 8.51% (4/47) 8.30% (3.9/47)

38 86.54% (165.3/191) 85.39% (163.1/191) 77.38% (147.8/191)

39 100.00% (55/55) 98.91% (54.4/55) 98.91% (54.4/55)

40 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

41 39.06% (50/128) 39.06% (50/128) 39.06% (50/128)

42 100.00% (15/15) 100.00% (15/15) 100.00% (15/15)

43 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

44 21.43% (3/14) 21.43% (3/14) 21.43% (3/14)

45 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

46 100.00% (26/26) 100.00% (26/26) 100.00% (26/26)

47 100.00% (86/86) 100.00% (86/86) 100.00% (86/86)

48 12.50% (1/8) 12.50% (1/8) 10.00% (0.8/8)

49 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

50 100.00% (39/39) 100.00% (39/39) 100.00% (39/39)

 29 57.32% 30 57.52% 25 55.04%

Output coverage: The results of output coverage are
presented in Table 4. On the number of classes with the highest
coverage, standard GA scores 29 cases with 7 exclusive
highest coverage. Monotonic GA achieves highest coverage in
24 classes with exclusive coverage in 3 cases. EvoTLBO

ranked at last scores 21 on highest coverage with only 2
exclusively covered classes. Regarding the total goals in this
criterion, of all the 1056 goals, standard GA being at the top
covers 49.57% of them. EvoTLBO with the least score, covers
47.91% of the goals.

TABLE. IV. OUTPUT COVERAGE RESULTS

Standard GA Monotonic GA EvoTLBO

1 50.00% (2/4) 50.00% (2/4) 50.00% (2/4)

2 39.01% (55.4/142) 38.59% (54.8/142) 38.59% (54.8/142)

3 66.67% (2/3) 66.67% (2/3) 66.67% (2/3)

4 6.06% (2/33) 6.06% (2/33) 6.06% (2/33)

5 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

6 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

7 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

8 50.00% (1/2) 50.00% (1/2) 50.00% (1/2)

9 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

10 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

11 63.64% (7/11) 63.64% (7/11) 63.64% (7/11)

12 0.00% (0/77) 0.00% (0/77) 0.00% (0/77)

13 80.00% (4/5) 78.00% (3.9/5) 80.00% (4/5)

14 48.67% (14.6/30) 33.00% (9.9/30) 50.67% (15.2/30)

15 0 (0/0) 0.00% (0/0) 0.00% (0/0)

16 83.33% (10/12) 83.33% (10/12) 83.33% (10/12)

17 100.00% (40/40) 100.00% (40/40) 99.00% (39.6/40)

18 100.00% (33/33) 100.00% (33/33) 99.70% (32.9/33)

19 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

20 48.90 (93.8/192) 46.30 (88.8/192) 50.31 (96.5/192)

21 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

22 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

23 37.78% (17/45) 38.89% (17.5/45) 35.78% (16.1/45)

24 32.03% (25.3/79) 33.16% (26.2/79) 28.99% (22.9/79)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

224 | P a g e

www.ijacsa.thesai.org

Standard GA Monotonic GA EvoTLBO

25 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

26 85.21% (60.5/71) 83.38% (59.2/71) 82.68% (58.7/71)

27 44.44% (4/9) 44.44% (4/9) 44.44% (4/9)

28 10.69% (9.3/87) 10.11% (8.8/87) 9.89% (8.6/87)

29 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

30 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

31 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

32 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

33 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

34 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

35 3.78% (3.1/82) 1.22% (1/82) 2.68% (2.2/82)

36 47.78% (12.9/27) 44.07% (11.9/27) 41.85% (11.3/27)

37 80.00% (4/5) 80.00% (4/5) 80.00% (4/5)

38 94.63% (51.1/54) 91.48% (49.4/54) 81.11% (43.8/54)

39 68.42% (13/19) 67.89% (12.9/19) 65.79% (12.5/19)

40 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

41 50.00% (6/12) 50.00% (6/12) 50.00% (6/12)

42 100.00% (15/15) 100.00% (15/15) 100.00% (15/15)

43 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

44 0.00% (0/0) 0.00% (0/0) 0.00% (0/0)

45 52.76% (15.3/29) 53.45% (15.5/29) 49.66% (14.4/29)

46 60.00% (9/15) 60.00% (9/15) 59.33% (8.9/15)

47 93.24% (69/74) 93.24% (69/74) 93.24% (69/74)

48 0.00% (0/3) 0.00% (0/3) 0.00% (0/3)

49 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

50 100.00% (26/26) 100.00% (26/26) 100.00% (26/26)

 29 49.57% 24 48.58% 21 47.91%

Method coverage: The coverage of methods is the last
criterion used for comparison. The results of method coverage
are presented in Table 5. In this criterion EvoTLBO performs
better than the other two by achieving the highest coverage in
44 classes and exclusively covering 11 classes with the highest
coverage percentage. Standard GA and monotonic GA both

cover 35 classes with highest coverage alongside each other
and EvoTLBO. The only case which standard GA has
exclusive coverage is number 35. Monotonic GA doesn‟t cover
any classes exclusively. Regarding the total goal coverage,
EvoTLBO again has the first rank with 90.08% coverage. The
two genetic algorithms have very close coverage percentage.

TABLE. V. METHOD COVERAGE RESULTS

Standard GA Monotonic GA EvoTLBO

1 100.00% (3/3) 100.00% (3/3) 100.00% (3/3)

2 100.00% (44/44) 100.00% (44/44) 100.00% (44/44)

3 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

4 72.00% (3.6/5) 80.00% (4/5) 82.00% (4.1/5)

5 50.00% (1/2) 50.00% (1/2) 50.00% (1/2)

6 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

7 25.00% (1/4) 25.00% (1/4) 100.00% (4/4)

8 100.00% (4/4) 100.00% (4/4) 100.00% (4/4)

9 20.00% (1/5) 20.00% (1/5) 20.00% (1/5)

10 33.33% (1/3) 33.33% (1/3) 23.33% (0.7/3)

11 100.00% (8/8) 100.00% (8/8) 100.00% (8/8)

12 11.11% (1/9) 20.00% (1.8/9) 28.89% (2.6/9)

13 50.00% (4/8) 50.00% (4/8) 78.75% (6.3/8)

14 100.00% (16/16) 100.00% (16/16) 100.00% (16/16)

15 76.67% (4.6/6) 81.67% (4.9/6) 83.33% (5/6)

16 100.00% (8/8) 100.00% (8/8) 100.00% (8/8)

17 100.00% (34/34) 100.00% (34/34) 100.00% (34/34)

18 100.00% (28/28) 100.00% (28/28) 100.00% (28/28)

19 100.00% (3/3) 100.00% (3/3) 100.00% (3/3)

20 100.00% (19/19) 100 (19/19) 100 (19/19)

21 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

22 100.00% (1/1) 100.00% (1/1) 100.00% (1/1)

23 100.00% (23/23) 100.00% (23/23) 100.00% (23/23)

24 75.00% (24/32) 76.88% (24.6/32) 86.25% (27.6/32)

25 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

26 93.75% (30/32) 93.75% (30/32) 99.69% (31.9/32)

27 100.00% (4/4) 100.00% (4/4) 100.00% (4/4)

28 100.00% (10/10) 100.00% (10/10) 100.00% (10/10)

29 100.00% (4/4) 100.00% (4/4) 100.00% (4/4)

30 0.00% (0/1) 0.00% (0/1) 0.00% (0/1)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

225 | P a g e

www.ijacsa.thesai.org

Standard GA Monotonic GA EvoTLBO

31 0.00% (0/6) 0.00% (0/6) 0.00% (0/6)

32 0.00% (0/8) 0.00% (0/8) 0.00% (0/8)

33 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

34 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

35 33.08% (4.3/13) 22.31% (2.9/13) 26.15% (3.4/13)

36 90.00% (9/10) 90.00% (9/10) 95.00% (9.5/10)

37 75.00% (3/4) 75.00% (3/4) 82.50% (3.3/4)

38 100.00% (42/42) 100.00% (42/42) 100.00% (42/42)

39 99.23% (12.9/13) 100.00% (13/13) 100.00% (13/13)

40 100.00% (1/1) 100.00% (1/1) 100.00% (1/1)

41 100.00% (7/7) 100.00% (7/7) 100.00% (7/7)

42 100.00% (11/11) 100.00% (11/11) 100.00% (11/11)

43 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

44 33.33% (1/3) 33.33% (1/3) 30.00% (0.9/3)

45 90.63% (14.5/16) 87.50% (14/16) 92.50% (14.8/16)

46 100.00% (8/8) 100.00% (8/8) 100.00% (8/8)

47 100.00% (34/34) 100.00% (34/34) 100.00% (34/34)

48 50.00% (1/2) 50.00% (1/2) 80.00% (1.6/2)

49 100.00% (2/2) 100.00% (2/2) 100.00% (2/2)

50 100.00% (26/26) 100.00% (26/26) 100.00% (26/26)

 35 87.41% 35 87.47% 44 90.08%

VI. CONCLUSION AND FUTURE WORKS

In this work, a method based on TLBO has been proposed
to generate test data automatically. The proposed method was
applied on 50 randomly selected classes in EvoSuite. The
performance of EvoTLBO method was compared with the two
methods of standard GA and monotonic GA. The results
showed that EvoTLBO is efficient and provides competitive
results in comparison with the other methods.

The experience gained on working with different
evolutionary algorithms has given us a wider perspective on
this matter. Knowing the challenges of software testing and
software quality validation, suggestions to improve the results
further are made. Given the performance of swarm intelligence
algorithm, more empirical studies using a larger number of
classes are suggested. Extending EvoTLBO with new
movement patterns and social models may result better
performance. Analyzing other swarm intelligence paradigm
algorithms like bats in generating test data is suggested. Other
optimization paradigm algorithms for test data generation
could be studied. Proposing a movement method in the search
space of swarm intelligence algorithms for solving object
oriented test problems is of importance. It is recommended to
present a method to change the discrete space of the algorithm
to a continuous form to implement the movement. Since
evolutionary algorithms are dependent on their initial
parameters values, empirical studies on tuning these
parameters by comparing the execution results of different
values is recommended. Utilizing multiple goal optimization
algorithms in generating test data, to approach all the goals at
the same time. Using fitness functions to generate tests for
non-functional properties of software is a need. Further
analysis of other tools like Randoop is recommended.

REFERENCES

[1] J. P. Galeotti, G. Fraser, and A. Arcuri, “Improving search-based test
suite generation with dynamic symbolic execution,” 2013 IEEE 24th Int.
Symp. Softw. Reliab. Eng. ISSRE 2013, pp. 360–369, 2013.

[2] S. Ali, L. C. Briand, H. Hemmati, and R. K. Panesar-Walawege, “A
systematic review of the application and empirical investigation of
search-based test case generation,” IEEE Trans. Softw. Eng., vol. 36, no.
6, pp. 742–762, 2010.

[3] K. Lakhotia, M. Harman, and H. Gross, “AUSTIN: A Tool for Search
Based Software Testing for the C Language and Its Evaluation on
Deployed Automotive Systems,” in 2nd International Symposium on
Search Based Software Engineering, 2010, pp. 101–110.

[4] G. Fraser and A. Arcuri, “EvoSuite : Automatic Test Suite Generation
for Object-Oriented Software,” Proc. 19th ACM SIGSOFT Symp. 13th
Eur. Conf. Found. Softw. Eng., pp. 416–419, 2011.

[5] G. Fraser and A. Arcuri, “Evolutionary Generation of Whole Test
Suites,” 2011 11th Int. Conf. Qual. Softw., pp. 31–40, 2011.

[6] P. McMinn, “Search-Based Software Testing: Past, Present and Future,”
in Proceedings of the 2011 IEEE Fourth International Conference on
Software Testing, Verification and Validation Workshops, 2011, pp.
153–163.

[7] J. M. R. J. C. M. V. G. F. A. Arcuri, “Combining Multiple Coverage
Criteria in Search-Based Unit Test Generation,” 2015.

[8] P. McMinn, “Search-based software test data generation: A survey,”
Softw. Test. Verif. Reliab., vol. 14, no. 2, pp. 105–156, 2004.

[9] J. M. Rojas, M. Vivanti, A. Arcuri, and G. Fraser, A detailed
investigation of the effectiveness of whole test suite generation. 2016.

[10] M. Barros and Y. Labiche, “Search-Based Software Engineering: 7th
International Symposium, SSBSE 2015 Bergamo, Italy, September 5-7,
2015 Proceedings,” Lect. Notes Comput. Sci. (including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics), vol. 9275, pp. 77–92,
2015.

[11] B. Korel, “Automated software test data generation,” IEEE Trans.
Softw. Eng., vol. 16, no. 8, pp. 870–879, Aug. 1990.

[12] N. Alshahwan and M. Harman, “Coverage and Fault Detection of the
Output-uniqueness Test Selection Criteria,” in Proceedings of the 2014
International Symposium on Software Testing and Analysis, 2014, pp.
181–192.

[13] H. Sthamer and P. Morgannwg, “The Automatic Generation of Software
Test Data Using Genetic Algorithms,” no. November, 1995.

[14] P. Tonella, “Evolutionary Testing of Classes,” pp. 119–128.

[15] M. Harman, Y. Jia, and Y. Zhang, “Achievements , open problems and
challenges for search based software testing,” 8th IEEE Int. Conf. Softw.
Testing, Verif. Valid., no. Icst, 2015.

[16] H. Maaranen, K. Miettinen, and M. M. Mäkelä, “Quasi-random initial
population for genetic algorithms,” Comput. Math. with Appl., vol. 47,
no. 12, pp. 1885–1895, 2004.

[17] A. Pachauri and G. Srivastava, “Automated test data generation for
branch testing using genetic algorithm: An improved approach using
branch ordering, memory and elitism,” J. Syst. Softw., vol. 86, no. 5, pp.
1191–1208, 2013.

[18] G. Fraser and A. Arcuri, “Whole test suite generation,” IEEE Trans.
Softw. Eng., vol. 39, no. 2, pp. 276–291, 2013.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 6, 2017

226 | P a g e

www.ijacsa.thesai.org

[19] Y. Suresh and S. Rath, “A Genetic Algorithm based Approach for Test
Data Generation in Basis Path Testing,” Int. J. Soft Comput. Softw.
Eng., vol. 3, no. 3, pp. 326–332, 2014.

[20] P. M. S. Bueno, M. Jino, and W. E. Wong, “Diversity oriented test data
generation using metaheuristic search techniques,” Inf. Sci. (Ny)., vol.
259, pp. 490–509, 2014.

[21] I. Hermadi, C. Lokan, and R. Sarker, “Dynamic stopping criteria for
search-based test data generation for path testing,” Inf. Softw. Technol.,
vol. 56, no. 4, pp. 395–407, 2014.

[22] A. Pachauri, “Towards a parallel approach for test data generation for
branch coverage with genetic algorithm using the extended path prefix
strategy Towards a Parallel Approach for Test Data Generation for
Branch Coverage with Genetic Algorithm using the Extended Path,” no.
March, 2016.

[23] D. YueMing, W. YiTing, and W. DingHui, “Particle swarm
optimization algorithm for test case automatic generation based on
clustering thought,” in Cyber Technology in Automation, Control, and
Intelligent Systems (CYBER), 2015 IEEE International Conference on,
2015, pp. 1479–1485.

[24] B. Hoseini and S. Jalili, “Automatic test path generation from sequence
diagram using genetic algorithm,” Telecommun. (IST), 2014 7th Int.
Symp., pp. 106–111, 2014.

[25] G. Fraser and A. Zeller, “Mutation-driven Generation of Unit Tests and
Oracles,” 2010.

[26] G. Fraser and A. Zeller, “Exploiting common object usage in test case
generation,” Proc. - 4th IEEE Int. Conf. Softw. Testing, Verif.
Validation, ICST 2011, pp. 80–89, 2011.

[27] J. Malburg and G. Fraser, “Combining Search-based and Constraint-
based Testing.”

[28] C. Koleejan, B. Xue, and M. Zhang, “Code Coverage Optimisation in
Genetic Algorithms and Particle Swarm Optimisation for Automatic
Software Test Data Generation,” pp. 1204–1211, 2015.

[29] G. Fraser and A. Arcuri, “txtUnknown - Unknown - EvoSuite On The
Challenges of Test Case Generation in the Real World.txt.pdf.”

[30] R. V. Rao, V. J. Savsani, and D. P. Vakharia, “Teaching–learning-based
optimization: A novel method for constrained mechanical design
optimization problems,” Comput. Des., vol. 43, no. 3, pp. 303–315,
2011.

[31] G. Fraser, “EvoSuite at the SBST 2016 Tool Competition,” pp. 10–13,
2016.

[32] G. Fraser and C. Science, “A Large Scale Evaluation of Automated Unit
Test Generation Using EvoSuite,” ACM Trans. Softw. Eng. Methodol.,
vol. 24, no. 2, p. 8, 2014.

