
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

220 | P a g e

www.ijacsa.thesai.org

Network Traffic Classification using Machine

Learning Techniques over Software Defined

Networks

Mohammad Reza Parsaei, Mohammad Javad Sobouti, Seyed Raouf khayami, Reza Javidan

Department of Computer Engineering and Information Technology

Shiraz University of Technology (SUTECH), Shiraz, Iran

Abstract—Nowadays Internet does not provide an exchange

of information between applications and networks, which may

results in poor application performance. Concepts such as

application-aware networking or network-aware application

programming try to overcome these limitations. The introduction

of Software-Defined Networking (SDN) opens a path towards the

realization of an enhanced interaction between networks and

applications. SDN is an innovative and programmable

networking architecture, representing the direction of the future

network evolution. Accurate traffic classification over SDN is of

fundamental importance to numerous other network activities,

from security monitoring to accounting, and from Quality of

Service (QoS) to providing operators with useful forecasts for

long-term provisioning. In this paper, four variants of Neural

Network estimator are used to categorize traffic by application.

The proposed method is evaluated in the four scenarios:

feedforward; Multilayer Perceptron (MLP); NARX (Levenberg-

Marquardt) and NARX (Naïve Bayes). These scenarios

respectively provide accuracy of 95.6%, 97%, 97% and 97.6%.

Keywords—Software defined networks; openflow; traffic

classification; neural network; multilayer perceptron

I. INTRODUCTION

SDN is a new paradigm in telecommunications and
computer networks. The main goal of SDN is to meet
challenges existing in IP-based networks, such as complex
management. In today’s networks, administrators must apply
many overwhelming changes to the network configurations in
case of a little change in network policies, rules or topology,
testing new protocols, to have a dynamic network management
[1]-[4]. SDN as a comprehensive concept separates data plan
(which is responsible for forwarding data packets) and control
plan (which is responsible for routing, traffic engineering, and
management policies) to confront limitations and challenges of
today’s networking [5]-[8]. Fig. 1 shows SDN architecture.
OpenFlow (OF) protocol is one of the most important and
practical communication protocols, which enables controller to
interact with the network switches. This protocol is a standard
interface that is used mostly in SDN. OF switches contain one
or multiple flow tables with flow entries. Each entry consists of
paired rules and actions. The tables are filled by the controller.
Each rule consists of fields related to headers data, such as
source and destination MAC and IP addresses, port numbers
and other necessary information. Each action determines
instruction(s) to be executed on the packet in order to match
the entry’s rule [9]-[10].

Fig. 1. SDN architecture.

Separation of data plan and control plan, gives ability to
network administrators to make programmable policies and
easily manage data plan via the controller [11]. SDN also
makes it easy to have a dynamic management, configuration,
troubleshooting and even testing new protocols and ideas in the
network without troubles [12]. An important case in network
management for having high availability and efficiency is
traffic classification. There are methods for applying traffic
classification in networks [13]:

 Using port numbers to determine application and
application layer protocols. However, these methods are
not completely accurate.

 Deep Packet Inspection (DPI) is used. These methods
have high accuracy, however, there are some issues
regarding its implementation while dynamic ports and
encrypted traffics are not supported in current networks
yet. It also causes high overhead to the system and
violates user privacy.

These methods have their own problems, so, researches
have been recently focusing on machine learning techniques,
which take advantage of statistical properties for traffic
classification.

Although there are many challenges in current networks for
traffic classification, global view of controllers in SDN
improves network management while its concept is simple and
easy to use for extracting statistical data of network traffic from
switches [14].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

221 | P a g e

www.ijacsa.thesai.org

Hanigan et al. [15] used traffic classification methods based
on DPI to inspect flows over SDN to distinguish application
protocols in runtime. Their goal is to enable controller to
distinguish and isolate different application flows, managing
and programming flows to guaranty QoS for delay sensitive
applications. When the network is loaded, a great part of the
controllers’ processing resources must be dedicated to DPI
tools. Thus, the performance of the entire network is affected.

Arsalan et al. [16] proposed a framework to determine the
application type of existing flows in a wireless network, which
consist of several mobile devices connected to an OF switch. In
control plan, a machine learning-based trainer receives the
information. On the other hand, the OF switch gathers the
properties of different flows and sends them to the control layer
for creating a model for application layer recognition. After
model creation, when a host joins the network, the OF switch
sends the device flows properties to the traffic classification
model, based on the machine learning technique. Then, the
application of source flow is determined. The traffic
classification model is based on C5.0 decision tree algorithm.

Jang et al. [17] proposed a method that uses flows
properties, gathered in a dataset, as K-means algorithm input,
in learning phase, for clustering. These clusters are used to
implement a traffic classification model. The clusters with
similar features are aggregated based on the information
obtained from the content of the packets. Although the
accuracy rate of this method is 89 percent, it reduces the need
of investigating the packet contents and accurate diagnosis of
encrypted packets. Most researches present traffic
classification on a set of statistics from stored flows in an
offline manner. The high time complexity and processing
overhead are two challenges of online traffic classification.
Current approaches also cause an overwhelming overhead on
the system. The goal of this paper is to classify the traffic over
SDN using information in the header of packets received from
OF switches and statistics in the controller. By considering
protocol capabilities on extracting flows statistics and neural
networks variant such as feedforward, MLP, NARX
(Levenberg-Marquardt) and NARX (Naïve Bayes), a
framework for online traffic classification based on application
layer protocol is proposed. The overall accuracy of this model
in traffic classification for feed-forward, MLP, NARX
(Levenberg-Marquardt) and NARX (Naïve Bayes) algorithms
with value of 95.6%, 97%, 97% and 97.6%, respectively.

The highest accuracy of the previous methods was 94%
[18] but the accuracy of the proposed method is 97.6%.
Advantages of this method over current methods are low
processing overhead, low network overhead and low runtime
execution. The following sections of this paper are as follows:
Section 2 presents the proposed method for online traffic
classification in SDN. Section 3 provides the implementation
and performance evaluation of proposed method. Finally,
discuss and analyze the results in Section 4.

I. THE PROPOSED METHOD

In this paper, a new method is used for classification of
network traffic proportional to SDN architecture.

Fig. 2. The outline of the proposed method.

In such networks, all switches are connected to a central
controller that may be lower cost than current networks. The
protocol of each flow can be identified by classification of
traffic based on application layer in the level of control. Fig. 2
shows the outline of the proposed approach.

The proposed method consists of offline and online phases
that are as follows:

A. Offline phase

In offline phase, making data collection and model
classifier are discussed. This means that floodlight uses a web-
based graphical interface to connect users to the controller. We
use below URI to receive raw data of the required set of
training data to get statistics on all existing traffic flows in the
switches:

http://localhost:8080/wm/core/switch/All/flow/Json.

Information is extracted for each flow by the mentioned
URI. The structure of API data exchange is JSON. They are
identifiable after calling up information in the browser. The
flows are separated for using of massive data that obtained
from all flows in switches.

For this purpose used five attribute (IP source, IP
destination, the source port, the destination port, transport layer
protocol), which specifies a unique flow. In the next step, after
separating flows from each other, associated return flows with
them that are constituent a 2-way flow are combined and done
pre-processing on them for making a sample (a raw of sets of
training data). Eventually, each row of the training data set that
represents a two-way flow, contains the characteristics (see
Table 1). Last item the APPpro (application layer protocol)
represents a class variable in the training data set that is
completed manually.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

222 | P a g e

www.ijacsa.thesai.org

TABLE I. CHARACTERISTICS ASSOCIATED WITH EACH FLOW IN

TRAINING DATA SET

Description Attribute

Source IP srcIp

Destination IP dstIp

Transport Layer port in source SrcPort

Transport Layer port in destination DstPort

Transport layer protocol , flow reqPro

Transport layer protocol , backflow respro

The average size of the flow pockets reqAvgSz

The average size of the backflow pockets resAvgSz

Mean number of pockets per second on the flow reqPktperSec

Mean number of pockets per second on the

backflow
resPktperSec

Mean number of bytes per second on the flow reqBytperSec

Mean number of bytes per second on the backflow resBytperSec

Application layer protocol APPpro

A classification model is used after classification algorithm
on training data set, which is used to create traffic classification
module [19-21] for floodlight controller.

B. Online phases

In online phase, ML module that is added to floodlight
controller classifies the network traffic operation by the help of
developed model in offline phase. This means that received
statics flows in the switch and the application of layer protocol
obtains each of them. The results obtained this module and
management of bandwidth, security and management issues in
order to supply QOS goals provided for javaAPI and restAPI.
They order both of them are used to communicate with other
modules and applications. ML module evaluated in the four
scenarios which following algorithm is used:

1) Feed-forward Neural Network
In feed-forward neural network, connections between units

do not form a cycle so it is different from recurrent network.
Feed-forward network is the first and most simple type of
neural network algorithms. The flow of information always
moves forward from input to output. A supervised technique
called backpropagation is used to improve its performance. It
propagates backward from output to input in the network,
decreases errors and optimizes performance by correcting the
weight of edges, connected to nodes. The weights can be
corrected by Gradient Descent method using (1) for calculating
the change of each edge’s weight.

 - / i iW E W    (1)

In this equation ɳ is the learning rate which its value is
considered equal to 0.1. Also, the expected value is obtained
from (2), in which is the target value and is the perceptron’s
output.

 

 

2

2

 / 1/ 2

/ 1/ 2

)

 ()

 (

i d d d

i d d i i i

d d d i

Expected value w S t o

w S t S w x

S t o x

   

   

  

 (2)

2) Multilayer Perceptron (MLP)
MLP is a type of neural network, which maps a set of input

data to one or more output, based on learning from previous
samples. Because of its strong nonlinear approximation
behavior, MLP is the most useful model in neural networks and
is used almost in every scientific field. An MLP is consisting
of multi layers of nodes in a directive graph, in which each
layer is fully connected to the next layer. MLP also uses
backpropagation for training network. MLP is the modified
version of perceptron and can recognize nonlinear data [22].
Using gradient descent, find changes in each weight according
to (3), where is the output of the previous neuron and is
calculated by (4):

()
() ()

()
ji i

j

n
w n y n

v n





  


 (3)

- -1() tanh() () (1)iv

i i iy v v and y v e   (4)

Here Vi is the weighted sum of the input synapses. ()n in

(3) is calculated through (5) and the error in output node j in
the nth training example is calculated by (6), where d is the
target value and y is the value produced by the perceptron:

21
() ()

2
j

j

n e n   (5)

() () ()j i je n d n y n  (6)

3) Non-linear Autoregressive Exogenous Multilayer

Perceptron (NARX)
The NARX model is generally used for predicting time

series by approximation of nonlinear relationships between
exogenous variables and the predictor variable, as defined in
(7):

       

     

(1 , 2 ;

1 , 2

y t f x t x t x t d

y t y t y t d

    

   
 (7)

y(t) is the predictor variable and x(t) denotes the Exogenous
time series. Usually function f is a nonlinear polynomial. For
modeling function f in NARX, it is also possible to create a
dynamic MLP network by assuming in time t, d is the previous
variable of predictor variable and the predictor variable should
be accessible. This configuration is based on delay and is
without feedback, called open loop. This model is used for
one-step-ahead predictions, because the estimation is based on
previous knowledge of real past values for target series and is
not based on prediction that produces errors in results. In this
model two functions are used for learning:

 Levenberg-Marquardt Algorithm

One of the learning functions of this method is retrieved
from Levenberg-Marquardt Algorithm. This algorithm is a way
to find the minimum of a nonlinear polynomial function and is
a standard method for solving Minimum Square of nonlinear
function problem. This algorithm is used to minimize square
curve fitness problem. The β parameter in the curve model of

 ,f x  is from experimental data set of dependent and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

223 | P a g e

www.ijacsa.thesai.org

independent variables  ,i ix y , which sum of their square of

derivation is minimum, as shown in (8):

   
2

1

arg min arg minˆ ,
m

i i

i

S y f x  


     (8)

In each step of iteration, the β parameter vector is replaced
with a new approximate value of   . For calculation, the

functions f are estimated by linearization as in (9). In this

equation iJ is the gradient of function f with respect to β which

calculated as in (10):

(x ,) (,)i i if f x J      (9)

(,)i

i

f X
J









 (10)

The sum of squares ()S  at its minimum has a zero

gradient with respect to β. Equation (11) shows the first

approximation of (,)if x   and its vector notations are in

(12):

2

1

() ((,))
m

i i i

i

S y f x J   


    (11)

2() || f() ||

[y f() J] [y f() J]

[y f()] [y f()]

[y f()] (J) [y f()]

[y f()] [y f()]

2[y f()] .

T

T

T T

T T T

T T T

S y J

J

J J

J J J

   

   

 

   

   

   

    

    

  

   

   

 

 (12)

Equation (13) is obtained from setting the derivation of

 S   to zero:

() [- ()]T TJ J J y f  (13)

In this equation, iJ is the ith row of the Jacobian matrix

and iY and  ,if x  are the ith component of Y and f vectors

respectively. Levenberg's contribution is to replace this
equation by a "damped version" as show in (14):

() [()]T TJ J I J y f     (14)

Besides, Marquardt replaced the identity matrix “I” with
diagonal matrix consist of diagonal elements of J

T
J, resulting in

Levenberg–Marquardt algorithm as in (15):

[()] [()]T T TJ J diag J J J y f     (15)

 Naïve Bayes

Another learning function is from Naïve Bayes classifiers
family, which do classifies using Bays probability theorem.
Naïve Bayes is a common technique for creating classifiers.
One of its positive points is its efficiency in solving probability
problems. It is also very flexible and needs only a few learning

data for estimating the required parameters [23]. The
mathematical form of Bayes theorem is as (16):

() (|)
(|)

()

k k

k

p C p x C
p C x

p x
 (16)

II. PERFORMANCE EVALUATION

A SDN network with one software switch, one controller
and two hosts, is configured for our experiments. In order to
implement software defined networks, OVS (open v Switch)
was considered as OF switch and Floodlight was considered as
the controller. Open v Switch is an open source; apache 2.0-
licensed virtual switch which is developed under Linux kernel.
Floodlight is an open source, apache licensed controller, which
developed by using Java platform. A topology as shown in
Fig. 3 is set for performance evaluation.

Fig. 3. Scenario topology which evaluated in the laboratory.

TABLE II. SYSTEM DESCRIPTION

Controller and hosts

CPU Core i7

RAM 16 GB

OS Ubuntu 14.10

Controller version Floodlight v 9.0

Switch

CPU Core i5

RAM 8 GB

OS Ubuntu 14.10

OVS version 2.0.1

There are four systems in this figure, from left to right: the
first system is an OF switch (it is converted to OF switch by
installing ovs on it). The second and third systems are the first
and second clients. The last system is the controller. The
systems’ configurations are shown in Table 2.

After setting up the topology, the host stablishes FTP and
HTTP connections for downloading files and video streams,
text messaging, peer to peer connection with BitTorrent client,
downloading and uploading file parts to/from other hosts
simultaneously and aggregates statistics related to these flows.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

224 | P a g e

www.ijacsa.thesai.org

So, the case study protocols for this scenario are FTP,
HTTP, instant messaging, video streaming and peer to peer
protocol. Sampling of the flows is done 20 times in 1 second
intervals.

In all scenarios, sampling from switch statistics (extracting
required data from switch’s flow tables) is done 6000 times to
collect about 65000 data records. After data aggregation and
preprocessing of flows statistics, a data set with 600 records is
obtained.

After that the different flow class variable is manually set
in the learning data set, and finally the data is converted to
CSV format, for creating traffic classification model. Final
Model is converted to java code for using as a traffic classifier
module in online phase. Results in details are provided in the
Fig. 4 to 7.

0.97

0.96 0.96

0.99

0.98

0.96

0.95 0.95 0.95

0.97

0.9

0.92

0.94

0.96

0.98

1

Instant

Message

Stream P2P HTTP FTP

TP Rate Accuracy

Fig. 4. The result of the Feedforward algorithm.

0.95

1

0.97

0.96

0.97

0.98

1

0.96

0.95

0.96

0.9

0.92

0.94

0.96

0.98

1

Instant

Message

Stream P2P HTTP FTP

TP Rate Accuracy

Fig. 5. The result of the MLP algorithm.

0.98

0.96

0.97

0.98

0.91

0.97

0.98

0.96

0.97 0.97

0.9

0.92

0.94

0.96

0.98

1

Instant

Message

Stream P2P HTTP FTP

TP Rate Accuracy

Fig. 6. The result of the NARX (Levenberg-Marquardt) algorithm.

0.98

0.96

0.95

0.97 0.970.97

0.98

0.97

0.98 0.98

0.9

0.92

0.94

0.96

0.98

1

Instant

Message

Stream P2P HTTP FTP

TP Rate Accuracy

Fig. 7. The result of the NARX (Naïve Bayes) algorithm.

III. CONCLUSION

The proposed method in this paper is used for application
recognition of flows resources with the help of SDN and data
mining techniques based on machine learning. Applying traffic
classification techniques to the OF network makes the network
be application-aware, and enables the network to know flow’s
requirements. Due to maintaining a global view of the network,
the controller could dynamically allocate bandwidth to flows
on demand and thus improve their QoS and the analysis and
prediction of traffic patterns in network make the controller
further optimize resource allocation. This method mainly
focused on minimizing controllers’ processing overhead and
network traffic overhead for network traffic classification. The
accuracy of tested class variables in our experiments for
feedforward, MLP, NARX (Levenberg-Marquardt) and NARX
(Naïve Bayes) algorithms are 95.6%, 97%, 97% and 97.6%
respectively. The highest accuracy of the previous methods
was 94% but the accuracy of the proposed method is 97.6%.
Also, the proposed method does not impose any processing
overhead to the controller because unlike the base method,
packets’ contents are not checked. Our on-going and future
works include implementations on different device platforms
(iOS, Windows, Linux) and detection of flows belonging to a
new application which is not part of the trained classifier.

REFERENCES

[1] C. Trois, M. D. Del Fabro, L. C. de Bona, M. Martinello, “A survey on
SDN programming languages: toward a taxonomy,” IEEE
Communications Surveys and Tutorials, vol. 18, no. 4, pp. 2687-2712,
2016.

[2] B. A. A. Nunes, M. Mendonca, X. N. Nguyen, K. Obraczka, T. Turletti,
“A survey of software-defined networking: Past, present, and future of
programmable networks,” IEEE Communications Surveys and Tutorials,
vol. 16, no. 3, pp. 1617-1634, 2014.

[3] T. Huang, F. R. Yu, C. Zhang, J. Liu, J. Zhang, J. Liu, “A Survey on
Large-scale Software Defined Networking (SDN) Testbeds: Approaches
and Challenges,” IEEE Communications Surveys & Tutorials, vol. 19,
no. 2, pp. 891-917, 2016.

[4] T. Benson, A. Akella, D. A. Maltz, “Unraveling the Complexity of
Network Management,” In NSDI, pp. 335-348, 2009.

[5] S. Rowshanrad, M. R. Parsaei, M. Keshtgari, “IMPLEMENTING NDN
USING SDN: A REVIEW ON METHODS AND APPLICATIONS,”
IIUM Engineering Journal, vol. 17, no. 2, pp. 11-20, 2016.

[6] M. R. Parsaei, R. Javidan, A. Fatemifar, S. Einavipour, “Providing
Multimedia QoS Methods over Software Defined Networks: A
Comprehensive Review,” International Journal of Computer
Applications, vol. 168, no. 9, pp. 55-59, 2017.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

225 | P a g e

www.ijacsa.thesai.org

[7] A. Mendiola, J. Astorga, E. Jacob, M. Higuero, “A survey on the
contributions of Software-Defined Networking to Traffic Engineering,”
IEEE Communications Surveys & Tutorials, vol. 19, no. 2, pp. 918-953,
2017.

[8] M. Karakus, A. Durresi, “Quality of Service (QoS) in Software Defined
Networking (SDN): A survey,” Journal of Network and Computer
Applications, vol. 80, pp. 200-218, 2016.

[9] M. Dusi, R. Bifulco, F. Gringoli, F. Schneider, “Reactive logic in
software-defined networking: Measuring flow-table requirements,”
IEEE International Conference on Wireless Communications and
Mobile Computing (IWCMC), pp. 340-345, 2014.

[10] F. Hu, Q. Hao, K. Bao, “A survey on software-defined network and
openflow: From concept to implementation,” IEEE Communications
Surveys & Tutorials, vol. 16, no. 4, pp. 2181-2206, 2014.

[11] H. Kim, N. Feamster, N, “Improving network management with
software defined networking,” IEEE Communications Magazine, vol.
51, no. 2, pp. 114-119, 2013.

[12] M. R. Parsaei, S. H. Khalilian, R. Javidan, “A Comparative Study on
Fault Tolerance Methods in IP Networks versus Software Defined
Networks,” International Academic Journal of Science and Engineering.
Vol. 3, no. 4, pp. 146-154, 2016.

[13] T. J. Parvat, P. Chandra, “A Novel approach to deep packet inspection
for intrusion detection,” Procedia Computer Science, vol. 45, pp. 506-
513, 2015.

[14] N. Williams, S. Zander, G. Armitage, “A preliminary performance
comparison of five machine learning algorithms for practical IP traffic
flow classification,” ACM SIGCOMM Computer Communication
Review, vol. 36, no. 5, pp. 5-16, 2006.

[15] H. Cui, Y. Zhu, Y. Yao, L. Yufeng, Y. Liu, “Design of intelligent
capabilities in SDN,” IEEE International Conference on Wireless
Communications, Vehicular Technology, Information Theory and
Aerospace & Electronic Systems (VITAE), pp. 1-5, 2014.

[16] Z. Arslan, A. Alemdaroglu, B. Canberk, “A traffic-aware controller
design for next generation software defined networks,” IEEE
International Conference on Communications and Networking
(BlackSeaCom), pp. 167-171, 2013.

[17] J. Zhang, Y. Xiang, W. Zhou, Y. Wang, “Unsupervised traffic
classification using flow statistical properties and IP packet payload,”
Journal of Computer and System Sciences, vol. 79, no. 5, pp. 573-585,
2013.

[18] Z. A. Qazi, J. Lee, T. Jin, G. Bellala, M. Arndt, G. Noubir, “Application-
awareness in SDN,” ACM SIGCOMM computer communication
review, vol. 43, no. 4, pp. 487-488, 2013.

[19] M. R. Parsaei, S. M. Rostami, R. Javidan, “A Hybrid Data Mining
Approach for Intrusion Detection on Imbalanced NSL-KDD Dataset,”
International Journal of Advanced Computer Science and Applications,
vol. 7, no. 6, pp. 20-25, 2016.

[20] S. S. Parsa, M. Sourizaei, M. M. Dehshibi, R. E. Shateri, M. R. Parsaei,
“Coarse-grained correspondence-based ancient Sasanian coin
classification by fusion of local features and sparse representation-based
classifier,” Multimedia Tools and Applications, vol. 76, no. 14, pp.
15535-15560, 2017.

[21] A. Nabaei, M. Hamian, M. R. Parsaei, R. Safdari, T. Samad-Soltani, H.
Zarrabi, A. Ghassemi, “Topologies and performance of intelligent
algorithms: a comprehensive review,” Artificial Intelligence Review, pp.
1-25, 2016. doi:10.1007/s10462-016-9517-3.

[22] H. Komijani, S. Rezaeihassanabadi, M. R. Parsaei, S. Maleki, “Radial
Basis Function Neural Network for Electrochemical Impedance
Prediction at Presence of Corrosion Inhibitor,” Periodica Polytechnica
Chemical Engineering, vol. 61, no. 2, pp. 128-132, 2017.

[23] M. R. Parsaei, R. Taheri, R. Javidan, “Perusing the effect of
discretization of data on accuracy of predicting Naïve Bayes algorithm,”
Journal of Current Research in Science, (1), pp. 457-462, 2016.

