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Abstract—Interval-Based Parametric Temporal Database 

Model (IBPTDM) captures the historical changes of database 

object in single tuple. Such data model violates 1NF and it is 

difficult to be implemented on top of conventional Database 

Management Systems (DBMS). The reason behind that, 

IBPTDM cannot directly use relational storage structure or 

query evaluation technique that depends on atomic attribute 

values as well as it is unfixed attribute size. 1NF model with its 

features can be used to solve such challenge. Modeling time-

varying data in 1NF model raise a question about memory 

storage efficiency and ease of use. A novel approach for 

representing temporal data in 1NF model and compare it with 

other main approaches in literature is the main goal of this 

research. To this end, a mathematical model for comparing a 

three different storage models is demonstrated to illustrate that 

the proposed model is more efficient than other approaches 

under certain conditions. The simulation results showed that the 

proposed model overcomes the needless redundancy of data, 

achieves saving in memory storage, and it is easy to be 

implemented in relational data model or to be adapted with a 

production systems that need to track temporal aspects of 

functioning database Systems. 

Keywords—Valid-time data model; N1NF; tnterval-based 

timestamping; temporal data model; 1NF 

I. INTRODUCTION 

Modeling temporal database is considered a vital and 
highly demanding problem. That is why varieties of techniques 
have been proposed to address this problem from different 
viewpoints [1]-[3]. Modeling temporal database in relational 
framework differs in many dimensions [4]-[11]. The most 
frequently stated approaches are tuple timestamping with First 
Normal Form (1NF), and attribute timestamping with Non-
First Normal Form (N1NF). Based on the timestamp of the 
data, the first approach (1NF) has two distinctions namely, 
Tuple Timestamping Single Relation (TTSR), and Tuple 
Timestamping Multiple Relations (TTMR). 

Models under TTSR approach are discussed by [1], [4], [5], 
[12]-[14]. An example of some of these temporal data models 
are LEGOL 2.0 by Jones [15], Temporally Oriented Data 
Model by Ariav [16], HSQL by Sarda [17], and TQuel by 
Snodgrass [18]. TTSR approach introduces redundancy, where 
attribute values that change at different time are repeated in 
multiple tuples. Furthermore, Steiner in [19] stated that, the 
main disadvantage of this approach is that the fact about a real 
world entity is spread over several tuples, where each tuple 
represents a state during a certain time period in the real world. 

Models under TTMR approach have solved the problem of 
data redundancy in TTSR by decomposing the temporal 
relation as follows: time-varying attributes are distributed over 
multiple relations, and time-invariant attributes are gathered 
into separates relation. Many temporal data model discussed in 
literature are categorized under this approach [5]. An example 
of some of these temporal data models are Temporal Relational 
Model by Navathe and Ahmed [20], Snodgrass [18], Tansel 
[10], and Kvet [14]. The data models under this approach need 
a variation of join -known as temporal intersection join- that is 
used for combining the information for an object. Temporal 
intersection join is generally expensive to be implemented. 

 The second approach (N1NF) violates the atomicity of 
single data representations and based on the timestamp, the 
data can be timestamped in the level of tuple or in the level of 
attributes [5], [8]-[10]. An example of this approach is the 
parametric temporal data model that is based on attributes-
timestamping and that uses a temporal element as a timestamp 
[21]. The bitemporal conceptual data model (BCDM) is 
another example of such approach that forms the basis for the 
temporal structured query language (TSQL) proposed by 
Jensen [5]. BCDM is based on tuple-timestamping and it uses 
interval-based timestamping [2]. 

Due to the needless redundancy of data in TTSR approach, 
expensive implementation in TTMR approach, and the 
implementation difficulty in parametric temporal data model in 
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top of relational data model, a new approach to model, 
implements, and query TDB in relational framework is 
proposed. The proposed approach is referenced as Tuple 
Timestamp Historical Relation (TTHR) [22]. This temporal 
data model (TTHR) is based on a tuple timestamping for the 
lifespan time of database objects, and it is also based on 
attributes timestamping for the historical valid time changes of 
time varying attributes. TTHR is in 1NF and it is an extension 
and reducible of Snodgrass (Tquel) temporal data model [14, 
19]. TTHR mimics the features of TTSR and TTMR as well as 
the most common temporal database models discussed in 
literature. 

Storage efficiency of temporal database systems has a 
direct impact to the system performance; therefore, in this 
study we will compare the three approaches (TTSR, TTMR, 
and TTHR) in terms of memory storage point of view. To 
measure the storage costs, we will establish mathematical 
model (formulas) for the three approaches. It can give us a 
reasonable judgment to determine whether TTHR is suitable 
for the implementation of the parametric temporal data model 
in top of conventional DBMS. Throughout our investigations 
into storage efficiency, we will show that the TTHR approach 
is comparable to the other approaches and it is even better 
under certain conditions. A similar study for calculating the 
efficiency of memory storage has been done by Atya in [2], 
this study compared the Snodgrass model (which is under 
TTMR-based approach in our study) with Tansel N1NF 
relational nested model. A study by Noh in [23] has introduced 
a new platform for modeling temporal database under XML-
based platform. He compared the relational model as he named 
it (which is under TTSR-based approach in our study) with 
XML-based, and object-oriented based approach. 

II. INTERVAL-BASED PARAMETRIC TEMPORAL DATABASE 

MODEL 

Interval-based parametric temporal database model uses 
N1NF and attribute-timestamping data model with interval-

based timestamps. The time interval 
1 2[ , ]t t consists of finite 

time points between 
1t and 

2t such that

2

1 1 2 1 2[ , ] { | }t t t t T t t t     , where T is defined as a 

set of time points in the domain D . Interval start point 
1t and 

interval end point and are the minimum and maximum 

boundary of the interval, both belong to the interval. Intervals 
can be defined as open, half-closed, or closed. In this study, 
Left-Right bounded (closed) representation for periods of 
validity is considered. Intervals can be compared to show their 
relative positions using Allen's interval logic [24], [25]. Fig. 1 
shows Emp relation which represents the historical changes of 
employees' time-varying data with Address, Tel_no, Supervssn, 
Dno (department number), Salary, and Rank. SSN, name, and 
Birth_date is considered as time invariant attributes. It can be 
shown in Fig. 1 that the information about database object is 
modeled in one tuple and each time-varying attribute is 
timestamped by one or more time interval. An example of time 
intervals is [0   4] and [5  10] which timestamp the valid 
change time of address of employee Nashwan. The single time 
instance can be represented in interval-based, as an example 
time instance 10 has [10    10] representation. 

 
Fig. 1. Emp relation in interval-based parametric temporal data model. 

The three data model (TTSR, TTMR, and TTHR) are based 
on schema extension approach of conventional relational data 
model and it can be implemented in conventional RDBMS. 

III. TEMPORAL DATA REPRESENTATIONS IN THREE 

APPROACHES 

In this section, the Emp relation shown in Fig. 1 is going to 
be mapped to TTSR approach, TTMR, and TTHR approach 
(proposed model), respectively. 

A. TTSR data representation approach 

In TTSR, temporal database relations are in 1NF model 
with snapshot relations. To model Emp relation using TTSR 

representation, let
TTSRR represents the relation in TTSR 

representation that has the schema structure 

),,,,,,( vevslelsCUKTTSR TTTTAAAR  . 

 

Fig. 2. Emp relation in TTSR approach. 

Fig. 2 demonstrates the Emp relation after transformation 
form parametric interval-based representation shown in Fig. 1. 
The evolution of data in Emp relation represented in TTSR 
approach is shown in Fig. 2. The semantic of update operation 
follows the temporal update operation introduced in literature 
[2], [3], [26]. The consequence of updating any time-varying 
attribute results in inserting a new tuple with the new updated 
values and new time points as shown in Fig. 2. Deleting any 

tuple is accomplished by updating lsT to instant time point. The 

highlighted tuple with red color in Fig. 2 is an example of 
logical delete. 

2t
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B. TTMR data representation approach 

In TTMR, the relations are represented by: snapshot 

relation ( , , , )TTMR K U ls leR A A T T , for each time varying 

attribute there are separate relations 

11

( , , , )
CA K C vs veR A A T T … ( , , , )

C ii
A K C vs veR A A T T , 

and ( , , )LS K ls leR A T T for the lifespan time that are all in 

1NF relations [3], [18], [21], [27], [28]. The relations in Fig. 3 
show the representation of Emp relation in Fig. 1 using TTMR 
representation.  

 
Fig. 3. Emp relation in TTMR approach. 

The temporal relation schema (Emp) in Fig. 3 that is 

corresponding to
TTMRR  in TTSR, is decomposed into 2i 

relations, where i (number of time-varying attributes) is equal 

to 6 and the 2 other relations are the lifespan relation and the 
relation that holds the time-invariant attributes. The 6 relations 
corresponding to each time-varying attribute that will be used 
to record the valid-time of the time-varying attributes in Emp. 
The lifespan relation will be used to track the changes of the 
lifespan of the objects in Emp. Finally, the non-temporal 
database relation is used to record the data of non-time-varying 
attributes. 

C. TTHR data representation approach 

In TTHR the general representation of 
TR (temporal 

relational schema) is accomplished as two relations namely, 

TR and _TR VT , Where (A ,A ,A ,A )T K U C TR  , and 

_TR VT is a new auxiliary relation schema that is created as 

_ ( , _ , , , ) T K vs veR VT A Att index T T . Semantically 

the attributes of _TR VT have the following meaning, 

Att_index: is a variable to identify the time-varying attribute 

mCA which begins updated such that 1 m j  .  is a new 

attribute that corresponds to attribute Updated_V as shown in 
Fig. 4. This attribute stores the updated value of any attribute in 

CA  set. vsT : represents the Valid Start Time (VST ). veT : 

represents the Valid End Time (VET ). 

The purpose of this representation is to keep the latest 
(current snapshot data) updated data in one relation 

TR , and 

the historical changes of the validity of the time-varying data in 

the auxiliary relation _TR VT [22, 29]. A relation instance is 

denoted by 
tr , and _tr vt , where ( )t Tr R  means 

tr is an 

instance of TR , and  _ _Tt
vt r R VT  means _tr vt  is 

an instance of _TR VT . For tuples the symbols x, y  and z

can be used, thus a tuple, lsT  and leT of that particular object 

(tuple), whilst the tuple(s) 

_ [x] , _ , , t K Tr vt a Att index a  in the relation 

instance  _ _t Tr vt R VT is/are referencing to tuple x in 
tr .  

The tuple(s) in _tr vt consist of the primary key of x , the 

identity(Att_index) of the time-varying attribute in x , the 
updated time-varying attributes value  in x , and the time 

validity of the updated attribute  
vsT and veT .  A subset of the 

domain of lifespan time is associated with each tuple in TR

shows that the existence of the object recorded by the tuple is 
true in the modeled reality during each lifespan chronon in that 
subset. A subset of domain of valid times is associated with 

each tuple in _TR VT , represents the fact that the tuple 

_ [x]tr vt  records the change of the validity of 
mCa  in x . 

This fact is considered true in the modeled reality, such that the 
time of validity strictly contained in the time of the lifespan of 
x . Thus, the associated time with a tuple in TTHR is interval-
based temporal timestamp. The tuples in 

tr are timestamped by 

the lifespan time of the object denoted by 
lst , whereas the 

tuples in _ tvt r are timestamped by the valid-time denoted by 

vt , both consisting of a temporal chronon in the time 

dimension spanned by lifespan and valid time. 

 
Fig. 4. Emp relation in TTHR approach. 

The example in the Fig. 4 uses two relations: Emp, 
describing employees information, such that, this relation is 

corresponding to
TR in TTHR, and the auxiliary relation 

Emp_VT that is used to record the changes of the validity of the 
time-varying attributes in Emp as well as the changes of the 
lifespan of the objects in Emp. The different types of attributes 
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of Emp and Emp_VT are: Emp relation:  KA SSN , i = 1; 

 , _UA Name Birth date ,  n = 2;   

 CA Address, Tel_no, Supervssn, D_no, Salary, Rank

,j=6;  ,T ls leA T T and Emp_VT relation: 

{ , _ ,_ _ , , } vs veSSN Att index UpdatedEmploye V Te V Ts T
 

As shown in Fig. 4,  is equivalent to Updated_V that 

stores the old value of the updated time-varying attributes. 

_Att index attribute stores the position of time-varying 

attributes location in the main relation Employees, such that the 

domain ( _Att index ) = {0,3, 4,5,6,7,8} , where 0 is 

used to index the object’s lifespan time and 3, 4, 5, 6, 7,and 8 
are used to index the time-varying attributes as shown in Fig. 4. 
Granularity of chronon is assumed one month for both lifespan 
time and valid time. Integers are used as timestamp 
components that can be thought as dates, for example the 
integer 7 represents the date of 'April 2012'. 

IV. DISCUSSION OF MEMORY STORAGE COSTS 

In this section, we will formalize the storage costs of the 
three different approaches for representing the interval-based 
temporal data models in relational framework. The notations 

uses in this study are given in Table 1. Let 
TR be a temporal 

relational schema with an arbitrary set of attributes

 TAAA n ,,,, 21  , where these attributes can be classified 

into 4 groups: key attributes, Time-invariant attributes 
(Unchangeable), Time-varying attributes (Changeable), and 
Timestamps (temporal) attributes. These groups can be 
represented by K, U, C, and T respectively. 

Thus the schema of temporal relation can be redefined as 

 TCUK AAAA ,,, , where 

 
1 2
, , ,

jK K K KA A A A

 
1 2
, , ,

nU U U UA A A A  

 
1 2
, , ,

iC C C CA A A A  

 
1 2
,T T TA A A  

Definition 1: The cost of different attribute types are defined 

as: 

 
1

cost cos ( )
i

j

k ki
A t A K byte


    (1) 

 
1

cos t cos ( )
i

n

U Ui
A t A U byte


       (2) 

 
1

cost cos ( )
m

i

c Cm
A t A C byte


      (3) 

 
2

1
cost cos ( )

iT Ti
A t A T byte


     (4) 

Definition 2: The update frequency of time-varying attributes 

 
1 2
, , ,

m iC C C CA A A A in a period of time is 

calculated as: 

   
1 m

i

C Cm
f A f A times


     (5) 

TABLE I.  NOTATIONS 

Symbol Meaning 

TR  A temporal relational schema with an arbitrary set of 

attributes TCUK AAAA ,,,  

KA   Set of key attributes  

UA  Set of Time-invariant attributes(Unchangeable) 

CA  Set of Time-varying attributes (Changeable) 

TA  The interval-based timestamp attribute. 

J total number of key attributes  KA  

N total number of Time-invariant attributes 

I total number of Time-varying attributes  CA  

 
mC

f A  

Update frequency of m-th time-varying attribute.  

Such that 
1 2

{ , ,......... }
m iC C C CA A A A and 

1 m i   

 AS  

A function to be defined on all the attributes in 
TR , 

where  AS  returns the size of attribute A  in 

bytes.  TCUK ,,,  and  j,...,2,1  

(key attributes),  n,...,2,1  (time-invariant 

attributes),  i,...,2,1  (time-varying attributes) 

or  2,1  (timestamping attributes) 

 ACost

 

A function to be defined on the subset attributes  , 

where  TCUK ,,, and return the size of the 

attributes group in byte. 

 zCost  

The cost of a tuple(row) z  in relation instance tr  

is the summation of the cost of all subsets attributes 

equals to 

       TCUK AAAA costcostcostcost 

. 

K  Cost of  key attributes  

U      Cost of Time-invariant attributes(Unchangeable) 

C Cost of Time-varying attributes (Changeable) 

T                  Cost of Timestamps (temporal) attributes 

x  A tuple in a temporal relation  

z  A tuple in a temporal relation  

A. TTSR data representation approach 

The temporal relation in TTSR can be represented as: 

TTSRR (
1
, ,

jk kA A ,
1
, ,

nU UA A ,
1
, ,

mC CA A , TA ), 

To calculate the memory storage efficiency of interval-based 
temporal database relation represented by TTHR approach, a 
general formula is constructed for calculating the size of a 
single tuple in a temporal relation. The cost of representing one 
tuple x  in relation instance  TTSRRr  is calculated as: 

         Cost cost cost cost cost

2

   

   

K U C Tx A A A A

K U C T byte
    (6) 

 as stated in (1), (2), (3) and (4)  cost 2TA T , 

because the tuple in TTSR will be timestamped by valid time 
and lifespan time. The cost of storing the history of the changes 

of 
CA with  Cf A    times in a period (lifespan interval) 

of time  is calculated as: 
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               2    K U C T           (7) 

 An update in any
CA requires the insertion of a new row 

with all attributes. Using (6) and (7), the memory storage cost 
of one object represented by TTSR approach can be defined as: 

     Cost 2 2TTSR K U C T K U C T               (8) 

B. TTMR data representation approach 

The temporal relation in TTMR is represented as:  

TTMRR ( kjk AA ,,1  , unu AA ,,1  ) 

1cAR ( kjk AA ,,1  , 1cA , TA ) 

2cAR ( kjk AA ,,1  , 2cA , TA ) 

3cAR ( kjk AA ,,1  , 3cA , TA ) 

4cAR ( kjk AA ,,1  , 4cA , TA ) 

 ……………………… 

ciAR (
kjk AA ,,1  , ciA , TA ). 

To calculate the memory storage efficiency of interval-
based temporal database relation represented by TTHR 
approach, a general formula is constructed for calculating the 
size of a single tuple in a temporal relation. The cost of storing 

one tuple x  in relation instance  TTMRRr is calculated as 

stated in (1), (2), (3) and (4), as follows: 

       

     

 
 

1

1 1 1

1

Cost Cost Cost Cost

Cost Cost

( ) ( )



  



   

  
 

     

     



  



m

m

m

k u T

i

c k Tm

i i i

cm m m

i

cm

x A A A

S A A A

K U T S A K T

K U T i K T S A

 

Since 

     
 

1
Cost

m

i

C cm
A i K T S A

i K T C


  

  

  

Then the  xCost  can be represented as: 

   TKiCTUKx Cost  

                byteiTCUiK 11             (9) 

The variable i represents the total number of time varying 
attributes 

CA .The cost of storing the history of the changes of 

each 
mcA with  

mc mf A   times in a period/interval of 

time  can be calculated as: 

  
   

1

1 1

m

m

i

m cm

i i

m c mm m

S A K T

S A K T



 

   

    



 
 

Since   

i

m m1
, as in Eqns. 5, then the equation 

becomes: 

   TKAS
i

m cmm  


1
             (10) 

Using (9) and (10), the memory storage cost of one object 
represented by TTMR approach can be defined as: 

     
   

i

m cmm 1

Cost TTMR K i 1 U C T i 1

S A K T


      

  
                   (11) 

C. TTHR data representation approach 

In TTHR model, the temporal relation schema is 

represented by TTHRR  and VTR  as shown below: 

TTHRR (
1
, ,

jK KA A ,
1
, ,

nU UA A ,
1
, ,

mC CA A ,
TA ), 

VTR (
1
, ,

jK KA A , _Att index ,  , TA ). To 

calculate the memory storage efficiency of interval-based 
temporal database relation represented by TTHR approach, a 
general formula is constructed for calculating the size of a 
single tuple in a temporal relation. The cost of representing one 

tuple x  in relation instance  TTHRRr is calculated as:  

         k u c TCost x cost A cost A cost A cost A
K U C T byte
   
   

          (12) 

As stated in (1), (2), (3) and (4), the cost of storing the 

history of changes of CA with  Cf A    times in a 

period/interval (lifespan interval) of time   can be calculated 

as: 

 ( _ ) ( )K S Att index S T      , since the size 

of Att_index = 1, and   

      
1 2

( ) , , ,
iC C CS Max S A S A S A  , let 

( )S   , then  

 1K T                              (13) 

Such that, Att_index: is an attribute to index the time-
varying attributes with one byte size.  : is a new added 

attribute of variant data type to hold data from different types. 
Its size is assumed to be the same size of the largest field size 
in

CA . The size of   in byte is 

        
1 2

, , ,
iC C CS Max S A S A S A  , using 

(12) and (13), the memory storage cost of one object 
represented by TTHR approach can be defined as:  

     Cost 1TTHR K U C T K T            (14). 

V. COMPARISONS OF MEMORY STORAGE COST AND 

RESULT ANALYSIS OF THE THREE APPROACHES 

In this section, we will mimic the storage cost of the three 
models based on various settings of the parameters that have 
direct impact to the temporal data storage. The Default values 
are initiated with consideration of general cases as follows: K= 
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9, U= 110, C=37, T=20,  =9. Fig. 5 shows the memory 

storage cost for the initial values for the different parameters 
that construct the temporal relation. For these values, TTSR-
based approach shows worse storage costs comparing to 
TTMR-based and TTHR-based approaches. However, the 
graph shows a positive indication that TTHR can be used as an 
efficient storage that is better than TTMR-based approach until 

the value of  = 40. After this point it seems that both TTHR 

and TTMR have the same storage efficiency.  

Fig. 6 shows the storage costs of the temporal relational 
approach after freezing all the parameters and varying the sizes 

of the time-varying attributes (C ). For these values, TTSR-

based approach shows worse storage costs comparing to 
TTMR-based and TTHR-based approaches. However, the 
graph shows a positive indication that TTHR can be used as an 
efficient storage that is better than TTMR-based approach until 

the value of C = 150 byte. After this point it seems that both 

TTHR and TTMR have the same storage efficiency. 

 

Fig. 5. Storage cost for the update frequency (  ) variations. 

 

Fig. 6. Storage Cost for the Time-varying attributes' size (C) variations. 

Fig. 7 shows the storage efficiency after freezing all the 

parameters and varying the sizes of key attributes ( K ) value 
variations. 

 

Fig. 7. Storage Cost for the Key attributes' size (K) variations. 

We increase K value from 9 to 300 bytes. As we can see, 
the TTHR-based approach shows the best storage efficiency 
than the others. However, it is shown that the difference of 
storage efficiency is marginal between the TTHR-based 
approach and the TTMR-based approach. 

A similar study for calculating the efficiency of memory 
storage has been done by Atya in [2], this study compared the 
Snodgrass model (which is under TTMR-based approach in 
our study) with Tansel N1NF relational nested model. A study 
by Noh in [23] has introduced a new platform for modeling 
temporal database under XML-based platform. He compared 
the relational model as he named it (which is under TTSR-
based approach in our study) with XML-based, and object-
oriented based approach. 

VI. CONCLUSION 

A new approach for representing temporal database in 
relational data model has been demonstrated in this research 
work. A comparison study of the proposed model (TTHR) with 
the main models in literature (TTSR and TTMR) with respect 
to the memory storage efficiency has been mathematically 
illustrated. To measure the storage costs, we have established a 
mathematical model (formulas) for the three approaches. The 
measurement of the performance is represented by the size of 
the whole stored temporal data as stated in [22], [29], [31]. It 
has been proved that TTHR has achieved significant saving in 
memory storage that ranges between 68%-81% over TTSR 
approach, and 10%-32% over TTMR. The memory storage 
save is based on the average change of the time varying 
attributes [29], [30], [31]. A validation and verification study of 
the correctness and the expressiveness of TTHR model has 
been  depicted in [32]. Finally, TTHR mimics TTMR in data 
representation by removing the needless redundancy of data. 
Moreover, TTHR mimics TTSR in representing the current 
valid data in one relation, to benefit from querying the current 
snapshot data which costs a lot in TTMR as stated in [22]. 
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