
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

412 | P a g e

www.ijacsa.thesai.org

Low-Power Hardware Design of Binary Arithmetic

Encoder in H.264

Ben Hamida Asma
1
, Nedra Jarray

1

1
 Laboratory of Electronic and Micro-Electronic

(LAB-IT06)

Faculty of Sciences of Monastir

5019, Tunisia

Zitouni Abdelkrim
2

2
College of Education in Jubail,

University of Dammam,

Saudi Arabia

Abstract—Context-Based Adaptive Binary Arithmetic Coding

(CABAC) is a well-known bottleneck in H.264/AVC, owing to the

highly serialized calculation and high data dependency of the

binary arithmetic encoder. This work presents a hardware

architecture for the sub-module binary arithmetic encoder of the

CABAC. Moreover, a clock gating technique is inserted into our

design for power saving. An FPGA design of the proposed

architecture can work at a frequency up to 268 MHz on Virtex 5.

The suggested design can achieve 17% of power consumption

saving, which allows it to be applied for low power video coding

applications.

Keywords—H.264; Binary Arithmetic Encoder (BAE); Context-

based Adaptive Binary Arithmetic Coding (CABAC); clock gating

I. INTRODUCTION

In the H.264/AVC standard, two entropy encoders are
defined: Context-based Adaptive Variable Length Coding
(CAVLC) and Context-based Adaptive Binary Arithmetic
Coding (CABAC). The CAVLC is a low-complexity entropy
coding technique based on the use of switched context-
adaptively sets of variable-length codes. Compared to CABAC,
The compression efficiency improvement is obtained at the
cost of an inevitable complexity overhead. Software-based
complexity analysis results show that switching from CAVLC
to CABAC usually leads to complexity increasing by 25–30%
for encoding and 12% for decoding. As an average, 30–40
cycles are required to encode a single bit on digital signal
processors, so it takes thousands of cycles to encode one
macroblock, which is unacceptable for real-time video coding
applications [2]. Therefore, a hardware implementation of
CABAC encoder is always required. However, the bit-serial
nature of the CABAC algorithm and the strong data
dependency between contiguous bits make it hard to improve
the throughput and to parallelize the encoding process.

Hence, a lot of work has been proposed to improve the
throughput of the CABAC by processing more than one bin in
a single cycle. Yuan Li et al. put forward in [3] a high-
throughput low-latency arithmetic encoder (AE) design
suitable for HD real-time applications, utilizing a macroblock
level pipeline. This design could achieve a throughput of 2~4
bins per cycle sufficient for real-time encoding. In [4], a
software-hardware codesign for a whole entropy coder was

suggested, which took Binary Arithmetic Encoder (BAE)
module for the H.264/AVC CABAC entropy encoder as a
hardware accelerator. Vagner Rosa et al. presented in [5] a
hardware proposal of BAE. The throughput was improved by
developing three different architectures of the renormalization
step, presenting a processing rate from 0.68 to 1 bin per clock
cycle. An RDO-support CABAC encoder was given by [6]
and [7] to achieve the bit-rate saving of around 20 percent. In
[6], an FPGA-based RISC CPU extension was proposed to
accelerate the CABAC in a rate-distortion framework. This
design achieved a coding speed of 1 bin per cycle and a clock
frequency of 100 MHz. In [7], an efficient memory access was
suggested to reduce the access frequency of the context RAM.

Most studies have mainly focused on ameliorating the
throughput, but limited attention has been paid to reduce power
consumption. Therefore, this paper aims to design BAE
including a low-power technique. The main contributions of
this paper are outlined as follows:

1) We implement a hardware of the BAE, which is the

bottleneck of CABAC.

2) We further insert a low-power technique into the BAE

architecture. In fact,a clock-gating technique is added into the

design of a BAE sub-module, achieving reduced power

consumption at a minor implementation effort.

The rest of this paper is organized as follows. Section II
presents the CABAC encoding algorithm. Section III shows
both encoding processes of the binary arithmetic coder and
their corresponding proposed architecture .Section IV provides
the FPGA synthesis results, and section V concludes the paper.

II. CABAC ENCODING ALGORITHM IN H.264

As presented in Fig. 1, CABAC encoding consists of three
main functions: binarization, context modeling, and binary
arithmetic coding. The binarization part permits mapping the
non-binary valued syntax elements into binary symbols, also
known as bins or a bin string. Then each bin is arithmetically
coded by a regular coding engine or a bypass coding engine. In
the regular coding engine, a context model is used to encode
each bin. In the bypass encoding engine, the context is not
needed due to the equivalent probability of the appearance of
these bins.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

413 | P a g e

www.ijacsa.thesai.org

Binary arithmetic coder

Binarization

Regular arithmetic
engine

Bypass arithmetic
engine

Context
modeler

Non binary valued
syntax element

Syntax
element

Binary valued
syntax element

Bin
string

Loop over
bins

Regular Bin

Coded
Bitstream

Context
Model
Update

Context
Model

Bypass Bin

Fig. 1. Diagram of the CABAC encoder.

A. Binarization

In the binarization process, each syntax element is
converted into a bin string. This step is done with different
schemes: unary, truncated unary, fixed length and
parameterized exp-Golomb. Each task is dedicated to some
types of syntax elements, as given in Table 1. The input and
output of the binarization process are the mapped syntax
elements and the Context Index (CtxIdx) information. The next
step is to use the CtxIdx information to fetch the context model
from the context table.

TABLE. I. SYNTAX ELEMENTS AND ASSOCIATED TYPES OF

BINARIZATION [1]

B. Context modeling

A context model is a probabilistic model with a statistical
occurrence rate for each symbol, such that each type of syntax
elements has a set of 399 context models as defined by the
H.264 standard documentation [1]. Each context model
comprises 6-bits representing the Probability State Indices
(pStateIdx) and a 7th bit representing the value of the Most
Probable Symbol (MPS).

C. Arithmetic coding

The aim of the arithmetic encoding process is to generate a
bit stream from reading the bins and their context models, if the
latter exist. Its principle is based on the division of an initial
interval into two sub-intervals according to the context model
(Fig. 2). One of two sub-intervals corresponds to the MPS, and
the other refers to the Less Probable Symbol (LPS). After that,
one of the two intervals is selected asa new one according to
the bin value (MPS or LPS). Each interval is defined by two
values: range (the length of the interval) and low (the bottom of
the interval). These rules determine the updated value of the
interval as follows:

If bin =LPS

 New range= rLPS (range of LPS)

 New low= low

If bin= MPS

 New range = range – rLPS=rMPS (range of MPS)

 New low = low + rLPS
Where, the value of rLPS is indexed by pStateIdx, read

from context modeling.

For the bins that have the same probability, no context
model is needed; and the bins are coded by a simpler bypass
coding engine within a CABAC module.

Range

Initial

rLPS

rMPS

low

New Range

IF MPS

rLPS

rMPS

New low

New range

IF LPS

rLPS

rMPS

New low

Fig. 2. Interval subdivision process of CABAC.

III. PROPOSED HARDWARE ARCHITECTURE OF BINARY

ARITHMETIC CODER

At the binarization process, the syntax element of each MB
can be treated in parallel. However, at the binary arithmetic
coding process, all bin strings should be encoded sequentially.
Thus, the binary arithmetic coder is the critical block that
affects the throughput. This section firstly presents the
processing flow of both regular and bypass BAE modes, and
then its provides their corresponding hardware architectures.
The clock gating technique is also presented in this section.

A. Regular BAE process and its proposed architecture

1) Regular BAE process
The regular BAE process is illustrated in Fig. 3. The chart

consists of three steps: interval subdivision, probability-model
updating and regular renormalization.

Syntax element Binarization Method

mb_type Table mapping

mb_skip_flag Fixed length

Sub_mb Table mapping

Ref_indx_10 Unary

Ref_indx_11 Unary

mvd_10
Truncated unary and exp-Golomb

with =3 ,truncated value9

mvd_11
Truncated unary and exp-Golomb
with =3 ,truncated value9

Intra4x4_pre_mode Fixed_length

rem_intra_4x4_pre-mode Fixed_length

Chroma_pre_mode Fixed_length

Coded_block_pattern
Fixed length and truncated

unary,truncated value 2

Mb_qp_delta Unary and table mapiing

Coded_block_flag Fixed_length

Significant_coefficient_flag Fixed length

Last_significant_flag Fixed length

Coeff_abs_level_minus1
Truncated unary , exp-Golomb with

=3 and truncated value 14

Coeff_sig_flag Fixed length

End_slice_length Fixed_length

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

414 | P a g e

www.ijacsa.thesai.org

In the interval subdivision, the interval value is updated
according to whether the current input bin (binval) is an MPS
or not. The probability model pStateIdx is updated through two
tables: TransIdxLPS and TransIdxMPS. The TransIdxMPS is
selected when the bin value is equal to an MPS. Otherwise, the
TransIdxLPS is used. The final update for low and range
values is done by the regular renormalization process, which is
needed to keep the interval range between 256 and 512. Fig. 4
shows the flowchart of the regular renormalization.

2) Regular arithmetic coder architecture
The hardware design of a regular BAE is depected in

Fig. 5. It consists of three main modules: probability-model
updating, interval subdivision module, and regular
renormalization.

The module of probability-model updating is constituted
by three principal steps: context model read, context model
update, and context read. When the context is read out, the
context model will be updated according to bin value through
the ROM of either TransIdxLPS or TransIdxMPS. Next, the
new context model will be written back to the context table.

qRangIdx=(Rang>>6)&3
RangeLPS=rangeTABLPS[pStateIdx][qRangIdx]

RangeMPS=range-RangeLPS

binVal!=valMPS NoYes

Low=Low+Range
Range=rangeLPS

pStateIdx!=0 No

valMPS=! valMPS

pStateIdx=TransIdxLPS[pStateIdx] pStateIdx=TransIdxMPS[pStateIdx]

R<256No

Yes

Interval
subdivision

Updating of
probability
estimation

Encode(ctxIdx,binVal)

Regular
renaormalization

Done

Regular
renormalization

Yes

Fig. 3. Regular arithmetic encoding flowchart (from [1] with some

modifications).

Regular Renormalization

Range<256 Yes

Low<256 No

Low>=512

Low=Low-512

Range = Range<<1
Low=Low<<1

PutBit(1)

YesNo

Low=Low-256
bitsOutstanding=bitsOutstanding-1

PutBit(0)

Yes

Done

No

Fig. 4. Regular renormalization flowchart [1].

The module of interval subdivision will be performed
when the context model pStateIdx is read from the RAM of the
context table. Both pStateIdx[5:0] and range[7:6] are used to
index the rLPS value from the rLPStable. After that, the
interval values (range and low) are calculated by using a ten-bit
adder and ten-bit subtractor. According to the bin value, the
two top and low multiplexers will select the appropriate value
of low and range, respectively.

The module of regular renormalization will be carried
after encoding each bin, when the range value is decreased to
less than 256. This module is implemented by a finite state
machine.

IV. BYPASS BAE PROCESS AND ITS PROPOSED

ARCHITECTURE

A. Bypass BAE process

For the bypass mode, the bin is coded using a coding
decision process. The context modeling is skipped as the bins
show almost an equiprobable behavior. This encoding mode is
a much simpler encoding process compared to the regular
mode. Fig. 6 illustrates the bypass process, including the
interval subdivision stage and the renormalization stage. There
is no iteration loop in the renormalization process in the bypass
mode unlike the renormalization in the regular coding mode.

B. Bypass BAE architecture

A hardware design of the bypass BAE is depicted in Fig. 7.
Bypass coding generates valid coding states that conform to
equations shown in the flowchart of Fig. 6. This mode is faster
than the regular mode since there is no context modeling
process. In addition, it is to note that the there is no loop
presented in bypass renormalization module. This latter is
implemented by a simple finite state machine.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

415 | P a g e

www.ijacsa.thesai.org

Context
Table
(RAM) MPS

=

TransIdxMPS
table

(ROM)

TransIdxLPS
table

(ROM)

New_MPS
calculator

&

rLPS table
(ROM)

& +-
Regular

Renormalizer
Module
(FSM)

CtxIdx

bin

Context
model

pStateIdx

New_Context

Low
range

rLPS
rMPS

LowLPS

BitOutStanding

End_renor

i_W i_R

Module of probability-model
updating

Module of Interval
subdivision

Fig. 5. Architecture representation of regular BAE.

Coding decision process

Low=Low<<1

binVAl !=0

Low=Low + Range

Low<1024

Low<512

PutBit(0)

PutBit(1)

Low=Low-1024

Low=Low-512
bitsOutstanding=bitsOutstanding+1

Done

Yes

Bypass
renormalization

Interval
subdivion

Fig. 6. Bypass BAE flowchart [1].

Shift register
+Low

Range

Bin value

Bypass
Renormalizer

(FSM)
End_renor

BitOutStanding

Fig. 7. Architecture representation of bypass BAE.

V. CLOCK-GATING TECHNIQUE

Clock gating is among the techniques that are used for
reducing dynamic power dissipation. This technique saves
power by taking the enable conditions attached to registers and
uses them to gate the clock.

At each input bin coming from the binarizer, one of the two
coding modes (regular or bypass) is selected. The clock gating
technique is inserted to prune the clock either for a regular
arithmetic engine or for a bypass coder (i.e. by disabling the
flip-flop registers in them).

The practical approach to insert the clock-gating technique
in our proposed arithmetic coder is shown in Fig. 8. To avoid
the glitch problem caused by clock switching, we use a latch-
based clock-gating style.

VI. IMPLEMENTATION RESULTS

Our design is synthesized and simulated by using the
XILINX ISE and ModelSim tools, respectively. The synthesized
circuit area of each component of the encoder is listed in
Table 2. Synthesis results demonstrate that the BAE can work
properly at a clock frequency of 268.5 MHz.

The design occupies 300 slices of which a regular BAE unit
occupied 82%. It is to clear that the bypass BAE operates at a
higher clock frequency compared to the regular mode.

Table 3 presents a comparison with previous work. Our
design uses a higher frequency compared to the work [5],
which was implemented in the same FPGA technology.
Moreover, it is evident that the proposed architecture will
achieve the lowest power consumption relative to power
consumption of [7] when it is designed on ASIC-based
technology. Indeed, as explained in [9], [10] and [11], the
power consumption of ASIC designs was observed as being
between 3 to 10 times greater than FPGA designs.

https://en.wikipedia.org/wiki/Power_dissipation

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No.7, 2017

416 | P a g e

www.ijacsa.thesai.org

Binary arithmetic coder

Regular arithmetic
engine

Bypass arithmetic
engine

Context
modeler

Coded bits

Coded bits

Bitstream

update context model

Enable_arithmetic
coder

 context model

D Q

Gated clock for regular
arithmetic engine

Gated clock for regular
arithmetic engine

clock

Clock gating technique

Fig. 8. Diagram of BAE with clock-gating technique.

TABLE. II. SYNTHESIS RESULTS OF EACH BAE UNITS ON VIRTEX 5

Unit Name
Area

(slices)

Frequency

(MHz)

Regular BAE 247 268.516

Bypass BAE 51 417.81

Total BAE (without clock gating) 298 268.516

Total BAE(with clock gating) 300 268.516

TABLE. III. COMPARISON OF PERFORMANCE RESULTS

Process

technology

Clock

frequency

(MHz)

Circuit

Area

(LUT

slices)

Total

power

(mW)

Design

parts

[5] Virtex 5 189 436 Na BAE

[6] Startix II 130 603 Na
Total

CABAC

[7]
Virtex4 FPGA 145 2559 Na Total

CABAC ASIC 0.13 µm 200 Na 26.6

[8] ASIC 0.15 µm 333
13.3K
gates

Na
Total
CABAC

Proposed
Virtex4 FPGA 219.479 298 43

BAE
Virtex5 FPGA 268.516 300 17.77

Fig. 9. Diagram of dynamic power consumption of our proposed BAE

Fig. 9 shows the power consumption for both designs (BAE
without clock gating and BAE with clock gating). With the
insertion of a clock-gating technique, there is about 17% of
dynamic power consumption reduction.

VII. CONCLUSION

In this paper, our design has focused on the BAE that
presents the critical sub-block of the CABAC. Furthermore, a

clock-gating technique has been employed to reduce the power
consumption. As a result, power consumption can be reduced
by about 17%. Therefore, our design can be suitable for low
power video coding applications. The synthesis results on
Virtex 5 have indicated that the design is capable of operating
at 268.516 MHz. Finally, it is important to mention that our
BAE can fit both H.264/AVC and HEVC formats.

REFERENCES

[1] Joint Video Team (JVT) of ITU-T VCEG and ISO/IEC MPEG, Draft
ITU-T Recommendation and final draft in- ternational standard of joint
video specification ITU-T Rec. H.264/ISO/IEC 14496-10 AVC, May
2003.

[2] Yu, Wei, and Yun He. "A high performance CABAC decoding
architecture." IEEE Transactions on Consumer Electronics 51.4 (2005):
1352-1359.

[3] Y. Li, S. Zhang, H. Jia, X. Xie, and W. Gao, "A high-throughput low-
latency arithmetic encoder design for HDTV," in IEEE International
Symposium on Circuits and Systems, 2013, pp. 998-1001.

[4] R. R. Osorio and J. D. Bruguera,”A New Architecture for Fast
Arithmetic Coding in H.264 Advanced Video Coder”, 8th Euromicro
Conference on Digital System Design (DSD'05)

[5] V. Rosa, L. Max, S. Bampi,” High Performance Architectures for the
Arithmetic Encoder of the H.264/AVC CABAC Entropy Coder”,
Electronics, Circuits, and Systems (ICECS), 2010 17th IEEE
International Conference on

[6] Y.L. Nunez-Yanez, V.A. Chouliaras, et al., “Hardware-assisted rate
distortion optimization with embedded CABAC accelerator for the
H.264 advanced video codec”, IEEE Trans. CE, vol. 52, no. 2, pp. 590-
597, May 2006.

[7] X.H. Tian, T.M. Le SM-IEEE, X. Jiang, Y. Lian SM-IEEE ,” A HW
CABAC Encoder with Efficient Context Access Scheme for
H.264/AVC”, 2008 IEEE International Symposium on Circuits and
Systems

[8] C. Jian-long, L. Yu-kun and C. Tian-sheuan, member, ieee,”a low cost
context adaptive arithmetic coder for h.264/mpeg-4 avc video
coding”,ieee international conference on acoustics, speech and signal
processing, 2007. icassp 2007

[9] A. Amara, F. Amiel, T. Ea, “FPGA vs. ASIC for low power
applications”, Microelectronics Journal, Vol. 37, p. 669–677, January
2006.

[10] A. Chang and W. J. Dally. Explaining the gap between ASIC and
custom power: a custom perspective. In DAC '05, pages 281{284, new
york, ny, usa, 2005. acm press.

[11] D. G. Chinnery and K. Keutzer. Closing the power gap between ASIC
and custom: an ASIC perspective. In DAC '05, pages 275, 280.

BAE without clock-gating

technique

BAE without clock-gating

technique

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10433
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10433
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5720492
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5720492
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4534149
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4534149

