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Abstract—Feature selection in machine learning aims to find 

out the best subset of variables from the input that reduces the 

computation requirement and improves the predictor 

performance. This paper introduces a new index based on 

empirical copulas, termed as the Copula Statistic (CoS) to assess 

the strength of statistical dependence and for testing statistical 

independence. It shows that this test exhibits higher statistical 

power than other indices.  Finally, applying the CoS features 

selection in machine learning problems, which allow a 

demonstration of the good performance of the CoS. 
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I. INTRODUCTION 

Measures of statistical dependence among random 
variables and signals are paramount in many scientific 
applications: engineering, signal processing, finance, biology 
and machine learning to cite a few.  They allow one to find 
clusters of data points and signals, test for independence to 
make decisions, and explore causal relationships. The classic 
measure of dependence is provided by the correlation 
coefficient, which was introduced in 1895 by Karl Pearson. 
Since it relies on moments, it assumes statistical linear 
dependence. However, in biology, ecology and finance, and 
other fields, applications involving nonlinear multivariate 
dependence prevail.  For such applications, the correlation 
coefficient is unreliable. Hence, researchers have initiated 
many proposals in order to address this deficiency [1]-[5].  
Reshef et al. [6], [7] introduced the Maximal Information 
Coefficient (MIC) and later the Total Information Coefficient 
(TIC), Lopes-Paz et al. [8] proposed the Randomized 
Dependence Coefficient (RDC), and Ding et al. [9], [10] put 
forth the Copula Correlation Coefficient (Ccor).  Additionally, 
Székely et al. [11] proposed the distance correlation (dCor).  
These metrics are able to measure monotonic and non-
monotonic dependencies between random variables, but each 
has strengths and shortcomings [12]-[18].  Feature selection in 
machine learning is a typical battlefield to appraise the quality 
and the reliability of a dependence index, it is to find out the 
best subset of variables (from the input) that reduces the 
computation requirement and feed up the predictor algorithm 
for optimal performance [19], [20]. 

In this paper, a new index based on copulas, termed the 
Copula Statistic (CoS), for measuring the strength of nonlinear 
statistical dependence and for testing for statistical 
independence is introduced. The CoS ranges from zero to one 
and attains its lower and upper limit for the independence and 
the functional dependence case, respectively.   

Monte Carlo simulations are carried out to estimate bias 
and standard deviation curves of the CoS, to assess its power 
when testing for independence. The simulations reveal that for 
large sample sizes, the CoS is approximately normal and 
approaches Pearson’s 𝜌P for the Gaussian copula and 
Spearman’s 𝜌S for many copulas.  The CoS is shown to exhibit 
strong statistical power in various functional dependencies as 
compared to many other indices. Finally, the CoS is applied to 
feature selection problem to unveil bivariate dependence.  

The paper is organized as follows. Section II proves two 
new and essential theorems on copulas used to derive the CoS 
index. Section III introduces a relative distance function and 
proves several of its properties. Section IV defines the CoS 
and provides an algorithm that implements it. Section V 
investigates the statistical properties of the CoS and treats the 
case of bivariate dependence. Section VI compares the 
performance of the CoS with the dCor, RDC, Ccor, and the 
MICe in measuring bivariate functional and non-functional 
dependencies between synthetic datasets. It also shows how 
the CoS can unveil statistical dependence in real datasets of 
breast tumor and proceed with an in-depth analysis in order to 
find out the best feature subset for this problem. 

II. BIVARIATE COPULA 

In the following, attention is restricted to two-dimensional 
copulas to develop a statistical index, the CoS, in the bivariate 
dependence case. To define the CoS of two continuous 
random variables X and Y with copula C(u, v), three 
definitions of bivariate dependencies are provided, from 
weaker to stronger versions, as introduced by Lehmann [21]. 
Then, three theorems are stated which help build the 
foundation for the CoS.   

Definition 1: Two random variables, X and Y, are said to 
be concordant (or discordant) if they tend to simultaneously 
take large (or small) values.   
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A more formal definition is as follows. Let X and Y  be two 
random variables taking two pairs of values, (xi, yi) and (xj, yj). 
X and Y are said to be concordant if (xi – xj) (yi – yj) > 0; they 
are said to be discordant if the inequality is reversed.     

 Definition 2: Two random variables, X and Y, defined on 
the domain  = Range(X) x Range(Y) are said to be Positively 
Quadrant Dependent (PQD) if   

P(X ≤ x, Y ≤ y) ≥ P(X ≤ x) P(Y ≤ y), 

 
that is, 𝐶(𝑢, 𝑣) ≥ 𝛱(𝑢, 𝑣) and Negative Quadrant 

Dependent (NQD) if   

P(X ≤ x, Y ≤ y) < P(X ≤ x) P(Y ≤ y), 
that is, (𝑢, 𝑣) ≤ (𝑢, 𝑣) for all (x, y)    .  

Definition 3: Two random variables, X and Y, are said to 
be comonotonic (respectively countermonotonic) if Y = f(X) 
almost surely and f(.) is an increasing (respectively a 
decreasing) function.   

In short, two random variables are monotonic if they are 
either comonotonic or countermonotonic.   

Theorem 1: (Fréchet [13]: Let X and Y be two continuous 
random variables. Then,  

a) X and Y are comonotonic if and only if the associated 

copula is equal to its Fréchet-Hoeffding upper bound, that is,  

C(u, v) = M(u, v) = Min(u,v);  

b) X and Y are countermonotonic if and only if the 

associated copula is equal to its Fréchet-Hoeffding lower 

bound, that is, C(u, v) = W(u, v) = Max(u+ v –1, 0)  

c) X and Y are independent if and only if the associated 

copula is equal to the product copula, that is, C(u,v) = 𝛱 

(u,v)= uv.  

In the following theorems and corollaries, it is assumed 
that  and  are continuous random variables and related via a 
function f(.), that is, Y=f(X), where (⋅) is continuous and 

differentiable over the range of .   

Theorem 2: Let X and Y be two continuous random 
variables such that Y = f(X) almost surely, and let C(u,v) be 
the copula value for the pair (x,y). The function f(.) has a 
global maximum at (x1, ymax) with a copula value C(u1,v1) or a 
global minimum at (x2, ymin) with a copula value C(u2,v2) if 
and only if  

a)  C(u1, v1) = M(u1, v1) = W(u1 , v1 )= 𝛱(u1 , v1)= u1;    (1) 

b)  C(u2, v2) = M(u2, v2) = W (u2, v2 ) = (u2 , v2)=0.     (2) 

 
The proof of Theorem 2 is given in the appendix. For a 

general definition of the copula, the reader is referred to 
Nelsen [13]. 

Corollary 1: Let X and Y be two continuous random 
variables such that Y = f(X), almost surely. If f(.) is a periodic 
function, then (1) and (2) holds true at all the global maxima 
and global minima, respectively.  

The proof of Corollary 1 directly follows from Theorem 2.  
This corollary is demonstrated in Fig. 1, which displays the 
graph of the projections on the (u, C(u,v)) plane of the 

empirical copula C(u,v) associated with a pair (X,Y), where X 
is uniformly distributed over [-1, 1], and Y = sin(2πX). It is 
observed that at each one of the four optima of the sine 
function, C(u,v) = M(u,v) = W(u,v) = 𝛱(u,v). 

 
Fig. 1. Graph (in blue dots) of the projections on the (u, C(u,v)) plane of the 

empirical copula C(u,v) associated with a pair of random variables (X, Y), 

where X ~ U(-1,1) and Y= sin(2π X). The u coordinates of the data points are 

equally spaced over the unity interval.  Similar graphs are shown for the 
M(u,v), W(u,v) and π (u,v) copulas. 

Theorem 3: Let X and Y be two continuous random 
variables such that Y = f(X), almost surely where f(.) has a 
single optimum and let C(u,v) be the copula value for the pair 
(x,y). Then, C(u,v) = M(u,v) if and only if df(x)/dx ≥ 0 and 
C(u,v)=W(u,v) otherwise.  

The proof of Theorem 3 is provided in the appendix. 
Theorem 3 is illustrated in Fig. 2. 

III. THE RELATIVE DISTANCE FUNCTION 

A metric of proximity of the copula to the upper or the 
lower bounds with respect to the Π copula is defined and its 
properties are investigated.   

Definition 4: The relative distance function,  (C,(u,v)): 
[0,1]   [0,1], is defined as   

a)   (C ,(u,v)) = (C (u,v) – uv)/(Min(u,v) - uv) if C (u,v) ≥ uv ;   

b)  (C,(u,v)) = (C(u,v) – uv)/(Max(u+v –1,0) –uv) if 

C(u,v)<uv.     
A graphical illustration for the relative distance is shown 

in Fig. 3.  

Theorem 4:  (C,(u,v)) satisfies the following properties:  

a) 0 ≤   (C,(u,v)) ≤ 1 for all (u,v)   I2
;  

b)  (C,(u,v)) = 0 for all (u,v)   I2
 if and only if C(u,v) = 

uv;   

c) If Y = f(X) almost surely, where f(.) is monotonic, 

then   C(u,v)) = 1 for all (u,v)   I2;   

d) If Y = f(X) almost surely, then   C(u,v)) = 1 at the 

global optimal points of  f(.).   

Proof: Property a) follows from Definition 5 and (3) while 
properties b), c) and d) follow from Definition 5 and 
Theorem 1 and 2.     

Corollary 2: If Y = f(X) almost surely, where (⋅) has a 
single optimum, then  (C,(u,v)) = 1 for all (u,v)   I2

.  
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Fig. 2. Graph (blue circles) of the projections on the (u, C(u,v)) plane of 

C(u,v) associated with X ~ U(-5,5) and Y= f(X) = (X-1)2.  The u coordinates of 

the data points are equally spaced. The minimum of the function f (.) is 
associated with u = 0.6 and C(u,v) = 0. Similar graphs are shown for M(u,v) 

(dotted black), W(u,v) (dashed green), and (u,v) (solid red). Here, C(u,v) = 

W(u,v) for 0 ≤ u ≤ 0.6, which corresponds to  f ’(x)  ≤ 0, and C(u,v) = M(u,v) 
for 0.6 ≤ u ≤ 1, which corresponds to f ’(x)  ≥ 0. 

 

Fig. 3. Graph (blue circles) of the projections on the (u, C(u,v)) plane drawn 

from the Gaussian copula C(u,v) with 𝜌P = 0.5. Similar graphs are shown for 

M(u,v) (dotted black), W(u,v) (dashed green), and  (u,v) (solid red). The 

empirical relative distance function is given by   (C(u,v)) = d1/d2, where d1 is 
the distance from C(u,v) to Π(u,v) and d2 is the distance from M(u,v) to 

Π(u,v). 

Now, the question that arises is the following: Is   (C(u,v)) 
= 1 for all (u,v)   I2 

when there is a functional dependence 
with multiple optima, be they global or local? The answer is 
given by the following two theorems:    

Theorem 5:  If Y = f(X) almost surely where  (⋅) has at 
least two global maxima or two global minima and no local 
optima on the domain  = Range(X) x Range(Y), then there 
exists a non-empty interval of X for which   C(u,v)) < 1.

   

The proof of Theorem 5 is provided in the appendix. 

  Theorem 6:  If Y = f(X) almost surely, where (⋅) has a 

local optimum, then   C(u,v)) ≤ 1 at that point.
   

The proof of Theorem 6 is provided in the appendix. 

IV. THE COPULA STATISTIC  

The empirical copula is first defined; then, the copula 
statistic is introduced, and finally, an algorithm that 
implements it is provided.  One possible definition for the CoS 
is the mean of   C(u,v)) over I

2
, that is, CoS(X,Y) = E[  

(C(u,v))].  However, according to Theorems 5 and 6, CoS ≤ 1 
for functional dependence with multiple optima, which is not a 
desirable property. This prompts a better definition of the CoS 
based on the empirical copula as explained next. 

A. The Empirical Copula 

Let {(xi, yi), i=1,…, n, n ≥ 2} be a 2-dimensional data set 
of size n drawn from a continuous bivariate joint distribution 
function, H(x, y). Let Rxi and Ryi be the rank of xi and of yi, 
respectively. Deheuvels [22] defines the associated empirical 
copula as  

  (   )  
 

 
∑ (

 

   

   
   
 
≤        

   

 
≤  )       ( ) 

The empirical relative distance,   (Cn(u,v)), satisfies 
Definition 4 by replacing C(u,v) with the empirical copula 
given by (3). 

B. Defining the CoS Statistic for Bivariate Dependence  

Let X and Y be two continuous random variables with a 
copula C(u,v).  Consider the ordered sequence, x(1)≤ … ≤ x(n), 
of n realizations of X. This sequence yields u(1) ≤ … ≤ u(n) 
since ui = Rxi /n as given by (3). Let  be the set of m 
contiguous domains {𝔇𝑖, i = 1, … , m}, where each 𝔇𝑖 is a u-
interval associated with a non-decreasing or non-increasing 
sequence of Cn(u(i),vj), i = 1, … , n.. Let Ci

min
 and Ci

max
 

respectively denote the smallest and the largest value of Cn(u,v) 
on the domain 𝔇𝑖.  Let  i be defined as: 

    { 
                  𝑖 𝑢        ( )    𝔇         
 (  

   )   (  
   )

 
          𝑤𝑖                                   

(4) 

 
Definition 5: Let ni denote the number of data points in the 

i-th domain  , i = 1,…, m, while letting a boundary point 

belong to two contiguous domains, 𝔇𝑖 and 𝔇𝑖+1. Then, the 
copula statistic is defined as: 

𝐶  (   )   
 

     
∑      
 
                         (5) 

 
Corollary 3: The CoS of two random variables, X and Y, 

has the following asymptotic properties: 

a) 0 ≤ CoS(X,Y) ≤ 1;  

b) CoS(X,Y) = 0 if and only if X and Y are independent;   

c) If Y = f(X) almost surely, then CoS(X,Y) = 1.  

C. Algorithmic implementation of the Copula Statistic 

Given a two-dimensional data sample of size n, {(xj, yj), 
j=1,…, n,  n ≥ 2}, the  algorithm that calculates  the CoS 
consists of the following steps:  

1) Calculate uj, vj and Cn(u,v)  as follows: 

a. 𝑢   
 

 
∑  * 
       𝑥 ≤ 𝑥 +   
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b. 𝑣  
 

 
∑   
   *    𝑦 ≤ 𝑦 +;   

c. 𝐶 (𝑢 𝑣)  
 

 
∑   * 
   𝑢 ≤  𝑢 𝑣 ≤  𝑣+   

2) Order the xj’s to get x(1) ≤ … ≤ x(n), which results in 

u(1) ≤ … ≤ u(n) since 𝑢       ,  where     is the rank of xj;  

3) Determine the domains 𝔇 , i = 1, ... , m, where each 𝔇  
is a u-interval associated with a non-decreasing or non-

increasing sequence of Cn(u(j),vp), j = 1, … , n.  

4) Determine the smallest and the largest value of Cn(u,v), 

denoted by Ci
min

 and Ci
max

, and find the associated ui
min

 and 

ui
max

 for each domain 𝔇 , i = 1, … , m. 

5) Calculate   (𝐶 
   ) and  (𝐶 

   ); 
6) If  (𝐶 

   ) and  (𝐶 
   ) are equal to one, go to Step 8;  

7) Calculate the absolute difference between the three 

consecutive values of Cn(u(i),vj) centered at ui
min

 (respectively 

at ui
max

) and decide that the central point is a local optimum if 

(i) both absolute differences are smaller than or equal to 1/n; 

and (ii) there are more than four points within the two adjacent 

domains, 𝔇  and 𝔇   ; 

8) Calculate    given by (16); 

9) Repeat Steps 2 through 7 for all the m domains, 𝔇 , 
i = 1, … , m; 

10)  Calculate the CoS given by (17). 

V. STATISTICAL PROPERTIES OF THE COS  

The finite-sample bias of the CoS is analyzed for the 
independence case, then a statistical test of bivariate 
independence is developed.  

1) Finite-Sample Bias of the CoS   
Table 1 displays the sample means and the sample 

standard deviations of the CoS for independent random 
samples generated from three monotonic copulas. As observed, 
the CoS has a bias for small to medium sample sizes. Fig. 4(a) 
shows a bias curve given by 𝐶   = 8.05  −0.74, fitted to 19 
mean bias values for Gauss(0) using the least-squares method. 
It is observed that the CoS bias becomes negligible for a 
sample size larger than 500. Fig. 4(b) shows values taken by 
the sample standard deviation 𝜎  of CoS for increasing sample 
size, n, and for Gauss(0). A fitted curve obtained is also 
displayed; it is expressed as 𝜎  = 2.99  −0.81.   

2) Independence Test  
One common practical problem is to test the independence 

of random variables.  To this end, hypothesis testing can be 
applied to the CoS based on Corollary 3b). The goal is to test 

the null hypothesis, H0: the random variables are independent, 

against its alternative, H1. The CoS is standardized under H0 to 

get 

𝑧   
          

    
                                             (6) 

Where,  n0 and 𝜎n0 are the sample mean and the sample 
standard deviation of the CoS, respectively. Note that as 
observed in Fig. 4(a) and (b), for a number of samples n larger 
than 500,  n0 becomes negligible and 𝜎 n0 is approximately 
equal to 0.01. 

 Hypothesis testing consists of choosing a threshold c at a 
significance level   under H0 and then applying the following 

decision rule:  if  |𝑧  | ≤ c, accept H0; otherwise, accept H1. 
Table 2 displays Type-II errors of the statistical test applied to 
the CoS for Gauss(0) for sample sizes  ranging  from 100 to 
3000. It is observed that Type II-errors decrease as increases 
for a given n and sharply decrease with increasing n. 

TABLE I. SAMPLE MEANS AND SAMPLE STANDARD DEVIATIONS OF THE 

COS FOR THE GAUSSIAN, GUMBEL, AND CLAYTON COPULA IN THE 

INDEPENDENCE CASE 

n   

Gauss(0)        

𝜌P = 0  

Gumbel(1) 

𝜌S = 0  

Clayton(0) 

𝜌S = 0  

µn   n  µn  n  µn  n  

100  0.28  0.08  0.28  0.08  0.28  0.08  

500  0.08  0.02  0.08  0.03  0.08  0.02  

1000  0.04  0.01  0.04  0.01  0.05  0.01  

2000  0.02  0.01  0.02  0.01  0.02  0.01  

3000  0.02  0.01  0.02  0.01  0.02  0.01  

For monotonic dependence, simulation results show that 
CoS = 1 for all n ≥ 2.   For non-monotonic dependence, there 
is a bias that becomes negligible when the sample size is 
sufficiently large. As an illustrative example, Table 3 displays 
the sample mean,  n, and the sample standard deviation, 𝜎n, of 
the CoS for increasing sample size, n, for the sinusoidal 
dependence, Y = sin(a X). It is observed that as the frequency 
of the sine function increases, the sample bias, 1 –  n, 
increases for constant n.  

Table 4 displays  n and 𝜎 n of the CoS calculated for 
increasing n and for different degrees of dependencies of two 
dependent  random variables following the Gaussian copula. It 
is interesting to note that for n ≥ 1000, the CoS is nearly equal 
to the Pearson’s 𝜌  for the Gaussian copula and to the 
Spearman’s 𝜌  for other copulas. 

3) Bivariate Dependence  

 
(a) 
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(b) 

Fig. 4. (a) Bias mean values and (b) standard deviation values (red solid 

circles) for the CoS along with fitted curves (solid lines) using the least-
squares method for the independence case. 

TABLE II. TYPE-II ERRORS OF THE STATISTICAL TEST OF BIVARIATE 

INDEPENDENCE BASED ON COS FOR GAUSS(0) 

N µn0 𝝈𝒏𝟎 
Type-II error for 

𝜌n = 0.1 

Type-II error for 

𝜌n = 0.3 

100 0.28 0.08 97% 46% 

500 0.08 0.02 27% 0% 

1000 0.04 0.01 0% 0% 

2000 0.02 0.01 0% 0% 

3000 0.02 0.01 0% 0% 

TABLE III. SAMPLE MEANS AND SAMPLE STANDARD DEVIATIONS OF THE 

COS FOR THREE SINUSOIDAL FUNCTIONS OF INCREASING FREQUENCY 

N  

Sin(x)  Sin(5x)  Sin(14x)  

µn  𝜎n µn  𝜎n µn  𝜎n 

100  1.00  0.00  0.91  0.10  0.67  0.10  

500  1.00  0.00  0.99  0.03  0.88  0.07  

1000  1.00  0.00  1.00  0.01  0.96  0.04  

3000  1.00  0.00  1.00  0.00  1.00  0.01  

5000  1.00  0.00  1.00  0.00  1.00  0.00  

VI. COMPARATIVE STUDY 

In this section, bivariate synthetic datasets and multivariate 
datasets of breast tumor cells are analyzed. 

A. Synthetic Datasets  

In this section, the performances of the CoS, dCor, RDC, 
Ccor, and of the MICe for various types of statistical 
dependencies is compared. Székely et al. [11] define the 
distance correlation, dCor, between two random vectors, X 
and Y, with finite first moments as   

 𝐶  (   )  {

  (   )

√  ( )  ( )
         𝑣 ( )𝑣 ( )          

                            𝑣 ( )𝑣 ( )         
       (7) 

  
where 𝑣2( ,  ) is the distance covariance. Lopes-Paz et al. 

[9] define the RDC as the largest canonical correlation 
between k randomly chosen nonlinear projections of the 
copula transformed data.   Ding et al. [9], [10] define the 
copula correlation (Ccor) as half of the 𝐿1 distance between 
the copula density and the independence copula density. As 
for the MIC, it is defined by Reshef et al. [6] as the maximum 
taken over all x-by-y grids G up   to  a   given grid resolution, 
typically x y  <  n

0.6
, of the empirical standardized mutual 

information, 𝐼𝐺(𝑥, 𝑦)/log (min {𝑥, 𝑦}), based on the empirical 
probability distribution over the boxes of a grid G.   Formally,  

 𝐼𝐶(   )      *
  (   )

    (    *   +)
+ .                    (8) 

 

1) Bias Analysis for Non-Functional Dependence  
A bias analysis is performed for the MICe, the Ccor, the 

CoS, the RDC, and the dCor and using three data samples 
drawn from a bivariate Gaussian copula with 𝜌𝑃( ,  ) = 0.2, 
0.5 and 0.8, which models a weak, medium and strong 
dependence, respectively. 

TABLE IV. SAMPLE MEANS AND SAMPLE STANDARD DEVIATIONS OF THE 

COS  FOR THE NORMAL COPULA 

N  Gauss(0.1)  
𝜌   = 0.1   

     Gauss(0.3)            
        𝜌 = 0.3         

µn  𝜎n  µn  𝜎n 

100  0.33  0.09  0.49  0.09  

500  0.14  0.05  0.36  0.05  

1000  0.11  0.03  0.33  0.04  

2000  0.09  0.02  0.32  0.03  
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The sample sizes range from 50 to 2000, in steps of 50. 
From Fig. 5, it is observed that unlike the MICe and Ccor, the 
CoS, RDC, and the dCor are almost equal to for large sample 
size. 

2) Functional  Dependence  
Another series of simulations are conducted to compare 

the performance of the MICe, the Ccor, the CoS, the RDC, and 
the dCor when they are applied to four data sets drawn from 
an affine, polynomial, periodic, and circular bivariate 
relationship with an increasing level of white Gaussian noise. 
Described in [23], the procedure is executed with N = n = 
1000, where n is the number of realizations of a uniform 
random variable X and N is the number of times the procedure 
is executed. 

It is inferred from Table 5 that while the CoS, dCor, Ccor 
steadily decrease as the noise level p increases, the MICe 
sharply decreases as p grows from 0.5 to 2 and then reaches a 
plateau for p > 2. The RDC also decreases steadily with an 
increase in noise level for the functional dependencies 
considered, except for the quadratic dependence where it 
maintains a high power even under heavy noise level.   

3) Ripley’s Forms and Copula’s Induced Dependence  
Table 6 reports values of the MICe, the Ccor, the CoS, the 

RDC, and the dCor for Ripley’s forms, and copula-induced 
dependencies for a sample size n = 1000 averaged over 1000 
Monte-Carlo simulations. The values of the Spearman’s 𝜌S for 
Gumbel(5), Clayton(-0.88), Galambos(2), and BB6(2, 2) 
copulas are calculated using the copula and the CDVine 
toolboxes of the software package R. As for the four Ripley’s 
forms displayed in Fig. 6, a linear congruential generator 
using the Box-Muller transformation is used to generate 

several bivariate sequences with nonlinear dependencies. 

Table 6 shows that the CoS, MICe, RDC, and Ccor 
correctly reveal some degree of nonlinear dependence for  
Ripley’s form 2, with the Ccor detecting the highest level of 
dependence and the dCor the lowest level. It is observed that 
the Ccor is the only metric to correctly reveal some degree of 
nonlinear dependence for Ripley’s form 3. 

Furthermore, unlike the MICe values, the dCor and the 
CoS values are very close to the Pearson’s 𝜌P value for the 
Gaussian copula and to the Spearman’s ρS values for the 
Gumbel, Clayton, Galambos and BB6 copulas. 

B. Statistical Power Analysis  

Finally, following Simon and Tibshirani [23], the power of 
the statistical tests based on the CoS, dCor, RDC, TICe, and 
the Ccor for bivariate independence subject to increasing 
additive Gaussian noise levels is tested. Six noisy functional 
dependencies at a noise level p ranging from 10% to 300% are 
considered. They include a linear, a quadratic, a cubic, a 
fourth-root, a sinusoidal, and a circular dependence. The 
results are shown in Fig. 7. 

 

(a) 

 
(b) 

 
(c) 

Fig. 5. Bias curves of the CoS, MICe, dCor, RDC, and Ccor for the bivariate 

Gaussian copula with  𝜌𝑃( , ) =0.2, 0.5 and 0.8, which are displayed in a), b), 
and c), respectively, and for sample sizes that vary from 50 and 2000 with 

steps of 50. 
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TABLE V. SAMPLE MEANS OF THE COS, DCOR AND THE MICE FOR 

SEVERAL DEPENDENCE TYPES AND ADDITIVE NOISE LEVELS 

Noise level  p 
Type of  dependence 

0.5  1  2  3  

  
Affine: Y = 2X+1  

CoS  0.86  0.72  0.41  0.29  

dCor  0.91  0.71  0.46  0.35  

MICe  0.88  0.46  0.26  0.22  

RDC  0.95  0.74  0.60  0.59  

Ccor  0.63  0.47  0.34  0.30  

  

4th-order Polynomial:  
Y=(X 2 –0.25)(X 2 – 

1)  

CoS  0.64  0.41  0.29  0.26  

dCor  0.41  0.35  0.31  0.30  

MICe  0.79  0.54  0.49  0.48  

RDC  0.95  0.93  0.92  0.91  

Ccor  0.72  0.63  0.60  0.59  

  
Periodic: Y = cos(X)  

CoS  0.53  0.46  0.28  0.23  

dCor  0.35  0.27  0.17  0.13  

MICe  0.78  0.40  0.22  0.19  

RDC  0.85  0.67  0.43  0.36  

Ccor  0.57  0.41  0.29  0.26  

C. Feature Selection Applied to Breast Cancer Data 

In order to reduce computation time, improve prediction 
performance and reducing irrelevant data in machine learning 
applications, the feature selection presents the all-important 
step required to choose the optimal subset of data. 

The dependent variables provide useless information about 
the classes and thus serve as noise for the predictor. The rule 
of thumb here is that best feature selection must include 
independents features that have a strong dependence with the 
class or the label considered. The dimensionality reduction is a 
part of most known methods in machine learning such as filter, 
wrapper end embedded methods. Pearson correlation 
coefficient and mutual information are largely used in feature 
selection; nevertheless, the results are still unsuitable. A 
serious alternative here is using the CoS index to work out the 
feature selection problem.  

A useful data for this purpose is the Wisconsin Diagnostic 
Breast Cancer (WDBC) data, available on UCI machine 
learning repository. The extraction of breast tumor tissue is 
performed using a fine needle aspiration (FNA). The 
procedure begins by obtaining a small drop of the fluid in 
hand by examining the characteristics of individual cells and 
important contextual features such as the radius of the nucleus, 
the compactness, the smoothness, among others. 

A dataset of 569 cells (malignant and benign) and 30 input 
features is obtained [24]. Among the 30 features, 20 
considered are computed from the others; hence, only 10 
features are considered as initial subset. Table 6 reports the 
CoS measures for all pairwise feature dependence. 

 
Fig. 6. Plots of four Ripley’s forms generated using a linear congruential 

generator followed by the Box-Muller transformation.  The parameters of the 

congruential generator, xi + 1 = (a xi + c) modulo M, are as follows: Form 1: 

a = 65, c = 1, M = 2048; Form 2: a =  1229, c = 1, M = 2048;  Form 3: a =  5, 
c = 1, M = 2048;  Form 4: a = 129, c = 1, M = 264. 

TABLE VI. DEPENDENCE INDICES FOR COPULA DEPENDENCIES AND 

RIPLEY’S FORMS 

Type of 

Dependence  
CoS  dCor  MICe  RDC  Ccor  

Ripley’s form 1  0.01  0.02  0.02  0.02  0.01  

Ripley’s form 2  0.52  0.19  0.42  0.42  0.84  

Ripley’s form 3  0.14  0.08  0.12  0.13  0.26  

Ripley’s form 4  0.03  0.04  0.03  0.08  0.09  

Gaussian(0.1)  0.11  0.10  0.04  0.13  0.10  

Gumbel(5) 0.92  0.93  0.72  0.96  0.62  

Clayton(-0.88) 0.90  0.87  0.68  0.88  0.75  

Galambos(2) 0.82  0.79  0.48  0.86  0.42  

BB6(2,2) 0.84  0.83  0.57  0.92  0.48  

Using 0.90 as a threshold to decide a total dependence, the 
subset is reduced to only 7 features. If the choice is spanned to 
a threshold of 0.85, the subset length is further reduced to five 
features [25]. Fig. 8 displays the scatters of the final subset 
empirical copulas while Fig. 9 displays the heat maps. 
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Fig. 7. Displays the power of the tests calculated using a collection of N = 500 data samples, each of size n = 500, for a significance level   = 5% under the null 
hypothesis. As observed from that figure, the CoS is a powerful measure of dependence for the linear, cubic, circular and rational dependence. 

TABLE VII. COS VALUES FOR BIVARIATE DEPENDENCE BETWEEN FEATURES 

 

 Radius Texture Perimeter Area Smooth Compact Concav Nbrconcav Sym Fractal 

Radius 1 0.23 0.99 0.99 0.37 0.33 0.60 0.72 0.18 0.41 

Texture - 1 0.24 0.25 0.18 0.27 0.26 0.21 0.17 0.18 

Perimeter - - 1 0.99 0.40 0.40 0.60 0.78 0.17 0.33 

Area - - - 1 0.37 0.30 0.61 0.75 0.15 0.43 

Smooth - - - - 1 0.80 0.75 0.74 0.72 0.85 

Compact - - - - - 1 0.88 0.84 0.76 0.84 

Concav - - - - - - 1 0.93 0.67 0.64 

Nbrconcav - - - - - - - 1 0.56 0.48 

Sym - - - - - - - - 1 0.71 

Fractal - - - - - - - - - 1 
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(a)                                                                                                                                (b) 

Fig. 8. Scatters of empirical copulas for a) the final feature subset except the perimeter and for b) the final subset, where the CoS values are respectively 0.27 and 

0.26. 

 
(a)                                                                                                                  (b) 

Fig. 9. Heat maps of empirical copulas for a) the final feature subset except the perimeter and for b) the final subset, CoS values are respectively 0.27 and 0.26.

VII. CONCLUSIONS AND FUTURE WORK 

A new reliable statistic for multivariate nonlinear 
dependence has been proposed and its statistical properties 
unveiled.  In particular, it asymptotically approaches zero for 
statistical independence and one for functional dependence.  
Finite-sample bias and standard deviation curves of the CoS 
have been estimated and hypothesis testing rules have been 
developed to test bivariate independence.  The power of the 
CoS-based test has been evaluated for noisy functional 
dependencies. Monte Carlo simulations show that the CoS 
performs reasonably well for both functional and non-
functional dependence and exhibits a good power for testing 
independence against all alternatives. Good performance of 
the CoS was proved also with other application. Note that the 
code that implements the CoS is available on the GitHub 
repository.

1
 As a future research work, the self-equitability of 

the CoS and other metrics will be assessed under various noise 
probability distributions and the robustness of the CoS to 

                                                 
1 https://github.com/stochasticresearch/copulastatistic  

outliers will be investigated. Furthermore, the CoS will be 
applied to common signal processing and more machine 
learning problems, including data mining, cluster analysis, and 
testing of independence. Another interesting property of the 
CoS that is not shared by the MICe, RDC, Ccor, and the dCor 
is its ability to measure multivariate dependence. This 
property will be investigated as a future work. 
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APPENDIX 

In this appendix, Lemma 1 is stated and proved and then the proofs of 

Theorems 2, 3, 5, and 6 are provided. 

Lemma 1: Let X and Y be two continuous random variables with copula 
C(F1(x),F2(y)) = H(x,y) = P(X ≤ x,Y ≤ y). Then it follows: 

a)  P(X  ≤  x, Y > y) = F1(x)  –  C(F1(x), F2(y));  (9)  

b) P(X > x, Y ≤ y) = F2(y)  –  C(F1(x), F2(y));   (10) 
c)  P(X > x, Y > y) =1 – F1(x) – F2(y) + C(F1(x), F2(y)). (11) 

Proof of Lemma 1: Partition the domain 𝔇 = Range(X) x Range(Y) of the 

joint probability distribution function, H(x,y), into four subsets, namely 

𝔇  * ≤ 𝑥  ≤ 𝑦+ , 𝔇  * ≤ 𝑥   𝑦+ , 𝔇  *  𝑥  ≤ 𝑦+  and 

𝔇   *  𝑥   𝑦+. Then it follows : 

P(X  ≤  x, Y ≤ y) + P(X  ≤  x, Y > y) + P(X  > x, Y ≤ y) + P(X  >  x, Y > y) =1.          

 (12) 
It also follows   

P(X  ≤  x, Y ≤ y) + P(X  ≤  x, Y > y) =   P(X  ≤  x),  (13) 

which yields (9), and   
P(X  ≤  x, Y ≤ y) + P(X  >  x, Y ≤  y) = P(Y  ≤  y), (14) 

which yields (10).  Substituting the expressions of P(X  ≤  x, Y > y) given by 

(9) and of P(X > x, Y ≤ y) given by (10) into (12) produces (11).   

Proof of Theorem 2: a) Under the assumption that Y = f(X), suppose that 

(x1, ymax) is a global maximum of f(.). Then, by definition 
C(F1(x1), F2(ymax)) = P(X ≤ x1, Y ≤ ymax) = P(X ≤ x1), implying that C(u1,1) = 

u1. Additionally, Min(u1,v1) = Min(u1, 1) = u1  and Max(u1,v1) = Max(u1 +1 –
1, 0) = u1, from which (1) follows. To prove the converse under the 

assumption that Y = f(X), suppose that there exists a pair (u1, v1) such that 

C(u1, v1) = M(u1, v1) = W(u1 , v1 )=  𝛱 (u1 , v1)= u1. It follows that v1 = 1, 
which implies that C(u1,1) = u1 and C(F1(x1), F2(ymax)) = P(X ≤ x1, Y ≤ ymax), 

that is, (x1, ymax) is a global maximum of f(.). 

  

b) Suppose that Y = f(X) and (x2, ymin) is a global minimum. Then, by 

definition C(F1(x2),F2(ymin)) = P(X ≤ x2, Y ≤ ymin) = 0, implying that 
C(u2,0) = 0. Additionally, W(u2,v2) = min(u2,0) = 0, and 

M(u2, v2) = max(u2 +0 -1,0) = 0, from which (2) follows.  To prove the 

converse under the assumption that Y = f(X)., suppose that there exists a pair 

(u2, v2) such that C(u2, v2) = M(u2, v2) = W (u2, v2 ) = 𝛱(u2 , v2)= u2 v2 = 0. It 
follows that either u2  = 0, or v2 = 0, or u2  = v2 = 0. Consider the first case 

where u2  = 0. It follows that C(0, v2) = 0, implying that C(F1(x2min), 

F2(y2)) = P(X ≤ x2min, Y ≤ y2) = 0. This means that (x2min, y2) is a global 
minimum of f(.). Consider the second case where v2  = 0. It follows that C(u2, 

0) = 0, implying that C(F1(x2min), F2(y2)) = P(X ≤ x2, Y ≤ y2min) = 0. This means 

that (x2, y2min) is a global minimum of f(.).  Consider the third case where u2  = 
v2  = 0. It follows that C(0, 0) = 0, implying that C(F1(x2min), F2(y2 

min)) = P(X ≤ x2 min, Y ≤ y2min) = 0. This means that (x2min, y2 min) is a global 

minimum of f(.).   

Proof of Theorem 3: Suppose that Y = f(X) almost surely, where f(.) has 

a single optimum, which is necessarily a global one. Denote by    and    the 
non-increasing and the non-decreasing line segments of f(.), respectively. 
Note that f(.) may have inflection points but may not have a line segment of 

constant value because otherwise Y will be a mixed random variable, violating 

the continuity assumption.  Let A denote a point with coordinate (x,y) of the 

function f(.). Consider the four subsets 𝔇  * ≤ 𝑥  ≤ 𝑦+ , 𝔇  
* ≤ 𝑥   𝑦+ , 𝔇  *  𝑥  ≤ 𝑦+  and 𝔇   *  𝑥   𝑦+ . Suppose 

that A is a point of   . As shown in Fig. 10(a), either 𝔇     * +  or 

𝔇        depending upon whether f(.) has a global minimum or a global 
maximum point, respectively. In the former case, P(X ≤ x, Y ≤ y) = 0, 

implying that C(u,v) = 0, while in the latter case, P(X > x, Y > y) = 0, implying 
from (9)  that C(u, v) = u + v – 1 ≥ 0. Combining both cases, it follows that 

for all (x, y)    , C(u,v) = Max(u + v – 1, 0). 

Now, suppose that A is a point of   . As shown in Fig. 10(b), either 

𝔇     * +  or 𝔇        depending upon whether f(.) has a global 
maximum or a global minimum point, respectively. In the former case, 

P(X ≤ x, Y > y) = 0, implying from (7) that C(u,v) = u while in the latter case, 

P(X > x, Y ≤ y) = 0, implying from (8) that C(u, v) = v. Combining both cases, 

it follows from (3) that for all (x,y)    , C(u,v) = min(u,v).   

Proof of Theorem 5: Suppose that Y = f(X) almost surely, where f(.) has 

at least two global maxima and no local optima. As depicted in Fig. 11(a), let 

  and 𝐶 be two global maximum points of f(.) with coordinates (xB, ymax) and 

(xC, ymax), respectively. This means that there exists   𝑥    such that 

 (𝑥   𝑥)  𝑦    and  (𝑥   𝑥)  𝑦   . Consider a point   with 

coordinate (𝑥  𝑦 ) such that 𝑥  𝑥   𝑥    𝑥,   (𝑥 −  𝑥)  𝑦  𝑦    

and  (𝑥 −  𝑥)  𝑦  𝑦   . Denote by    and    the line segments of f(.) 

defined over the intervals , (𝑥 −  𝑥) 𝑦   -  and , (𝑥 −  𝑥) 𝑦   - , 
respectively, which are shown as solid lines in Fig. 11(a).  Partition the 

domain 𝔇 into four subsets, 𝔇  * ≤ 𝑥   ≤ 𝑦 +, 𝔇  * ≤ 𝑥    𝑦 +, 
𝔇  *  𝑥   ≤ 𝑦 +  and 𝔇   *  𝑥    𝑦 + .  As observed in Fig. 

12(a), 𝔇     * +   , 𝔇      , 𝔇      , and 𝔇      , 
yielding C,(u,v)) < 1.  A similar proof can be developed for the case where 

f(.) has at least two global minima and no local optima.  

http://dl.acm.org/citation.cfm?id=2577699&CFID=718247912&CFTOKEN=38950278
http://dl.acm.org/citation.cfm?id=2577699&CFID=718247912&CFTOKEN=38950278
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Proof of Theorem 6: Suppose that Y = f(X) almost surely, where f(.)  has 

a local minimum point, say point A of coordinates (𝑥  𝑦 ) as shown in Fig. 

11(b). This means that there exists   𝑥     such that  (𝑥   𝑥)  𝑦 . As 

depicted in Fig. 11(b), let     and     denote the line segments of f(.) defined 

over 𝑥 −  𝑥  and 𝑥   𝑥 , respectively. Consider the four domains, 𝔇  
* ≤ 𝑥   ≤ 𝑦 + , 𝔇  * ≤ 𝑥    𝑦 + , 𝔇  *  𝑥   ≤ 𝑦 +  and 

𝔇   *  𝑥    𝑦 + . As observed in Fig. 11(b), 𝔇        and 

𝔇       . Now, because A is by hypothesis a local minimum point, there 

exist line segments of f(.) denoted by   such that f(y) < yA.  Consequently, one 

of the following three cases arises: either 𝔇    * +    and 𝔇      as 

depicted in Fig. 11(b), or 𝔇    * +    and 𝔇     , or 𝔇    * +  
  and 𝔇     . In the first case, C,(u,v)) < 1 while in the last two 
cases, C,(u,v)) = 1.  A similar proof can be developed for f(.) with a local 

maximum point.   

 

Fig. 10. Graphs of a function Y = f(X) having a single optimum. A point A 

with coordinate (x,y) is located either on the non-increasing part,   , shown as 

a solid line in (a) or on the non-decreasing part,   , shown as a dashed line in 

(b) of the function f (.). Four domains, 𝔇 , …, 𝔇 , are delineated by the 
vertical and horizontal lines at position X = x and Y = y, respectively. 

 
(a)                                          (b) 

Fig. 11.  (a) The graph of a function Y = f(X) having two global maximum 

points denoted by B and C, and one global minimum point, with two solid line 

segments denoted by    and   . (b) The graph of a function Y = f(X) having 
one local minimum point denoted by A, with line segments denoted by SA1, 

SA2, and S. Four domains, 𝔇 , …, 𝔇 , are delineated by the vertical and 

horizontal lines at position X = xA and Y = yA, respectively. 
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