
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

119 | P a g e

www.ijacsa.thesai.org

FPGA Implementation of SVM for Nonlinear

Systems Regression

Intissar SAYEHI

University of Tunis Elmanar, Faculty of Mathematical, Physical and Natural Sciences of Tunis

Laboratory of Electronics and Microelectronics, (E. μ. E. L),

FSM, Monastir, Tunisia

Mohsen MACHHOUT

University of Monastir, Faculty of Sciences of Monastir

Laboratory of Electronics and Microelectronics (E. μ. E. L)

Rached TOURKI

University of Monastir, Faculty of Sciences of Monastir

Laboratory of Electronics and Microelectronics (E. μ. E. L)

Abstract—This work resumes the previous implementations of

Support Vector Machine for Classification and Regression and

explicates the different methods and approaches adopted. Ever

since the rarity of works in the field of nonlinear systems

regression, an implementation of testing phase of SVM was

proposed exploiting the parallelism and reconfigurability of Field-

Programmable Gate Arrays (FPGA) platform. The nonlinear

system chosen for application was a real challenging model: a

fluid level control system existing in our laboratory. The

implemented design with fixed point precision demonstrates good

enough results comparing with the software performances based

on the Normalized Mean Squared Error. Whereas, in term of

computation time, a speed-up factor of 60 orders of time

comparing to MATLAB results was achieved. Due to the

flexibility of Xilinx System Generator, the design is capable to be

reused for any other system with different data sets sizes and

various kernel functions.

Keywords—Machine learning; nonlinear system; SVM

regression; Reproducing Kernel Hilbert Space (RKHS); MATLAB;

Field-Programmable Gate Arrays (FPGA); Xilinx System

Generator

I. INTRODUCTION

The support vector machine is a machine learning created
by Vapnik at the 60’s. It was created first for classification
tasks then extended to regression. The most important
advantage in this method that is applicable to different fields
are like medicine biology, signal processing, sensor networks,
computer sciences, etc.

The difficult challenge in the use of the SVM method is to
compromise between the model performances and the data sets
size. There from the need to hardware platforms that accelerate
the computation time and provide a flexible support for
classifying or regressing new systems.

 This paper treated the previous hardware implementations
of support vector machine on Field-Programmable Gate Arrays
(FPGA) for classification and regression and explains the
different approaches adopted for developing the SVM

architecture. The FPGAs devices offer many advantages like
concrete development tools, simple reprogram ability and
quick development time. Furthermore, parallelism can be
attained, that is a benefit above other devices, like
microcontrollers and DSPs.

The majority of implementations of SVM were targeted to
classification task for simple and specific problems. However
the SVM regression task still abandoned and neglected.

 In this present, we propose a hardware design on FPGA for
nonlinear systems regression.

The arrangement of the article is as pursues. In the second
section the theoretical basis of nonlinear systems identification
in the Reproducing Kernel Hilbert Space (RKHS) space was
described. In Section 3, the Methods of SVM implementations
on FPGA were presented with the related works. In Section 4,
the FPGA designing tools were explained. In Section 5 our
SVM Implementation approach and the Parameters Selection
were presented with results and plots for the regression of fluid
level control system. Finally we compare our work to similar
ones and conclude with Conclusion.

II. NON LINEAR SYSTEMS IDENTIFICATION IN

REPRODUCING KERNEL HILBERT SPACE

The identification of linear systems is accomplished via
mathematical representations on the bases of vibration
measurements. Thus, the relation between the input and output
of a system, called transfer function, stays stable at all
excitation levels. Accordingly, the mathematic model acquired
at one operating point can be generalized for predicting the
system behavior at another operating point. Whereas, it is not
the same case for nonlinear systems because it is hard and
complicated to find a general mathematical model describing
the system by relying on the system identification only at a
particular excitation level.

The difference between linear and non-linear systems can
be explicated by Fig. 1, that for non-linear systems the transfer
function is not independent of the input.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

120 | P a g e

www.ijacsa.thesai.org

Fig. 1. Distinction between linear and nonlinear system.

It exist many types of nonlinear models like state-space
models, Input/output-models, block-oriented models, etc. it
didn’t exist a nonlinear universal model suitable for all
appliances but it depends on each one. Consequently, diverse
approaches for identifying and modeling nonlinear systems
were conceived. Essentially two categories can be
distinguished: parametric models and nonparametric models.
The next figure clarifies the different constitutions of these
categories.

Another part of researchers were also interested by the
system identification field by creating diverse techniques in
machine learning allowing nonlinear systems identification like
k-Nearest Neighbors and Regularization networks [1]-[3] .

In next paragraphs, we introduce the mathematical
foundation of learning machine and explain the functionality of
support vector machine method.

A. Statistical Learning Theory (SLT)

The goal of the Statistical Learning Theory [4] is to obtain
a function f modeling a given system since a set of observed

data
N

i i i 1O {(x ,y)}  composed of inputs ix and outputs iy .

This function has to repeat the process behavior by diminishing
the functional risk presented by this expression:

 ,
() (, ()) (,)

X Y
R f V y f x P x y dxdy 

 (1)
The expression V(y,f(x)) is named cost function. It

computes the deviation between system output yi and the
estimated output f(x). The couple (X,Y) is composed of

random vectors and of the independent samples (,)i ix y . The

risk R(f) can’t be approximated caused by unknowing P(x,y).
To resolve this problem we have to ease the following
expression:

1

1
() (, ())

N

emp i i

i

R f V y f x
N



 
 (2)

However, minimizing frankly Remp(f) in the functions space
H don’t give the best approximation of R(f) minimization and
could guide to over fitting. As a resolution, Vapnik presented
the theory of structural risk minimization (SRM). It penalizes
empirical risk via a function that approximates the complexity
of the retained model.

This guides to minimizing the constraint defined by the
following expression:

2() ()

1

1
min () min (, ())

N
i i

Hf H
i

D f V y f x f
N






 
  

 
 (3)

The first word measures how the function f fits a given data
and the second word is the squared norm of f in the RKHS
space H that controls the complexity (smoothness) of the
solution. The parameter λ is the regularization parameter that
equilibrium the tradeoff among the two terms.

The regularity of the solution is most important and not the
value of λ. Whereas it is not evident to minimize the constraint
(3) on whichever arbitrary function space H, whatever is it with
finite or infinite dimension. Therefore, to overcome this
difficulty, we will consider the space H as a RKHS.

B. Reproducing Kernel Hilbert Space (RKHS)

We suppose that X the random variable is evaluated in the

space
dE  and we suppose that exists a function K called

kernel function:
2:K E  . It is symmetric and positive

definite. In this case, there is a function : E H  that:

 ' '(,)) (), ()
H

K x x x x 

(4)

H is the Reproducing Kernel Hilbert Space (RKHS) [5] of
kernel K. This space has some rigorous properties:

 x E  et f H (,.), ()
H

K x f f x (5)

 Due to represented theorem the resolution of the

optimization problem presented by (3) in this space is

given by :

1

(,.)

N

opt i i

i

f a K x




(6)

TABLE I. KERNEL FUNCTIONS

Kernel function Mathematical expression Parameters

Linear kernel
'(,)) ' K x x x x -

Polynomial

kernel
'(,)) (1 , ') K x x x x 

* and

x,x ' is an

Euclidian scalar
product.

Sigmoid kernel (,) tanh(. .)Tk x y x y c 
α and c are

adjustable

Radial Basis

Function (RBF)

kernel

2

2

'

' 2(,))





x x

K x x e 

σ is a real positive

parameter

Laplacian kernel

(ERBF,

Extended RBF)

''(,))
 


x x

K x x e


γ is a real positive

parameter

X (ω) Y (ω) X (ω) Y (ω)

 Linear system Non-linear system

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

121 | P a g e

www.ijacsa.thesai.org

It exist a variety of kernel functions that could be
considered in Table 1.

C. Support Vector Machine for regression

SVM is a supervised learning model founded on the
Vapnik and Chervonenkis learning theory. It was first
developed for classification problems then extended to
regression tasks.

For SVM regression, the goal is to find a model for the data
set D={(x1,y1),(x2,y2),…,(xn,yn)} that matches the input xi to

the real output yi (with
l

ix  and iy ).

By resolving the following quadratic programming problem
with linear restrictions and an ε-insensitive loss function:

* l

n
* *

i i j j i j
,

i, j 1

n n
* *

i i i i i

i 1 i 1

1
min imise ()()K(x ,x)

2

() ()y

  


 

    

      



 

 (7)

 St :
*

i i0 , C    for i=1,…,n
n

*

i i

i 1

() 0


  

where K(xi,xj) is a kernel function, C is the regularization
term and ε is a positive constant presenting an insensitive
region in the interior of which the training errors are unseen. C
and ε are predefined constants. The feed-forward evaluation
function of a new, unlearned vector x is:

Nsv
*

i i i

i 1

y(x) ()K(x , x) b


    (8)

The parameters αi, α
*
i and b are calculated in learning phase.

As in the classification model, just the resulting support

vectors are used in the feed-forward phase.

III. METHODS OF SVM IMPLEMENTATION ON FPGA

The related hardware implementations of SVM model on
FPGA was accurately reviewed. In this paper we are focused in
certain class of SVM implementations that implemented just
the testing phase on FPGA. Unfortunately those for SVM
regression were rare and exceptional. Most of designers needed
to implement classifier for different applications whereas we
found only three works [6]-[8] that implement a design for
both classification and regression. The SVM for regression has
the same importance as SVM for classification but is
infrequently employed due to the complexity of the feed
forward function. Next paragraphs give a consistent recap of
different techniques and architectures employed for SVM
implementation on FPGA.

A. Parallel Systolic Array Architecture

In different fields of sciences, the operations involving
important linear system of equations like matrix algebra are
indispensable. Consequently, the need of fast and speedy
computers equipped with efficient software programs is crucial
and increasing. Whereas, the main disadvantage of a general-
purpose computer is the limited memory space for big matrices
computing. To avoid this problem, novel methods and

approaches have to be invented to benefit simultaneously of
highly parallel computational machines.

The solution was the association of a big number of same
processing elements (PEs) that rhythmically compute and pass
data to neighboring connected PEs. The produced set of well
ordered PEs connections corresponds to the Systolic
architecture that can be arranged in a linear or two-dimensional
array with rectangular or hexagonal geometry.

The systolic array could be employed as a coprocessor

combined with a host computer that pass data through the PEs

and the final result is came again to the host computer. As in

Fig. 2, this operation is similar to the flow of blood throughout

the heart called “systolic”.

Fig. 2. Systolic system machanism.

This arrangement is very suitable for VLSI technology that
offers an exceptionally high operating with low cost array of
speedy computational processors. It was broadly implemented
on FPGA to attain high levels of parallelism, that was exploited
by various SVM implementations.

R. Patil et al. [9] employed this architecture for
implementing a SVM multiclass classifier. The hardware was
Xilinx Virtex-6 FPGA for the recognition of facial expression.
The training phase computed by MATLAB. Thanks to a power
optimization of the FPGA design based on the difference-based
partial reconfiguration technique, the power decrease up to 3 to
5% was attained by using Xilinx EDA tool.

C. Kyrkou et al. developed an SVM classifier for object
detection based on systolic array architecture [10]. The design
can be expanded and adjusted to convene multiclass
classification and various applications. Many tasks of object
detection like face, walker, and car were done. Simulation
consequences proved a high performance of 40, 46, 122 fps for
three applications, with no precision loss in comparison with
the precision of software detection of the SVM model executed
in MATLAB (77, 76, 78%).

B. Multiplier-less Approach

The Multiplier-less techniques were needed to diminish the
implementation cost because the multipliers are the mainly
costly blocks in term of surface occupation. Therefore, many
researchers have hardly worked to make the multiplication
simpler and faster by applying the fact that multiplication by a
power-of-two could be achieved by simple shift and add
operations. The number of these operations depends on the
design restrictions. There are a number of conventional
representations to speed up multiplication. One is by reducing
the number of operands to be added; the other is by adding the
operands faster (accelerating accumulation) [11]. Most
designers combine and profit from the two methods to reduce

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

122 | P a g e

www.ijacsa.thesai.org

significantly the number of operands employed in the
hardware. In the work [12], the authors benefit from this
technique and aiming a diminution in hardware complexity and
power consumption by implementing simplified multiplier-less
kernel using shifts and add operations as an alternative to
traditional vector product kernel for classification. The
implementation of SVM classification was performed on the
modern Xilinx Virtex-7 FPGA.

They presented a different approach of applying the CSD
and CSE representation methods for vectors data to decrease
the number of needed adders to reduce the hardware
complexity. Three classifiers were implemented to compare it
against other three implemented classifiers using the
conventional vector product kernel. The power reductions of 1,
2.7, and 3.5% were achieved by the proposed CSD-based
multiplier-less kernel against the vector product kernel relating
to resources utilization.

C. Dynamic Partially Reconfiguration

There are two methods to modify the Hardware
functionality on FPGA. First, the Static reconfiguration which
consists to shutting down the application then downloading the
new configuration and restarting the implementation. Second,
the Dynamic Reconfiguration permits varying hardware
functionality on FPGA without taking the purpose offline. This
offers a flexibility to adjust the hardware online and to gain a
lot of time. The modification can be either total or partial
according to the need of designer. In total reconfiguration the
configuration bitstream, affords the information concerning the
chip and it arranges whole FPGA. In partial reconfiguration,
just a part of the platform is reconstituted, whereas the rest
maintain operating securely with respect to the development
procedure. The Dynamic Partially Reconfigured approach
(DPR) grants the modification on a selected section of the
FPGA while the other sections stay working without
necessitating to turning off. This great improvement is
excellent for real time embedded systems when the shutting
down of the system is expensive and detriment during system
runtime. Moreover, DPR diminished significantly power
consumption and decreasing reconfiguration time.

This practice was utilized by H. Hussain et al. [13] for
implementing SVM classifier for bioinformatics applications.
It was implemented on an old FPGA panel; Xilinx ML403,
where the kernel calculation was implemented using two
pipelined stages. An acceleration up to 85x was accomplished
above a corresponding GPP software execution using
MATLAB bioinformatics toolbox DPR was applied to change
the diverse parameters of SVM, it was 8x more rapidly than
reconfiguring the entire of FPGA.

D. Common Pipelining Technique

The pipelining technique is a technique implementing a
form of parallelism with a single processor. It accelerates
the central processing unit throughput at a certain clock rate by
performing multiple operations at the same time. The
fundamental training cycle is broken in a series named
a pipeline. Pipelining searches to let the processor works on as
many instructions as there are dependent steps. It augments
instruction throughput however does not diminish the required
time to end one instruction.

The researchers in works [14], [15] wanted to compare the
performances of FPGA and GPU implementations of a human
skin SVM classifier against the software performances. The
critical hardware composes of FPGA were designed using
HDL in a completely pipelined organization, even as the other
elements like FIFO and interfaces were implemented in HLL.
The implementation results confirmed the excellence of the
implemented fully pipelined FPGA architecture on GPU and
CPU for a small number of image pixels, while the GPU
implementation was the fastest for a big number of pixels. The
advantage of FPGA implementation is that consumes less
power than the GPU implementation [15].

Y. Ago et al. [16] employed a new fully pipelined DSP
architecture on FPGA for accelerating SVM classification. The
proposed design was executed on Xilinx Virtex-6 FPGA with
different types of kernel functions; sigmoid, polynomial, and
RBF kernels. Consequently, an important throughput of
2.89x106 times per second for classifying 128-dimension
feature space running at 370.096 MHZ was obtained. Other
implementations intended to develop the common pipelined
fashion for accomplishing powerful designs.

Whereas, a combined circuit was designed in a parallel
architecture with two-stage pipeline for linear and non-linear
SVM classification [17] in order to diminish the circuit size by
sharing multipliers and adders necessary for inner product
computation. The proposed circuit was synthesizing with 65nm
standard cell library, representing 661,261 gates with 152 MHz
maximum operating frequency. Moreover, high performance
was attained from handing out up to 33.8 640x480 image
frames per second.

E. CORDIC Algorithm

The CORDIC algorithm is a fundamental iterative
algorithm using a fixed vector rotation technique to calculate
sequentially the trigonometric functions. The entire conception
orbits around employing just a simple shifter and adder to
simplify the implementation of the CORDIC algorithm for
computing complex functions. The CORDIC algorithm was
originally presented by J.E. Volder [18] for implementing
fundamental mathematical functions like the multiplication,
division and trigonometric functions. It was helpful for diverse
domains like neural networks, video and image processing, etc.
For majority of applications the CORDIC algorithm offers a
speed-up of time and reduction of power consumption. SVM
method for both classification and regression were
implemented by M. Ruiz-Llata et al. [6] on FPGA using the
CORDIC iterative algorithm. The implemented system
consumed 3/4 of the FPGA logic (Cyclone II) and an exterior
memory was used for storing support vectors leading to 2ms
limitation in the classification speed, with an error rate of 4%.

Another FPGA implementation of fast SVM presented by
J. Sarciada et al. [19] based on CORDIC algorithm for kernel
calculations. The implemented system achieved speed
improvement over their previous CORDIC circuit implemented
in [20] with a factor of 6, with limited hardware resources
utilization.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

123 | P a g e

www.ijacsa.thesai.org

IV. FPGA DESIGNING TOOLS

Field-Programmable Gate Arrays (FPGAs) is composed of
configurable logic blocks (CLBs) that can be reprogrammed to
realize different functions in few seconds. The flexibility
offered by the FPGA goes with the increasing programming
complexity. Consequently there is a critical necessity for high
level fast prototyping systems that can help designers and eases
the mapping from algorithm to hardware. The algorithms are
classically written and tested via MATLAB code or Simulink
model based environment, and there are a number of tools that
convert such algorithms to a hardware description language
such as AccelDSP Synthesis Tool from Xilinx, Simulink HDL
Coder from Mathworks, C-based High Level Design Tools and
System Generator for DSP. Briefly, these tools are explained at
the next paragraph.

AccelDSP Synthesis Tool is a high level tool particularly
designed for Digital Signal Processing (DSP) applications. The
principle of AccelDSP is to translate a MATLAB floating-
point design into a hardware implementation that objects
FPGAs. AccelDSP automatically creates bit-true and cycle-
accurate HDL codes which are complete to synthesize,
implement and map onto FPGA hardware. AccelDSP
generated designs result in inefficient architectures in terms of
area and timing compared to hand-coded results.

The Simulink HDL Coder is a high level design tool which
generates HDL code from Simulink models and State flow
finite state machines. It can provide also interfaces to combine
manually-written HDL codes, HDL Co-simulation blocks and
RAM blocks in its environment. Whereas, not the whole
Simulink included blocks are supported. Embedded MATLAB
Function Block has its own limitations and do not support all
the operations such as nested functions and use of multiple
values in the left side of an expression.

The design C-based high level design tools [21] are used
for automatic hardware generation offering a quicker path to
hardware with a low cost comparing to traditional methods. It
expresses parallelism through variations in C (pseudo-C) or
compiler or both. Ideally, it is best to use pure ANSI-C without
any variation in C and exploit parallelism through compiler
that ports C code into hardware; therefore a user does not need
to learn a new language.

System Generator is a high level design tool designed by
Xilinx to be used in model-based design environment and
implemented in FPGAs. Simulink provides a powerful
component based computing model including several different
blocks to be connected together by the user for designing and

simulating functional systems. System Generator provides
similar blocks which are used and connected the same way
Simulink blocks does but target FPGA architectures to design
discrete time systems which can be synchronous to a single or
more clocks. The simulation results of the designed systems
are bit and cycle accurate which means simulation and
hardware results are exactly match together. System Generator
is the best tool provided for MATLAB code environment
because it’s a “push button” transition from specification to
implementation.

V. IMPLEMENTATION OF SVM REGRESSION

A. Approach and the Parameters Selection

A variety of practices for hardware implementations have
been developed for improving the online SVM testing phase on
different FPGA devices. The idea is to train SVM model first
offline on software (MATLAB), and then the trained data are
extracted to be used for online regression on hardware. Only
the resulting support vectors are used in the feed-forward
phase. The feed-forward estimation function of a new, non-
learned vector x is:

Nsv
*

i i i

i 1

y(x) ()K(x , x) b


    (8)

Where parameters αi, αi
*

and b are given in the learning
phase. K(xi,xj) is the kernel function that can be polynomial
functions or Gaussian functions. Our system uses the
polynomial function because this kernel significantly simplifies
the SVM feed-forward phase computation in constrained
hardware while conserves good classification performance
with respect to the system nonlinearities.

The parameters to be fixed prior the training step are the
parameter of the kernel which is the degree of polynomial
kernel, the regularization parameter C and the ε parameter of
the ε-insensitive loss function. All these parameters are chosen
to be used in the fixed-point arithmetic. To locate C, and the ε
parameter in regression, we use an iterative training strategy
with the goal of minimizing errors while keeping a reduced
number of support vectors.

The basic hardware architecture to perform (8) is
represented in Fig. 3.

The inputs parameters are: the testing vector and the
support vectors. The calculation of the prediction function is
realized through a kernel function processing block that
acquires the input parameters and then calculates the Gramian
matrix to be multiplied by the Lagrange Multipliers.

Fig. 3. Hardware architecture of SVM testing phase.

Testing Vector

Support Vectors

Kernel Function

Processing
The Feed-

Forward

Regression

Function
Lagrange Multipliers

Gramian Matrix

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

124 | P a g e

www.ijacsa.thesai.org

The Gramian matrix N NG  is like that:

((,)), , 1,...,ij i jG K x x i j N 
 (9)

N is the number of observations and K is the kernel
function. It can be selected as sigmoid or polynomial kernel.
The computation of Gramian matrix is done in the training and
testing phase. As the input vector X can be 1-Dimensional or
2-Dimensional Array, we suggested a streaming Approach to
calculate the Gramian matrix.

This approach exploits the FPGA parallelism to automatic
compilation of software programs into hardware. Effectively,
three fundamental approaches are distinguished to automatic
compilation of software into hardware.

First approach is to find an accessible parallel programming
model. Then programmers map a program written in it onto
hardware [22]. This approach permits to establish parallelism,
however many problems like synchronization, deadlocks and
starvation have to be arranged.

A different approach, the behavioral synthesis compilers
those investigate programs written in a high-level sequential
language, for example C, and challenge to extort instruction-
level parallelism by analyzing dependencies in the middle of
instructions, and mapping in reliant instructions to parallel
hardware components. Various compilers have been
accomplished, like C2H from Altera that is entirely
incorporated inside their SOPC design flow. The major
difficulty with such approach is that the overall of instruction-
level parallelism in a classic software program is limited.
Therefore, constantly have to reorganize their code and without
a doubt control hardware resources, like mapping of data to
memory units.

The third approach is to exploit a sophisticated language
that permits to the programmers to express parallelism without
be troubled about synchronization and associated matters. This
type of languages is based on the streaming paradigm
articulated on data that are collected into streams [23] similar
to arrays, but with a mutually independency between the
elements. In our work this approach is entirely used to execute
all the testing phase on the FPGA.

In next paragraph the experimental process is described
with explanation of the implementation steps.

B. Description of the Fluid Process and Results

The process subject to regression is a fluid level control
system consisting of two cascaded tanks with free outlets fed
by a pump. The water is transported by the pump to the upper
of the two tanks. The process is depicted in Fig. 4.

The input signal to the process is the voltage applied to the
pump and the two output signals consist of measurements of
the water level of the tanks. Since the outlets are open, the
result is a dynamics that varies nonlinearly with the level of
water. The process is controlled from a PC equipped with
MATLAB interfaces to the A/D and D/A converters. All data
was collected in open loop experiments using zero-order hold
(ZoH) sampling. The data was recorded from the cascaded
tanks and collected in a data file. The sampling period of 4.0 s

provides 7500 samples of input-output data for both the upper
and lower tank.

Fig. 4. Fluid process composed of two cascaded tanks.

To construct the SVM regression model for the fluid level
control system, 2000 observations taken for the training phase
and the validation phase was performed on 1000 new
observations.

Firstly, the optimal parameters for training phase like the
regularization parameter C and the ε–insensitive loss function
are obtained using MATLAB with an iterative training
approach to reduce computing errors while maintaining a
reduced number of support vectors. After this preparation, it is
possible to prove the efficiency of the modeling parameters by
testing it with novel data. The type of kernel used: polynomial
and sigmoid. The optimal parameters λ and σ of the machine
learning are mentioned in Table 2:

TABLE II. PARAMETRERS SELECTION

 Parameters

Method

Kernel

function

Optimal

parameter

Trade-off

parameter

ε-

insensitive

loss

function

SVM

Regression

Polynomial

σ=3

C=100

0.01 

SVM

Regression
Sigmoid α =10, c=1 C=1000 0.01 

Secondly and according to this table, the resulting support
vectors were six (for polynomial kernel). The basic hardware
architecture to perform this equation:

Nsv

*

i i i

i 1

y(x) ()K(x , x) b


    is represented in Fig. 5. It is

composed of input vector X, Nsv parallel support vectors SV
blocks, a kernel processing block, a Gramian matrix block,
Lagrange multipliers block , FIFO buffers and memory buffers.

The testing vector X is passed through the FIFO to be
streamed and then calculated by the kernel functions and
support vectors. To benefit from data parallelism, the number
of streams is identical to the number Nsv of suport vectors
because stream elements are independent. The number of
streams is often limited by the accessible hardware resources.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

125 | P a g e

www.ijacsa.thesai.org

The objective of our research is to benefit from the powerful
parallelizing of FPGA and the flexible software programming.
The design user has only to choose the system to be predicted
and the kernel type suitable to the application, and then in
offline calculate the support vectors that will be used for feed
forward function on hardware.

In Fig. 5, the system generator project for implementing the
testing phase is presented.

Fig. 5. System generator project for computing the testing phase of SVM.

As mentioned in Fig. 6 the regression vector is 2d-vector:

() ((1), (2))x i y i y i   The computation of this type of

vectors is generally difficult in hardware. Consequently, the
streaming approach is used for this vector. The two columns of

the regression vector are streamed in parallel and
simultaneously computed by the kernel processing function
and support vectors. The kernel function is polynomial with
third order. Then the result passed through the yellow block
responsible of the concatenation of Gramian matrix elements.

Finally, the equation
Nsv

*

i i i

i 1

y(x) ()K(x , x) b


    is ready

and displayed.

As mentioned in Fig. 6 the regression vector is 2d-vector:

() ((1), (2))x i y i y i   The computation of this type of

vectors is generally difficult in hardware. Consequently, the
streaming approach is used for this vector. The two columns of
the regression vector are streamed in parallel and
simultaneously computed by the kernel processing function
and support vectors. The kernel function is polynomial with
third order. Then the result passed through the yellow block
responsible of the concatenation of Gramian matrix elements.

Finally, the equation
Nsv

*

i i i

i 1

y(x) ()K(x , x) b


    is ready

and displayed.

After verifying the of the system functionality on the
Simulink environment the generation of hardware components
are executed. While building the hardware system, ISE flow
generates a bit-stream that will be later used to configure the
FPGA. When the compilation is finished, a new one block is
created including all the purposes necessary for the executing
system on FPGA. The produced hardware capsule the SVM
testing phase is allied to a bit-stream file. After downloading
this file in the FPGA via the Digilent USB JTAG Cable, then
System Generator reads the output back from JTAG and sends
it to Simulink. When execution is accomplished, the displayed
results are compared to the results expected by the simulation.

The more important criteria in this comparison is the
computation time because the software (MATLAB) is
incapable to realize matrix multiplication for big dimension
(more than 1000). Therefore, the use of FPGA gains a lot of
time and big data to be computed in one time. In Table 3, we
illustrate the results for computing the testing phase on
hardware (FPGA) called SVMsoft and software (MATLAB)
called SVMhard for polynomial and sigmoid kernel.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

126 | P a g e

www.ijacsa.thesai.org

Fig. 6. Architecture for the feed-forward estimation function.

TABLE III. SVMSOFT AND SVMHARD PERFORMANCES

Kernel

type

NMSE

Testing
CT(s)

SVMsoft

Polynomial

5.0766.10-09 740.553

SVMhard 9.0463.10-03 12.032044

SVMsoft

Sigmoid

4.8928.10-08 664.931

SVMhard 2.1974.10-02 10.056215

The exploited FPGA platform was VIRTEX 5 with the
clock time period is 10 ns. The difference of computation time

between SVMsoft and SVMhard was very big in order of 60
times. This acceleration was reached thanks to the FPGA
computation power. The error rate of SVMhard calculated by
the Normalized Mean Squared Error (NMSE) is higher than
error rate of SVMsoft. The little difference in accuracy was in
order 10

-5
 caused by the fixed point arithmetic used in

hardware implementation.

We draw the different plots of SVMsoft, SVMhard and the
real output of process in the same Fig. 7. As seen, there is a
good concordance between the three plots that demonstrate the
efficiency of the adopted approach.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

127 | P a g e

www.ijacsa.thesai.org

Fig. 7. Learning and testing phase of SVM (hard & soft).

VI. COMPARISON WITH SIMILAR WORK

In this section we propose to compare the performances of
our design to the design of Marta Ruiz-Llata [6] that calculates
the testing phase of SVM for classification and regression by
the same design. As we interested to the regression task, we
implemented the same system used in Marta work. It was the
sinus cardinal function “sinc” corresponded to this expression:

2 2
1 2

2 2
1 2

sin x x
y

x x





 (10)

To obtain convincing model for testing the prediction
function quality the selected datasets were arbitrarily
engendered by 400 input (x1, x2) values appertaining to xi∈ (10,
10) and conniving its corresponding output value y.

The training phase and parameters selection were also
achieved by MATLAB. After finding the optimal values like
the regularization parameter C, the insensitive zone ε and the
parameter of kernel function γ, the efficiency of the model
have to be tested with new unknown data. Then the estimated

values were compared with the true values for sinus cardinal
function. The testing dataset was composed of 100 arbitrarily
values chose in the same way as testing dataset.

The author of this work employed the hardware friendly
kernel function described by this expression:

12 ix x 

Where γ= 2
-2

 , C=1 and ε=0.01. There were 283 support
vectors. The middling error between the predicted output and
the real one was 0.02. The selected device for implementation
was Altera EP2C20 Cyclone II using 8 bits resolution with
fixed point arithmetic for representing data. The clock rate of
the system was restricted to 30 MHz.

With the same method SVM for regression, the same
approach (implementing just the testing phase) and the same
platform (FPGA), we exploited our hardware architecture to
implement the same sinus cardinal function for the same data
sets. The platform exploited by Marta was very old. Therefore,
there is no benefit to implement our design on Altera
cyclone 2.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4

5

6

7

observations

The learning phase of SVM

process output

SVM output

0 100 200 300 400 500 600 700 800 900 1000
0

1

2

3

4

5

6

observations

The testing phase of SVM

process output

SVMsoft output

SVMhard output

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

128 | P a g e

www.ijacsa.thesai.org

Fig. 8. A three dimensions plot of the sinus cardinal function.

Fig. 9. Learning and testing phase of SVM for sinus cardinal function.

The used kernel function was the sigmoid function with the
parameters: α=1 and c=10. The optimal parameters of SVM
were C=100 and ε=0.001. There were just 10 support vectors.
The reached performances were better in term of computation
time and error rate. The NMSE was equal to 5.4437.10

-04
 and

the total time was 08.1075 seconds. In Fig. 8, the different
outputs are drawn. In the learning phase, the sinus cardinal
function and SVM output are drawn. Then in the testing phase,
also the sinus cardinal function is plotted with SVM output
(SVMsoft) and the SVMhard (the implementation result).

In Fig. 9, it seems clear the strong resemblance between the
sinus cardinal function output and the expected output in the
training and learning phase. The SVMsoft and SVMhard were
approximately confused thanks to the effectiveness of the SVM
method.

Therefore, it is easy to predict the output of any process
either linear or nonlinear in very short time. The number of
support vectors is based on the value of the margin ε.

VII. CONCLUSION

In this paper, an efficient method of implementing the
testing phase of SVM method was advised. The basic
contribution of this approach is to accelerate the computation
of the RKHS model by use of powerful FPGA. The
experiments prove the excellent speedup attained that is more
than 60 times compared with the software computation time.

The advantage of the designing tool Xilinx System
Generator is the possibility to implement the software and the
hardware in the same environment. Furthermore, Simulink
offers a pleasant graphics interface for supple modellization

0 50 100 150 200 250 300
-4

-3

-2

-1

0

1

2

observations

The learning phase of SVM

sinus cardinal function

SVM output

0 20 40 60 80 100

-1.5

-1

-0.5

0

0.5

1

1.5

2

observations

The testing phase of SVM

sinus cardinal function

SVMsoft output

SVMhard output

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

129 | P a g e

www.ijacsa.thesai.org

and simulation. The design was well organized into streaming
approach along the testing phase.

This practice permitted to construct a robust model for
nonlinear system using novel data in the testing phase.

Future works will incorporate the use of the Xilinx System
Generator for the development of other kernel functions to
increase the simulation precision. Also, better performances
can be reached with newer and more powerful FPGA type.

REFERENCES

[1] Lennart Ljung. Some aspects on nonlinear system identification. In Proc
14th IFAC Symposium on System Identification, Newcastle, Australia,
March 2006.

[2] Lennart Ljung. Perspectives on system identification. Annual Reviews
in Control, 34(1), March 2010.

[3] Alaa F. Sheta, “A Comparison between Regression, Artificial Neural
Networks and Support Vector Machines for Predicting Stock Market
Index “, communication on (IJARAI) International Journal of Advanced
Research in Artificial Intelligence, Vol. 4, No.7, 2015

[4] Bernhard Scholkopf and Alexander J. Smola, “Learning with Kernels:
Support Vector Machines, Regularization, Optimization, and Beyond”,
MIT Press Cambridge, MA, USA 2001

[5] Cristian Preda, “Regression models for functional data by reproducing
kernel Hilbert spaces methods”, Journal of Statistical Planning and
Inference Volume 137, Issue 3, 1 March 2007, Pages 829–840.

[6] M.Ruiz-Llata, G. Guarnizo, and M. Yébenes-Calvino, “FPGA
Implementation of a Support Vector Machine for Classification and
Regression,” in The 2010 International Joint Conference on Neural
Networks (IJCNN), 2010, pp. 1-5.

[7] D. Anguita, S. Pischiutta, S. Ridella, and D. Sterpi, “Feed-Forward
Support Vector Machine without Multipliers,” IEEE Transactions on
Neural Networks, vol. 17, pp. 1328-1331, 2006.

[8] X. Pan, H. Yang, L. Li, Z. Liu, and L. Hou, “FPGA Implementation of
SVM Decision Function Based on Hardware-friendly Kernel,” in
International Conference on Computational and Information Sciences ,
ICCIS 2013 Proceedings, 2013, pp. 133-136.

[9] R. Patil, G. Gupta, V. Sahula, and A. Mandal, “Power Aware Hardware
Prototyping of Multiclass SVM Classifier Through Reconfiguration,” in
2012 25th International Conference on VLSI Design (VLSID), 2012, pp.
62-67

[10] C. Kyrkou and T. Theocharides, “A Parallel Hardware Architecture for
Real-Time Object Detection with Support Vector Machines,” IEEE
Transactions on Computers, vol. 61, pp. 831-842, 2012.

[11] C.-W. Hsu and C.-J. Lin, “A Comparison of Methods for Multiclass
Support Vector Machines,” IEEE Transactions on Neural Networks, vol.
13, pp. 415-425, 2002

[12] B. Mandal, M. P. Sarma, and K. K. Sarma, “Implementation of Systolic
Array Based SVM Classifier Using Multiplierless Kernel,” in
International Conference on Signal Processing and Integrated Networks
(SPIN),2014,pp. 35-39.

[13] H. Hussin, K. Benkrid, and H. Seker, “Reconfiguration-Based
Implementation of SVM Classifer on FPGA for Classifying Microarray
Data,” in 35th Annual International Conference of the IEEE Engineering
in Medicine and Biology Society (EMBC), 2013, pp. 3058-306

[14] M. Wielgosz, E. Jamro, D. Zurek, and K. Wiatr, “FPGA Implementation
The Selected Parts of Fast Image Segmentation,” in Studies in
Computational Intelligence vol. 390, ed, 2012, pp. 203-21

[15] M. Pietron, M. Wielgosz, D. Zurek, E. Jamro, and K. Wiatr,
“Compariison of GPU And FPGA Implementation of SVM Algorithm
for Fast Image Segmentation,” in Architecture of Computing Systems–
ARCS 2013, ed: Springer, 2013, pp. 292-302.

[16] Y. Ago, K. Nakano, and Y. Ito, “A Classification Procesor for Support
Vector Machine with Embedded DSP Slice and Block RAM in the
FPGA,” in IEEE 7th International Symposium on Embedded Multicore
Socs (MCSoC), 2013, pp. 91-96

[17] S. Kim, S. Lee, and K. Cho, “Design of High-Performance Unified
Circuit for Linear and Non-Linear SVM Classifications,” Journal of
Semiconductor Technology and Science, vol. 12, pp. 162-167, 2012.

[18] J. Nayak, B. Naik, and H. Behera, “A Comprehensive Survey on
Support Vector Machine in Data Mining Task: Applications &
Challenges,” International Journal of Database Theory and Application,
vol. 8, pp. 169-186, 2015.

[19] J. Gimeno Sarciada, H. Lamel Rivera, and M. Jiménez, “CORDIC
Algorithms for SVM FPGA Implementation,” in Proceedings of SPIE -
The International Society for Optical Engineering, 2010.

[20] H. Lamela, J. Gimeno, M. Jimenez, and M. Rruiz, “Performance
Evaluation of FPGA Implementation of Digital Rotation Support Vector
Machine,” in SPIE Defense and Security Symposium, 2008, pp. 697908-
697908-8

[21] T. Bollaert, “Catapult Synthesis: Practical Introduction to Interactive C
Synthesis,” SpringerLink Book Chapter, Pages 29-52, ISBN 978-1-
4020-8587-1.

[22] Y. L.C.N.W. Wong.Generating hardware from OpenMP
programs.Proc.IEEE Int.Conf. on Field Programmable Technology,
pages73ñ80,Dec.2006.

[23] J. Gummaraju and M. Rosenblum.Stream Programming on General-
Purpose Processors.In Proc.38th Int. Symp.on Micro architecture,
pages343ñ354,Washington,DC,2005.

http://dl.acm.org/author_page.cfm?id=81100216460&coll=DL&dl=ACM&trk=0&cfid=600493958&cftoken=53031305
http://dl.acm.org/author_page.cfm?id=81100243402&coll=DL&dl=ACM&trk=0&cfid=600493958&cftoken=53031305
http://www.sciencedirect.com/science/article/pii/S0378375806001443
http://www.sciencedirect.com/science/journal/03783758
http://www.sciencedirect.com/science/journal/03783758
http://www.sciencedirect.com/science/journal/03783758/137/3

