
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 8, 2017 

119 | P a g e  

www.ijacsa.thesai.org 

FPGA Implementation of SVM for Nonlinear 

Systems Regression

Intissar SAYEHI 

University of Tunis Elmanar, Faculty of Mathematical, Physical and Natural Sciences of Tunis 

Laboratory of Electronics and Microelectronics, (E. μ. E. L), 

FSM, Monastir, Tunisia 

Mohsen MACHHOUT 

University of Monastir, Faculty of Sciences of Monastir 

Laboratory of Electronics and Microelectronics (E. μ. E. L) 

Rached TOURKI  

University of Monastir, Faculty of Sciences of Monastir 

Laboratory of Electronics and Microelectronics (E. μ. E. L) 

 

 
Abstract—This work resumes the previous implementations of 

Support Vector Machine for Classification and Regression and 

explicates the different methods and approaches adopted. Ever 

since the rarity of works in the field of nonlinear systems 

regression, an implementation of testing phase of SVM was 

proposed exploiting the parallelism and reconfigurability of Field-

Programmable Gate Arrays (FPGA) platform. The nonlinear 

system chosen for application was a real challenging model: a 

fluid level control system existing in our laboratory. The 

implemented design with fixed point precision demonstrates good 

enough results comparing with the software performances based 

on the Normalized Mean Squared Error. Whereas, in term of 

computation time, a speed-up factor of 60 orders of time 

comparing to MATLAB results was achieved. Due to the 

flexibility of Xilinx System Generator, the design is capable to be 

reused for any other system with different data sets sizes and 

various kernel functions. 
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I. INTRODUCTION  

The support vector machine is a machine learning created 
by Vapnik at the 60’s. It was created first for classification 
tasks then extended to regression. The most important 
advantage in this method that is applicable to different fields 
are like medicine biology, signal processing, sensor networks, 
computer sciences, etc. 

The difficult challenge in the use of the SVM method is to 
compromise between the model performances and the data sets 
size. There from the need to hardware platforms that accelerate 
the computation time and provide a flexible support for 
classifying or regressing new systems. 

 This paper treated the previous hardware implementations 
of support vector machine on Field-Programmable Gate Arrays 
(FPGA) for classification and regression and explains the 
different approaches adopted for developing the SVM 

architecture. The FPGAs devices offer many advantages like 
concrete development tools, simple reprogram ability and 
quick development time. Furthermore, parallelism can be 
attained, that is a benefit above other devices, like 
microcontrollers and DSPs.  

The majority of implementations of SVM were targeted to 
classification task for simple and specific problems. However 
the SVM regression task still abandoned and neglected. 

 In this present, we propose a hardware design on FPGA for 
nonlinear systems regression.  

The arrangement of the article is as pursues. In the second 
section the theoretical basis of nonlinear systems identification 
in the Reproducing Kernel Hilbert Space (RKHS) space was 
described. In Section 3, the Methods of SVM implementations 
on FPGA were presented with the related works. In Section 4, 
the FPGA designing tools were explained. In Section 5 our 
SVM Implementation approach and the Parameters Selection 
were presented with results and plots for the regression of fluid 
level control system. Finally we compare our work to similar 
ones and conclude with Conclusion.  

II. NON LINEAR SYSTEMS IDENTIFICATION IN 

REPRODUCING KERNEL HILBERT SPACE 

The identification of linear systems is accomplished via 
mathematical representations on the bases of vibration 
measurements. Thus, the relation between the input and output 
of a system, called transfer function, stays stable at all 
excitation levels. Accordingly, the mathematic model acquired 
at one operating point can be generalized for predicting the 
system behavior at another operating point. Whereas, it is not 
the same case for nonlinear systems because it is hard and 
complicated to find a general mathematical model describing 
the system by relying on the system identification only at a 
particular excitation level. 

The difference between linear and non-linear systems can 
be explicated by Fig. 1, that for non-linear systems the transfer 
function is not independent of the input.  
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Fig. 1. Distinction between linear and nonlinear system. 

It exist many types of nonlinear models like state-space 
models, Input/output-models, block-oriented models, etc. it 
didn’t exist a nonlinear universal model suitable for all 
appliances but it depends on each one. Consequently, diverse 
approaches for identifying and modeling nonlinear systems 
were conceived. Essentially two categories can be 
distinguished: parametric models and nonparametric models. 
The next figure clarifies the different constitutions of these 
categories. 

Another part of researchers were also interested by the 
system identification field by creating diverse techniques in 
machine learning allowing nonlinear systems identification like 
k-Nearest Neighbors and Regularization networks [1]-[3] .  

In next paragraphs, we introduce the mathematical 
foundation of learning machine and explain the functionality of 
support vector machine method. 

A. Statistical Learning Theory (SLT) 

The goal of the Statistical Learning Theory [4] is to obtain 
a function f modeling a given system since a set of observed 

data 
N

i i i 1O {(x ,y )}   composed of inputs ix and outputs iy . 

This function has to repeat the process behavior by diminishing 
the functional risk presented by this expression: 

 ,
( ) ( , ( )) ( , )

X Y
R f V y f x P x y dxdy 

                (1) 
The expression V(y,f(x)) is named cost function. It 

computes the deviation between system output yi and the 
estimated output f(x). The couple (X,Y) is composed of  

random vectors and of the independent samples ( , )i ix y . The 

risk R(f) can’t be approximated caused by unknowing P(x,y). 
To resolve this problem we have to ease the following 
expression:  

1

1
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N
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i
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 
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However, minimizing frankly Remp(f) in the functions space 
H don’t give the best approximation of R(f) minimization and 
could guide to over fitting. As a resolution, Vapnik presented 
the theory of structural risk minimization (SRM). It penalizes 
empirical risk via a function that approximates the complexity 
of the retained model. 

This guides to minimizing the constraint defined by the 
following expression: 

2( ) ( )
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1
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N
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
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 
     (3) 

The first word measures how the function f fits a given data 
and the second word is the squared norm of f in the RKHS 
space H that controls the complexity (smoothness) of the 
solution. The parameter λ is the regularization parameter that 
equilibrium the tradeoff among the two terms. 

The regularity of the solution is most important and not the 
value of λ. Whereas it is not evident to minimize the constraint 
(3) on whichever arbitrary function space H, whatever is it with 
finite or infinite dimension. Therefore, to overcome this 
difficulty, we will consider the space H as a RKHS.  

B. Reproducing Kernel Hilbert Space (RKHS)  

We suppose that X the random variable is evaluated in the 

space 
dE  and we suppose that exists a function K called 

kernel function: 
2:K E   . It is symmetric and positive 

definite. In this case, there is a function  : E H   that: 

 ' '( , )) ( ), ( )
H

K x x x x 
 

(4)  

H is the Reproducing Kernel Hilbert Space (RKHS) [5] of 
kernel K. This space has some rigorous properties: 

 x E   et f H  ( ,.), ( )
H

K x f f x       (5) 

  Due to represented theorem the resolution of the 

optimization problem presented by (3) in this space is 

given by : 
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TABLE I.  KERNEL FUNCTIONS  

Kernel function Mathematical expression Parameters 

Linear kernel 
'( , )) ' K x x x x  - 

Polynomial 

kernel 
'( , )) (1 , ' ) K x x x x 

 

*  and 

x,x '  is an 

Euclidian scalar 
product. 

Sigmoid kernel  ( , ) tanh( . . )Tk x y x y c   
α and c are 

adjustable  

Radial Basis 

Function (RBF) 

kernel 
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γ is a real positive 

parameter 
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It exist a variety of kernel functions that could be 
considered in Table 1. 

C. Support Vector Machine for regression 

SVM is a supervised learning model founded on the 
Vapnik and Chervonenkis learning theory. It was first 
developed for classification problems then extended to 
regression tasks. 

For SVM regression, the goal is to find a model for the data 
set D={(x1,y1),(x2,y2),…,(xn,yn)} that matches the input xi to 

the real output yi (with 
l

ix  and iy  ). 

By resolving the following quadratic programming problem 
with linear restrictions and an ε-insensitive loss function: 

* l
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   St : 
*
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n

*
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( ) 0
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where K(xi,xj) is a kernel function, C is the regularization 
term and ε is a positive constant presenting an insensitive 
region in the interior of which the training errors are unseen. C 
and ε are predefined constants. The feed-forward evaluation 
function of a new, unlearned vector x is: 

Nsv
*

i i i

i 1

y(x) ( )K(x , x) b


       (8) 

The parameters αi, α
*
i and b are calculated in learning phase. 

As in the classification model, just the resulting support 

vectors are used in the feed-forward phase.  

III. METHODS OF SVM IMPLEMENTATION ON FPGA   

The related hardware implementations of SVM model on 
FPGA was accurately reviewed. In this paper we are focused in 
certain class of SVM implementations that implemented just 
the testing phase on FPGA. Unfortunately those for SVM 
regression were rare and exceptional. Most of designers needed 
to implement classifier for different applications whereas we 
found only three works [6]-[8] that implement a design for 
both classification and regression. The SVM for regression has 
the same importance as SVM for classification but is 
infrequently employed due to the complexity of the feed 
forward function. Next paragraphs give a consistent recap of 
different techniques and architectures employed for SVM 
implementation on FPGA. 

A. Parallel Systolic Array Architecture  

In different fields of sciences, the operations involving 
important linear system of equations like matrix algebra are 
indispensable. Consequently, the need of fast and speedy 
computers equipped with efficient software programs is crucial 
and increasing. Whereas, the main disadvantage of a general-
purpose computer is the limited memory space for big matrices 
computing. To avoid this problem, novel methods and 

approaches have to be invented to benefit simultaneously of 
highly parallel computational machines.  

The solution was the association of a big number of same 
processing elements (PEs) that rhythmically compute and pass 
data to neighboring connected PEs. The produced set of well 
ordered PEs connections corresponds to the Systolic 
architecture that can be arranged in a linear or two-dimensional 
array with rectangular or hexagonal geometry.  

The systolic array could be employed as a coprocessor 

combined with a host computer that pass data through the PEs 

and the final result is came again to the host computer. As in 

Fig. 2, this operation is similar to the flow of blood throughout 

the heart called “systolic”.  

 
Fig. 2. Systolic system machanism. 

This arrangement is very suitable for VLSI technology that 
offers an exceptionally high operating with low cost array of 
speedy computational processors. It was broadly implemented 
on FPGA to attain high levels of parallelism, that was exploited 
by various SVM implementations.  

R. Patil et al. [9] employed this architecture for 
implementing a SVM multiclass classifier. The hardware was 
Xilinx Virtex-6 FPGA for the recognition of facial expression. 
The training phase computed by MATLAB. Thanks to a power 
optimization of the FPGA design based on the difference-based 
partial reconfiguration technique, the power decrease up to 3 to 
5% was attained by using Xilinx EDA tool. 

C. Kyrkou et al. developed an SVM classifier for object 
detection based on systolic array architecture [10]. The design 
can be expanded and adjusted to convene multiclass 
classification and various applications. Many tasks of object 
detection like face, walker, and car were done. Simulation 
consequences proved a high performance of 40, 46, 122 fps for 
three applications, with no precision loss in comparison with 
the precision of software detection of the SVM model executed 
in MATLAB (77, 76, 78%). 

B. Multiplier-less Approach 

The Multiplier-less techniques were needed to diminish the 
implementation cost because the multipliers are the mainly 
costly blocks in term of surface occupation. Therefore, many 
researchers have hardly worked to make the multiplication 
simpler and faster by applying the fact that multiplication by a 
power-of-two could be achieved by simple shift and add 
operations. The number of these operations depends on the 
design restrictions. There are a number of conventional 
representations to speed up multiplication. One is by reducing 
the number of operands to be added; the other is by adding the 
operands faster (accelerating accumulation) [11]. Most 
designers combine and profit from the two methods to reduce 
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significantly the number of operands employed in the 
hardware. In the work [12], the authors benefit from this 
technique and aiming a diminution in hardware complexity and 
power consumption by implementing simplified multiplier-less 
kernel using shifts and add operations as an alternative to 
traditional vector product kernel for classification. The 
implementation of SVM classification was performed on the 
modern Xilinx Virtex-7 FPGA. 

They presented a different approach of applying the CSD 
and CSE representation methods for vectors data to decrease 
the number of needed adders to reduce the hardware 
complexity. Three classifiers were implemented to compare it 
against other three implemented classifiers using the 
conventional vector product kernel. The power reductions of 1, 
2.7, and 3.5% were achieved by the proposed CSD-based 
multiplier-less kernel against the vector product kernel relating 
to resources utilization. 

C. Dynamic Partially Reconfiguration 

There are two methods to modify the Hardware 
functionality on FPGA. First, the Static reconfiguration which 
consists to shutting down the application then downloading the 
new configuration and restarting the implementation. Second, 
the Dynamic Reconfiguration permits varying hardware 
functionality on FPGA without taking the purpose offline. This 
offers a flexibility to adjust the hardware online and to gain a 
lot of time. The modification can be either total or partial 
according to the need of designer. In total reconfiguration the 
configuration bitstream, affords the information concerning the 
chip and it arranges whole FPGA. In partial reconfiguration, 
just a part of the platform is reconstituted, whereas the rest 
maintain operating securely with respect to the development 
procedure. The Dynamic Partially Reconfigured approach 
(DPR) grants the modification on a selected section of the 
FPGA while the other sections stay working without 
necessitating to turning off. This great improvement is 
excellent for real time embedded systems when the shutting 
down of the system is expensive and detriment during system 
runtime. Moreover, DPR diminished significantly power 
consumption and decreasing reconfiguration time. 

This practice was utilized by H. Hussain et al. [13] for 
implementing SVM classifier for bioinformatics applications. 
It was implemented on an old FPGA panel; Xilinx ML403, 
where the kernel calculation was implemented using two 
pipelined stages. An acceleration up to 85x was accomplished 
above a corresponding GPP software execution using 
MATLAB bioinformatics toolbox DPR was applied to change 
the diverse parameters of SVM, it was 8x more rapidly than 
reconfiguring the entire of FPGA.  

D. Common Pipelining Technique 

The pipelining technique is a technique implementing a 
form of parallelism with a single processor. It accelerates 
the central processing unit throughput at a certain clock rate by 
performing multiple operations at the same time. The 
fundamental training cycle is broken in a series named 
a pipeline. Pipelining searches to let the processor works on as 
many instructions as there are dependent steps. It augments 
instruction throughput however does not diminish the required 
time to end one instruction. 

The researchers in works [14], [15] wanted to compare the 
performances of FPGA and GPU implementations of a human 
skin SVM classifier against the software performances. The 
critical hardware composes of FPGA were designed using 
HDL in a completely pipelined organization, even as the other 
elements like FIFO and interfaces were implemented in HLL. 
The implementation results confirmed the excellence of the 
implemented fully pipelined FPGA architecture on GPU and 
CPU for a small number of image pixels, while the GPU 
implementation was the fastest for a big number of pixels. The 
advantage of FPGA implementation is that consumes less 
power than the GPU implementation [15].  

Y. Ago et al. [16] employed a new fully pipelined DSP 
architecture on FPGA for accelerating SVM classification. The 
proposed design was executed on Xilinx Virtex-6 FPGA with 
different types of kernel functions; sigmoid, polynomial, and 
RBF kernels. Consequently, an important throughput of 
2.89x106 times per second for classifying 128-dimension 
feature space running at 370.096 MHZ was obtained. Other 
implementations intended to develop the common pipelined 
fashion for accomplishing powerful designs.  

Whereas, a combined circuit was designed in a parallel 
architecture with two-stage pipeline for linear and non-linear 
SVM classification [17] in order to diminish the circuit size by 
sharing multipliers and adders necessary for inner product 
computation. The proposed circuit was synthesizing with 65nm 
standard cell library, representing 661,261 gates with 152 MHz 
maximum operating frequency. Moreover, high performance 
was attained from handing out up to 33.8 640x480 image 
frames per second. 

E. CORDIC Algorithm 

The CORDIC algorithm is a fundamental iterative 
algorithm using a fixed vector rotation technique to calculate 
sequentially the trigonometric functions. The entire conception 
orbits around employing just a simple shifter and adder to 
simplify the implementation of the CORDIC algorithm for 
computing complex functions. The CORDIC algorithm was 
originally presented by J.E. Volder [18] for implementing 
fundamental mathematical functions like the multiplication, 
division and trigonometric functions. It was helpful for diverse 
domains like neural networks, video and image processing, etc. 
For majority of applications the CORDIC algorithm offers a 
speed-up of time and reduction of power consumption. SVM 
method for both classification and regression were 
implemented by M. Ruiz-Llata et al. [6] on FPGA using the 
CORDIC iterative algorithm. The implemented system 
consumed 3/4 of the FPGA logic (Cyclone II) and an exterior 
memory was used for storing support vectors leading to 2ms 
limitation in the classification speed, with an error rate of 4%.  

Another FPGA implementation of fast SVM presented by 
J. Sarciada et al. [19] based on CORDIC algorithm for kernel 
calculations. The implemented system achieved speed 
improvement over their previous CORDIC circuit implemented 
in [20] with a factor of 6, with limited hardware resources 
utilization. 
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IV. FPGA DESIGNING TOOLS 

Field-Programmable Gate Arrays (FPGAs) is composed of 
configurable logic blocks (CLBs) that can be reprogrammed to 
realize different functions in few seconds. The flexibility 
offered by the FPGA goes with the increasing programming 
complexity. Consequently there is a critical necessity for high 
level fast prototyping systems that can help designers and eases 
the mapping from algorithm to hardware. The algorithms are 
classically written and tested via MATLAB code or Simulink 
model based environment, and there are a number of tools that 
convert such algorithms to a hardware description language 
such as AccelDSP Synthesis Tool from Xilinx, Simulink HDL 
Coder from Mathworks, C-based High Level Design Tools and 
System Generator for DSP. Briefly, these tools are explained at 
the next paragraph. 

AccelDSP Synthesis Tool is a high level tool particularly 
designed for Digital Signal Processing (DSP) applications. The 
principle of AccelDSP is to translate a MATLAB floating-
point design into a hardware implementation that objects 
FPGAs. AccelDSP automatically creates bit-true and cycle-
accurate HDL codes which are complete to synthesize, 
implement and map onto FPGA hardware. AccelDSP 
generated designs result in inefficient architectures in terms of 
area and timing compared to hand-coded results. 

The Simulink HDL Coder is a high level design tool which 
generates HDL code from Simulink models and State flow 
finite state machines. It can provide also interfaces to combine 
manually-written HDL codes, HDL Co-simulation blocks and 
RAM blocks in its environment. Whereas, not the whole 
Simulink included blocks are supported. Embedded MATLAB 
Function Block has its own limitations and do not support all 
the operations such as nested functions and use of multiple 
values in the left side of an expression. 

The design C-based high level design tools [21] are used 
for automatic hardware generation offering a quicker path to 
hardware with a low cost comparing to traditional methods. It 
expresses parallelism through variations in C (pseudo-C) or 
compiler or both. Ideally, it is best to use pure ANSI-C without 
any variation in C and exploit parallelism through compiler 
that ports C code into hardware; therefore a user does not need 
to learn a new language. 

System Generator is a high level design tool designed by 
Xilinx to be used in model-based design environment and 
implemented in FPGAs. Simulink provides a powerful 
component based computing model including several different 
blocks to be connected together by the user for designing and 

simulating functional systems. System Generator provides 
similar blocks which are used and connected the same way 
Simulink blocks does but target FPGA architectures to design 
discrete time systems which can be synchronous to a single or 
more clocks. The simulation results of the designed systems 
are bit and cycle accurate which means simulation and 
hardware results are exactly match together. System Generator 
is the best tool provided for MATLAB code environment 
because it’s a “push button” transition from specification to 
implementation. 

V.  IMPLEMENTATION OF SVM REGRESSION  

A. Approach and the Parameters Selection  

A variety of practices for hardware implementations have 
been developed for improving the online SVM testing phase on 
different FPGA devices. The idea is to train SVM model first 
offline on software (MATLAB), and then the trained data are 
extracted to be used for online regression on hardware. Only 
the resulting support vectors are used in the feed-forward 
phase. The feed-forward estimation function of a new, non-
learned vector x is: 

Nsv
*

i i i

i 1

y(x) ( )K(x , x) b


       (8) 

Where parameters αi, αi
* 

and b are given in the learning 
phase. K(xi,xj) is the kernel function that can be polynomial 
functions or Gaussian functions. Our system uses the 
polynomial function because this kernel significantly simplifies 
the SVM feed-forward phase computation in constrained 
hardware while conserves good classification performance 
with respect to the system nonlinearities. 

The parameters to be fixed prior the training step are the 
parameter of the kernel which is the degree of polynomial 
kernel, the regularization parameter C and the ε parameter of 
the ε-insensitive loss function. All these parameters are chosen 
to be used in the fixed-point arithmetic. To locate C, and the ε 
parameter in regression, we use an iterative training strategy 
with the goal of minimizing errors while keeping a reduced 
number of support vectors. 

The basic hardware architecture to perform (8) is 
represented in Fig. 3. 

The inputs parameters are: the testing vector and the 
support vectors. The calculation of the prediction function is 
realized through a kernel function processing block that 
acquires the input parameters and then calculates the Gramian 
matrix to be multiplied by the Lagrange Multipliers. 

 
Fig. 3. Hardware architecture of SVM testing phase.
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The Gramian matrix N NG  is like that: 

( ( , )), , 1,...,ij i jG K x x i j N 
   (9) 

N is the number of observations and K is the kernel 
function. It can be selected as sigmoid or polynomial kernel. 
The computation of Gramian matrix is done in the training and 
testing phase. As the input vector X can be 1-Dimensional or 
2-Dimensional Array, we suggested a streaming Approach to 
calculate the Gramian matrix.  

This approach exploits the FPGA parallelism to automatic 
compilation of software programs into hardware. Effectively, 
three fundamental approaches are distinguished to automatic 
compilation of software into hardware.  

First approach is to find an accessible parallel programming 
model. Then programmers map a program written in it onto 
hardware [22]. This approach permits to establish parallelism, 
however many problems like synchronization, deadlocks and 
starvation have to be arranged. 

A different approach, the behavioral synthesis compilers 
those investigate programs written in a high-level sequential 
language, for example C, and challenge to extort instruction-
level parallelism by analyzing dependencies in the middle of 
instructions, and mapping in reliant instructions to parallel 
hardware components. Various compilers have been 
accomplished, like C2H from Altera that is entirely 
incorporated inside their SOPC design flow. The major 
difficulty with such approach is that the overall of instruction-
level parallelism in a classic software program is limited. 
Therefore, constantly have to reorganize their code and without 
a doubt control hardware resources, like mapping of data to 
memory units. 

The third approach is to exploit a sophisticated language 
that permits to the programmers to express parallelism without 
be troubled about synchronization and associated matters. This 
type of languages is based on the streaming paradigm 
articulated on data that are collected into streams [23] similar 
to arrays, but with a mutually independency between the 
elements. In our work this approach is entirely used to execute 
all the testing phase on the FPGA. 

In next paragraph the experimental process is described 
with explanation of the implementation steps. 

B. Description of the Fluid Process and Results  

The process subject to regression is a fluid level control 
system consisting of two cascaded tanks with free outlets fed 
by a pump. The water is transported by the pump to the upper 
of the two tanks. The process is depicted in Fig. 4. 

The input signal to the process is the voltage applied to the 
pump and the two output signals consist of measurements of 
the water level of the tanks. Since the outlets are open, the 
result is a dynamics that varies nonlinearly with the level of 
water. The process is controlled from a PC equipped with 
MATLAB interfaces to the A/D and D/A converters. All data 
was collected in open loop experiments using zero-order hold 
(ZoH) sampling. The data was recorded from the cascaded 
tanks and collected in a data file. The sampling period of 4.0 s 

provides 7500 samples of input-output data for both the upper 
and lower tank.  

  
Fig. 4. Fluid process composed of two cascaded tanks. 

To construct the SVM regression model for the fluid level 
control system, 2000 observations taken for the training phase 
and the validation phase was performed on 1000 new 
observations.  

Firstly, the optimal parameters for training phase like the 
regularization parameter C and the ε–insensitive loss function 
are obtained using MATLAB with an iterative training 
approach to reduce computing errors while maintaining a 
reduced number of support vectors. After this preparation, it is 
possible to prove the efficiency of the modeling parameters by 
testing it with novel data. The type of kernel used: polynomial 
and sigmoid. The optimal parameters λ and σ of the machine 
learning are mentioned in Table 2: 

TABLE II.  PARAMETRERS SELECTION  

    Parameters 

 

Method  

Kernel 

function 

Optimal 

parameter 

Trade-off 

parameter  

ε-

insensitive 

loss 

function 

SVM 

Regression 

 

Polynomial 

 

σ=3 

 

C=100 

 

0.01   

SVM 

Regression 
Sigmoid  α =10, c=1 C=1000 0.01   

Secondly and according to this table, the resulting support 
vectors were six (for polynomial kernel). The basic hardware 
architecture to perform this equation: 

 
Nsv

*

i i i

i 1

y(x) ( )K(x , x) b


     is represented in Fig. 5. It is 

composed of input vector X, Nsv parallel support vectors SV 
blocks, a kernel processing block, a Gramian matrix block, 
Lagrange multipliers block , FIFO buffers and memory buffers.  

The testing vector X is passed through the FIFO to be 
streamed and then calculated by the kernel functions and 
support vectors. To benefit from data parallelism, the number 
of streams is identical to the number Nsv of suport vectors 
because stream elements are independent. The number of 
streams is often limited by the accessible hardware resources. 
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The objective of our research is to benefit from the powerful 
parallelizing of FPGA and the flexible software programming. 
The design user has only to choose the system to be predicted 
and the kernel type suitable to the application, and then in 
offline calculate the support vectors that will be used for feed 
forward function on hardware. 

In Fig. 5, the system generator project for implementing the 
testing phase is presented.  

 
Fig. 5. System generator project for computing the testing phase of SVM. 

As mentioned in Fig. 6 the regression vector is 2d-vector:

( ) ( ( 1), ( 2))x i y i y i    The computation of this type of 

vectors is generally difficult in hardware. Consequently, the 
streaming approach is used for this vector. The two columns of 

the regression vector are streamed in parallel and 
simultaneously computed by the kernel processing function 
and support vectors. The kernel function is polynomial with 
third order. Then the result passed through the yellow block 
responsible of the concatenation of Gramian matrix elements. 

Finally, the equation 
Nsv

*

i i i

i 1

y(x) ( )K(x , x) b


     is ready 

and displayed.  

As mentioned in Fig. 6 the regression vector is 2d-vector:

( ) ( ( 1), ( 2))x i y i y i    The computation of this type of 

vectors is generally difficult in hardware. Consequently, the 
streaming approach is used for this vector. The two columns of 
the regression vector are streamed in parallel and 
simultaneously computed by the kernel processing function 
and support vectors. The kernel function is polynomial with 
third order. Then the result passed through the yellow block 
responsible of the concatenation of Gramian matrix elements. 

Finally, the equation 
Nsv

*

i i i

i 1

y(x) ( )K(x , x) b


     is ready 

and displayed.  

After verifying the of the system functionality on the 
Simulink environment the generation of hardware components 
are executed. While building the hardware system, ISE flow 
generates a bit-stream that will be later used to configure the 
FPGA. When the compilation is finished, a new one block is 
created including all the purposes necessary for the executing 
system on FPGA. The produced hardware capsule the SVM 
testing phase is allied to a bit-stream file. After downloading 
this file in the FPGA via the Digilent USB JTAG Cable, then 
System Generator reads the output back from JTAG and sends 
it to Simulink. When execution is accomplished, the displayed 
results are compared to the results expected by the simulation.  

The more important criteria in this comparison is the 
computation time because the software (MATLAB) is 
incapable to realize matrix multiplication for big dimension 
(more than 1000). Therefore, the use of FPGA gains a lot of 
time and big data to be computed in one time. In Table 3, we 
illustrate the results for computing the testing phase on 
hardware (FPGA) called SVMsoft and software (MATLAB) 
called SVMhard for polynomial and sigmoid kernel. 
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Fig. 6. Architecture for the feed-forward estimation function. 

TABLE III.  SVMSOFT AND SVMHARD PERFORMANCES 

 
Kernel 

type 

NMSE 

Testing 
CT(s) 

SVMsoft  

Polynomial 

 

5.0766.10-09 740.553  

SVMhard 9.0463.10-03 12.032044 

SVMsoft 

Sigmoid 

4.8928.10-08 664.931  

SVMhard 2.1974.10-02 10.056215 

The exploited FPGA platform was VIRTEX 5 with the 
clock time period is 10 ns. The difference of computation time 

between SVMsoft and SVMhard was very big in order of 60 
times. This acceleration was reached thanks to the FPGA 
computation power. The error rate of SVMhard calculated by 
the Normalized Mean Squared Error (NMSE) is higher than 
error rate of SVMsoft. The little difference in accuracy was in 
order 10

-5
 caused by the fixed point arithmetic used in 

hardware implementation.  

We draw the different plots of SVMsoft, SVMhard and the 
real output of process in the same Fig. 7. As seen, there is a 
good concordance between the three plots that demonstrate the 
efficiency of the adopted approach. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 8, No. 8, 2017 

127 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 7. Learning and testing phase of SVM (hard & soft).

VI. COMPARISON WITH SIMILAR WORK 

In this section we propose to compare the performances of 
our design to the design of Marta Ruiz-Llata [6] that calculates 
the testing phase of SVM for classification and regression by 
the same design. As we interested to the regression task, we 
implemented the same system used in Marta work. It was the 
sinus cardinal function “sinc” corresponded to this expression: 

2 2
1 2

2 2
1 2

sin x x
y

x x





                              (10) 

To obtain convincing model for testing the prediction 
function quality the selected datasets were arbitrarily 
engendered by 400 input (x1, x2) values appertaining to xi∈ (10, 
10) and conniving its corresponding output value y.  

The training phase and parameters selection were also 
achieved by MATLAB. After finding the optimal values like 
the regularization parameter C, the insensitive zone ε and the 
parameter of kernel function γ, the efficiency of the model 
have to be tested with new unknown data. Then the estimated 

values were compared with the true values for sinus cardinal 
function. The testing dataset was composed of 100 arbitrarily 
values chose in the same way as testing dataset. 

The author of this work employed the hardware friendly 
kernel function described by this expression: 

12 ix x 
 

Where γ= 2
-2

 , C=1 and ε=0.01. There were 283 support 
vectors. The middling error between the predicted output and 
the real one was 0.02. The selected device for implementation 
was Altera EP2C20 Cyclone II using 8 bits resolution with 
fixed point arithmetic for representing data. The clock rate of 
the system was restricted to 30 MHz.  

With the same method SVM for regression, the same 
approach (implementing just the testing phase) and the same 
platform (FPGA), we exploited our hardware architecture to 
implement the same sinus cardinal function for the same data 
sets. The platform exploited by Marta was very old. Therefore, 
there is no benefit to implement our design on Altera 
cyclone 2. 
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Fig. 8. A three dimensions plot of the sinus cardinal function. 

 

Fig. 9. Learning and testing phase of SVM for sinus cardinal function.

The used kernel function was the sigmoid function with the 
parameters: α=1 and c=10. The optimal parameters of SVM 
were C=100 and ε=0.001. There were just 10 support vectors. 
The reached performances were better in term of computation 
time and error rate. The NMSE was equal to 5.4437.10

-04
 and 

the total time was 08.1075 seconds. In Fig. 8, the different 
outputs are drawn. In the learning phase, the sinus cardinal 
function and SVM output are drawn. Then in the testing phase, 
also the sinus cardinal function is plotted with SVM output 
(SVMsoft) and the SVMhard (the implementation result). 

In Fig. 9, it seems clear the strong resemblance between the 
sinus cardinal function output and the expected output in the 
training and learning phase. The SVMsoft and SVMhard were 
approximately confused thanks to the effectiveness of the SVM 
method.  

Therefore, it is easy to predict the output of any process 
either linear or nonlinear in very short time. The number of 
support vectors is based on the value of the margin ε.  

VII. CONCLUSION 

In this paper, an efficient method of implementing the 
testing phase of SVM method was advised. The basic 
contribution of this approach is to accelerate the computation 
of the RKHS model by use of powerful FPGA. The 
experiments prove the excellent speedup attained that is more 
than 60 times compared with the software computation time.  

The advantage of the designing tool Xilinx System 
Generator is the possibility to implement the software and the 
hardware in the same environment. Furthermore, Simulink 
offers a pleasant graphics interface for supple modellization 
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and simulation. The design was well organized into streaming 
approach along the testing phase.  

This practice permitted to construct a robust model for 
nonlinear system using novel data in the testing phase. 

Future works will incorporate the use of the Xilinx System 
Generator for the development of other kernel functions to 
increase the simulation precision. Also, better performances 
can be reached with newer and more powerful FPGA type.  
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