
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

202 | P a g e

www.ijacsa.thesai.org

ReCSDN: Resilient Controller for Software Defined

Networks

Soomaiya Hamid, Narmeen Zakaria Bawany, Jawwad Ahmed Shamsi

Systems Research Laboratory, Department of Computer Science

FAST National University of Computer and Emerging Sciences

Karachi, Pakistan

Abstract—Software Defined Networking (SDN) is an

emerging network paradigm that provides central control over

the network. Although, this simplifies the network management

and makes efficient use of network resources, it introduces new

threats to network reliability and scalability. In fact, a single

centralized controller is a single point of failure. Moreover, a

single controller may become a performance bottleneck as

processing overhead increases. Distributed SDN controller

platforms improve the reliability and scalability to some extent,

however they remain vulnerable to Distributed Denial of Service

(DDoS) attacks, specifically on control plane. We believe that

there is a need for a distributed controller framework that is

capable of providing service continuity without performance

degradation in case of excessive network traffic or DDoS attacks

on controller. In this paper, we aim to address the vulnerabilities

of SDN control plane. We propose and implement an efficient

and Resilient Controller for Software Defined Network

(ReCSDN). This framework is capable of detecting and

mitigating DDoS attacks timely and ensures the continuity of

services without performance degradation. We created an

experimental test bed using Mininet to conduct extensive

experiments. We deployed ReCSDN on top of Open Network

Operating System (ONOS) cluster to confirm the viability of our

approach. The experiment results show that with ReCSDN,

control plane is not only able to withstand excessive network load

but will also continue to provide services in case of any controller

failure.

Keywords—Software Defined Networking (SDN); SDN

Controller security; Distributed Denial of Service (DDoS) attack;

load balancing; SDN controller cluster; Open Network Operating

System (ONOS)

I. INTRODUCTION

Software Defined Networking (SDN) paradigm has
revolutionized the traditional networking by separating the
control plane and data plane of the network. With this
separation of the control plane and data plane, control logic is
implemented in logically centralized controller and network
switches becomes simple forwarding devices [1]. This
decoupling provides several benefits which includes easier
network management, increased visibility into the network,
programmability, efficient use of network resources, dynamic
updating of network policies [2], [3]. The centralized control
plane leads to global knowledge of the network thereby
providing effective resource management. Moreover, network
policies can be easily configured and modified via software
applications running on top of the controller. Customized

network applications can be developed and deployed directly
without any vendor dependency [4], [5].

Nevertheless, these core benefits that are the hype of SDN
are also the main causes of concern. The centralized control
plane that provides critical advantages over the traditional
networking has introduced new threat vectors. First and
foremost it can become the single point of failure [6]. The
controller becomes the core of network and any attack, such
as, DDoS attack can bring down the whole network. This
vulnerability introduces new threat vector in SDN. Many
approaches, such as primary backup replication mechanism
and distributed controller platforms [7] exists that addresses
this critical reliability issue. However, there are numerous
issues with these approaches which makes it an open research
problem [8], [9].

Second, the controller may turn out to be a performance
bottleneck as the network size increases [8]. Whenever a new
flow is initiated in the network, the OpenFlow switch forwards
it to controller for deciding the suitable forwarding path.
Similarly, all the unknown flows that are not recognized by
the switch are sent to controller for processing. The
performance of the controller is largely affected as the
network grows thereby increasing the number of traffic flows.
Various schemes for controller load-balancing [10] has been
proposed to improve the performance of centralized controller
platforms. However, due to their limited capabilities the
problem remains an open research area.

Many researchers have explored the new threat vectors
introduced by SDN [11], [12]. Several attacks, including
DDoS attacks, and their mitigation strategies has been
proposed [13]-[15] for SDN networks. However, very limited
work has been done to detect and mitigate attacks specifically
on SDN controllers[6]. Also, most of this work has been done
for centralized controllers such as Floodlight [16]-[18] and
POX [19], [20].

Keeping in view the above mentioned limitations we
presume that there is a need to explore load balancing and
DDoS attack vulnerabilities in distributed SDN controller
platforms. We also need a framework that can detect excessive
load on controllers and ensure the continuity of services
without performance degradation.

To this end, we propose and describe Resilient Controller
for Software Defined Networks (ReCSDN) that addresses the
above mentioned problems. ReCSDN, is a novel framework

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

203 | P a g e

www.ijacsa.thesai.org

that is built on top of a distributed controller environment. It
provides a reliable, efficient and resilient control plane that not
only overcomes the single point of failure problem but also
ensures the service continuity without performance
degradation. ReCSDN is able to detect the excessive network
traffic coming to the controller and provides a load-balancing
mechanism that ensures that performance of controller is not
degraded. Excessive traffic may be generated due to DDoS
attack on controller or flash crowds. In either case, the
objective of ReCSDN is to provide fault tolerance and service
continuity while maintaining the performance quality.
ReCSDN also ensures that network latency remains consistent
and does not increase as we increase the number of distributed
controllers.

The main contributions of this paper are summarized
below:

 We proposed and implemented ReCSDN, a reliable,
efficient and resilient framework for SDN.

 We performed extensive experiments using Mininet and
ONOS [21], a distributed SDN controller platform to
test the effectiveness of our framework.

 We were able to detect and mitigate DDoS attack on
SDN controller effectively.

 We are able to ensure quality of service performance by
providing appropriate load balancing among controllers.

 We are able to provide fault tolerance by using backup
controllers timely.

The rest of this paper is organized as follows. Section II
comprises three sub-sections. First two sections briefly
introduces Software Defined Networking and ONOS followed
by a detailed review of existing research on SDN security. The
proposed architecture and its implementation is discussed in
Section III followed by the threat model which is discussed in
Section IV. The experimental setup and results are presented
in Section V and Section VI, respectively. Section VII
concludes the paper.

II. BACKGROUND AND RELATED WORK

We have divided this section in three sub-sections.
Motivation for this research and the benefits of software
defined networking over traditional networking are
enlightened in the first sub-section. Next sub-section discusses
ONOS, followed by the related work.

A. Towards Software Defined Networks

Building and administrating a computer network is an
onerous task. Managing networks includes many challenges,
such as, heterogeneity of network elements [22], vendor
dependency [23], lack of centralized control, no
programmability. Moreover configuration of complex
networks which are dynamic in nature is more difficult,
because of lack of automated mechanism for defining
centralized policies. This creates scalability and configuration
issues which makes traditional networks less innovative [24].
The network administrator have to configure each network
device individually to apply network policies [25]. As the size

of network increases number of devices also increases thereby
increasing the administrative overhead.

App
App

App

App

App
App

Management Application Layer

Controller

Cluster

OpenFlow

Switches

Hosts

North bound API

South bound API

SDN Distribut ed Control Plane

SDN Data Forwarding Plane

Fig. 1. Software defined network architecture.

SDN addresses the above mentioned issues by separating
the control plane and the data plane as shown in Fig. 1. In
SDN control plane provides a centralized control of the
network. Control plane can manage the entire network
centrally [12]. Major objective is to provide a centralized
control over the entire network, so that all the control process
and services are separated from the data forwarding tasks.
Hence, the software that controls the network is decoupled
from the devices that implement it [26]. Switches became
simple forwarding devices that work according to the policies
defined by the controller. Many open source SDN controllers
has been developed which includes POX [27], NOX [28],
Beacon [29] and Floodlight [30]. More recently distributed
SDN controller platforms such as ONOS and OpenDaylight
[31], [32] have been developed to cater the needs of large
enterprise networks. We briefly discuss ONOS in the next
sub-section. Apart from open source controllers, major
industry leaders have also developed proprietary SDN
controllers such as; HP [33], [34] and brocade [35].

Although, SDN has been gaining immense popularity
since its inception, it is no silver bullet. SDN comes with its
own set of vulnerabilities that were not present in traditional
networks. Subsequently, after the adaptation of SDN in
network infrastructures, many researchers have been
questioning the security of SDN [36], [37]. The centralized
control plane which has been its prominent feature has also
become the major point of concern. Adversaries can launch
DDoS attack on the control plane of the SDN subsequently
leading to service degradation or a complete network
shutdown. Similarly, performance, scalability and reliability
of SDN have not been thoroughly investigated yet.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

204 | P a g e

www.ijacsa.thesai.org

B. Open Network Operating System

The ONOS (Open Network Operating System) is an open
source project hosted by The Linux Foundation. The software
is written in Java and provides support for distributed SDN
applications atop Apache Karaf OSGi container as shown in
Fig. 2. The first version of ONOS was released in 2014. The
ONOS is a distributed platform for SDN networks that caters
the need of enterprise networks. The key features of ONOS
includes scalability, high performance and high availability.
ONOS is basically designed to operate as a cluster of nodes
such that it can withstand the failure of individual nodes.
ONOS overcomes the limitations of centralized SDN
controllers like POX, NOX and Floodlight. It provides a high-
level abstraction to application programmers by providing a
platform for developers to write novel applications that can
run on top of ONOS. Its model can be extended by
programming variety of applications.

ONOS Applications

ONOS Distributed Application Platform

ONOS Networking Core

OSGI / Apache Karaf

...

C
o

m
m

a
n

d
 Lin

e

gRPCGUI REST API RESTCONF

Fig. 2. ONOS software stack.

The ONOS has been used today in variety of applications
ranging from multilayer network control to datacenters [38].
Major use cases of ONOS includes CORD (Central Office Re-
architected as a Datacenter [39], [40], Multi-Layer Network
Control, Migrating MPLS Network, and Global Research
Network Development. ONOS also provides its partner driven
use cases such as Huawei Agile L3 VP, Huawei Enterprise
CPE, DirectTV Multicast and NEC Transport SDN.

To ensure strong consistency ONOS adopted Atomix
framework after its v1.4 release. Atomix uses RAFT
consensus algorithm [41] to ensure consistency among cluster
nodes. Atomix deals with distributed computing problems. In
contrast with the Hazelcast [42], Atomix chooses availability
over consistency. Due to this Atomix ensures that data is
never lost, even in the network partitioning or complete
failure.

C. Related Work

Security of SDN has been a point of concern since its
adoption [37]. Many researchers have questioned the security
of SDN itself [12]. However others have proposed SDN based
security solutions [43], [44]. DDoS attack detection in SDN
with the entropy variation technique was presented in [6], [18]
Niyaz et al. [45] proposed a deep learning multi vector DDoS
system. Fonseca et al. [46] designed CPRecovery by
component organization. Another technique was AVANT-
GUARD [14] which is based on complete TCP handshake
mechanism. Hong et al. [47] proposed a TopoGuard

technique. It focused the attack over data plane
communication channel. R. Braga et al. [13] classified the
flows by self-organizing maps. An inference-relation context
based technique was presented by Aleroud et al. [48]. They
proposed technique utilizes contextual similarity with existing
attack patterns to identify DoS in an OpenFlow
infrastructure. Cui et al. [49] performed attack detection by
neural network techniques. Botelho et al. [50] has replicated
the sheared database of the whole network state to improve
reliability.

Majority of the research work discussed above is based on
the centralized SDN controller. Few researchers have
implemented replication between master and backup
controller. When master controller fails, backup controller
becomes an active controller. In contrast to existing research,
we have developed a resilient framework for distributed
controller environment. We emulated our network using
ONOS. In our approach, all controllers in a cluster are active.
If there is an attack on any of the controllers, load is
distributed to other controllers within a network. The
controllers share the information of flows and switches
consistently. Moreover in previous research works, different
SDN controllers [51] were used such as, POX [27], NOX [28],
Beacon [29], and Floodlight [30], but ONOS [21] controller
was not explored for the attack detection. In this paper we are
creating a distributed environment using ONOS controller
with Mininet emulation to detect DDoS flooding attack on the
controller.

III. PROPOSED APPROACH

This section presents the design of Resilient Controller for
Software Defined Network – ReCSDN. The ReCSDN is a
proficient solution that efficiently detects and mitigates DDoS
attack on the control plane. It is capable of providing fault
tolerant and consistent services to the network without
performance degradation. ReCSDN detects excessive traffic
network coming to the controller and uses load balancing
mechanism that ensures the reliability and performance of the
control plane. The ReCSDN module runs on top of distributed
controller platform. It monitors the processing load of the
controller and ensures that the load is distributed to other
controllers in the cluster before any controller reaches its full
capacity.

Role Ass ignme nt
Eng ine

Policy E ngine

Thre shold
Detect or

L oad-Ba lancing E ngine

Fig. 3. ReCSDN application workflow.

ReCSDN consists of four modules as depicted in Fig. 3.
The Policy Engine is used to configure the number of active
and backup controllers within a cluster. Also, threshold for

https://en.wikipedia.org/wiki/OSGi

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

205 | P a g e

www.ijacsa.thesai.org

each controller is setup using the Policy Engine. The threshold
value indicates the tolerance level of controller after which the
performance of controller may be degraded. Therefore, the
threshold Detector module monitors the state of controller to
ensure that load of the active controller is distributed by the
Load Balancing Engine before crossing the threshold. The
Role Assignment Engine is used to assign the master/backup
status to controllers within a cluster.

IV. THREAT MODEL

SDN Controller is the most critical element of SDN. It
serves as a centralized control of the whole network. The
attack on SDN controller will result in complete shutdown of
network.

Controller

Cluster

Switches

Hosts

South bound API

SDN Distribut ed Control Plane

SDN Data Forwarding Plane
2

1

Fig. 4. Threat Model for SDN control plane.

The scope of this work is focused on DDoS attack on SDN
controller. In such an attack adversaries may use compromised
nodes to send unknown flows to the OpenFlow switches.
These unknown flows are not recognized by the OpenFlow
switches and are sent to controller for further processing.
Thus, the controller is overwhelmed by the huge number of
illegitimate packets and is either completely halted or results
in its performance degradation.

We have considered two threat vectors that targets SDN
control plane in our threat model. The two threat vector are
based on generating flows that are not recognized by the
switches thereby targeting the SDN controller and the
communication channel between SDN control plane and data
plane. Fig. 4 depicts the threat model. During a DDoS attack
multiple hosts generate fake or forged traffic. Such traffic
flows are not recognized by OpenFlow switches and are
forwarded to controller for deciding the suitable forwarding
path. This scenario not only depletes controller resources but
also results in exhaustion of the communication channel
between controller and the network.

V. EXPERIMENTAL SETUP

To determine the viability of our approach, we have setup
a test bed on a server with an Intel Core i7, 3.67 GHz

processor and 16GB RAM running Ubuntu 14.04.5. We
conducted our experiments to emulate the DDoS attack
scenario on a controller using Mininet and ONOS cluster. We
deployed ReCSDN module on top of ONOS cluster. We
included different types of legitimate traffic to build a realistic
scenario. The legitimate traffic included TCP, UDP and
ICMP. The D-ITG tool [52] was used to generate the traffic
and to collect performance metrics. The metrics include delay,
jitter and number of packet loss.

To create DDoS attack scenario on a controller huge
number of new flow requests were generated. When a new
flow is received by the OpenFlow switches, it is not
recognized and is forwarded to the SDN controller for
deciding the transmission path. The increase in the number of
new flow requests, increases the processing overhead of
controller leading to performance degradation or completed
denial of service. The ReCSDN module monitors the network
and controllers state and ensures that load of the controller is
distributed to other controllers in the network before the
threshold is reached. The ReCSDN provides fault tolerance
mechanism by using back controllers. These back controllers
are active controllers that can also be used for load balancing
in case of DDoS attack or flash crowds.

We conducted extensive experiments discussed in next
section to evaluate the performance and reliability of
ReCSDN.

VI. RESULTS AND ANALYSIS

One of the key characteristics of the ReCSDN is achieving
resiliency. We exploited the distributed architecture of ONOS
to build a fault tolerant environment. We created a cluster of
ONOS controllers that provided multiple backups for each
active controller. Multiple backup controllers lead to more
fault tolerance. As ReCSDN is specifically developed to work
with distributed controller cluster a key aspect of
characterizing the performance of ReCSDN is to analyze and
compare performance at various scales. We created several
scenarios to measure the response time as number of

controllers in a cluster scales from 1 node to 3, 5, and 7 nodes.
We observed that increasing the number of controllers within
a cluster has no overhead and response time remains below
0.1ms. Fig. 5 depicts the result of experiment.

To evaluate the effect of increasing number of controllers
in a ReCSDN cluster on latency we conducted multiple
experiments. For each experiment we increased the number of
controllers from 1 to 3, 5 and 7. We generated constant
amount of TCP traffic for each experiment and noted delay
and jitter. The network traffic comprises huge number of
unknown flows. The ReCSDN ensured that load is distributed
among the other controllers before the master controller is
overwhelmed. As we increase the number of controllers in the
cluster the delay decreases as shown in Fig. 6.

The latency decreased due to the consistent load
distribution among the controllers. The overall performance of
network improved as ReCSDN enabled load balancing before
the maximum capacity of a controller is reached.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

206 | P a g e

www.ijacsa.thesai.org

Fig. 5. Effect of adding backup controllers by calculating response time.

This test was performed with varient number of backup controllers, 1, 3 ,5,

and 7 respectively.

Fig. 6. Delay decreases as number of controllers increased in ReCSDN

cluster.

To determine the single controller’s capacity of processing
maximum number of flows we performed a stress test. We
flooded the controller with new flow requests, generated by
pushing random intents. Intents are high-level policies that are
translated by ONOS Intent Framework into installable
forwarding rules. We repeatedly pushed 2000 intents till the
controller halted. Fig. 7 illustrates the capacity of single
controller. For our experiment, as the intent count reached
1600, the controller stopped responding. However, the
capacity and performance of controller is dependent upon the
configuration of physical machine on which the controller is
running. After repeating the experiments number of times we
choose 15000 as a threshold value for next ReCSDN
experiment on this configuration. Nonetheless, the threshold
value can be configured using the Policy Engine of ReCSDN
whenever required.

After determining the threshold value, we launched a
DDoS attack on SDN controller by pushing unknown flows in
the network. We created a three controller ReCSDN cluster
and started pushing intents gradually. As we moved from 1000
intents to 40,000 the ReCSDN control plane remained active
without performance degradation as shown in Fig. 8. The
master ReCSDN controller distributed the load to ensure the
continuity of service. We also generated the legitimate traffic
on the network during the attack. There were no packet losses
and the response time remained consistent throughout.

Fig. 7. Stress test for checking controller processing capability. Red

indicator shows controller resources saturation point.

Fig. 8. ReCSDN performance evalutation.

ReCSDN is capable of provided resiliency not only in case
of DDoS attack but also in case of controller failure. It
improves the network performance by timely load distribution
among the controllers.

VII. CONCLUSION AND FUTURE WORK

A Software Defined Network (SDN) is an emerging
network paradigm that provides central control over the
network. Although the centralized control is one of the major
advantages of SDN, it also brings about many critical
concerns including a single point of failure in case of attacks.
The central control can also become a bottleneck affecting the
network’s overall quality of service.

In this paper we highlighted the security threats specific to
centralized control, that is, SDN control plane. We addressed
the SDN’s control plane issues of performance bottle neck and
single point of failure.

In order to improve the performance and fault tolerance of
SDN, we proposed and implemented a resilient framework-
ReCSDN. Our proposed solution is not only capable of
detecting excessive network traffic coming towards an SDN
controller but also provides a mechanism to ensure the
continuity of services in case of DDoS attack. ReCSDN uses
load balancing strategy to invoke backup controllers in
ReCSDN cluster to distribute and manage the load without
performance degradation. We performed extensive

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

207 | P a g e

www.ijacsa.thesai.org

experiments by emulating the network using Mininet and
implementing ReCSDN on top of ONOS. The experiments
prove that the proposed framework provides resiliency and
improved performance consistency. Even though, our results
are specific to the ONOS controller but the methodology we
presented is general and can be applied to any distributed
controller platform. In future, we intend to experiment with
larger number controllers.

ACKNOWLEDGMENT

This research is supported by Higher Education
Commission, Pakistan grants HEC NRPU 5946 – 2017.

REFERENCES

[1] D. Kreutz, F. M. V. Ramos, P. E. Verissimo, C. E. Rothenberg, S.
Azodolmolky, and S. Uhlig, “Software-Defined Networking: A
Comprehensive Survey,” Proc. IEEE, vol. 103, no. 1, pp. 14–76, 2015.

[2] N. Bawany, J. Shamsi•, and K. Saleh, “DDoS Attack Detection and
Mitigation using SDN: Methods, Practices, and Solutions,” Arab. J. Sci.
Eng. Springer, Feb. 2017.

[3] B. N. Astuto, M. Mendon, X. N. Nguyen, and K. Obraczka, “A Survey
of Software-Defined Networking : Past , Present , and Future of
Programmable Networks To cite this version :,” 2014.

[4] L. Tancevski, “SDN concept: from theory to network implementation,”
in Optical Fiber Communication Conference, 2014, p. W1E.3.

[5] C. Sieber et al., “Network configuration with quality of service
abstractions for SDN and legacy networks,” in 2015 IFIP/IEEE
International Symposium on Integrated Network Management (IM),
2015, pp. 1135–1136.

[6] S. M. Mousavi and M. St-Hilaire, “Early detection of DDoS attacks
against SDN controllers,” in 2015 International Conference on
Computing, Networking and Communications (ICNC), 2015, pp. 77–81.

[7] D. Kreutz, F. M. V. Ramos, P. Verissimo, C. E. Rothenberg, S.
Azodolmolky, and S. Uhlig, “Software-Defined Networking: A
Comprehensive Survey,” Proc. IEEE, pp. 1–62, 2014.

[8] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “A roadmap for
traffic engineering in software defined networks,” Comput. Networks,
vol. 71, pp. 1–30, 2014.

[9] M. Jammal, T. Singh, A. Shami, R. Asal, and Y. Li, “Software defined
networking: State of the art and research challenges,” Comput.
Networks, vol. 72, pp. 74–98, Oct. 2014.

[10] I. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou, “Research
challenges for traffic engineering in software defined networks,” IEEE
Netw., no. June, pp. 52–58, 2016.

[11] X. Wen, Y. Chen, C. Hu, and Y. Wang, “Towards a Secure Controller
Platform for OpenFlow Applications,” pp. 171–172.

[12] D. Kreutz, F. M. V. Ramos, and P. Verissimo, “Towards secure and
dependable software-defined networks,” in Proceedings of the second
ACM SIGCOMM workshop on Hot topics in software defined
networking - HotSDN ’13, 2013, p. 55.

[13] R. Braga, E. Mota, and A. Passito, “Lightweight DDoS flooding attack
detection using NOX/OpenFlow,” in IEEE Local Computer Network
Conference, 2010, pp. 408–415.

[14] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
scalable and vigilant switch flow management in software-defined
networks,” in Proceedings of the 2013 ACM SIGSAC conference on
Computer & communications security - CCS ’13, 2013, pp. 413–424.

[15] B. Wang, Y. Zheng, W. Lou, and Y. T. Hou, “DDoS Attack Protection
in the Era of Cloud Computing and Software-Defined Networking,”
2014 IEEE 22nd Int. Conf. Netw. Protoc., pp. 624–629, Oct. 2014.

[16] J. M. Dover, “A denial of service attack against the Open Floodlight
SDN controller,” vol. 21037, no. December 2013.

[17] Y. Xie and S. Z. Yu, “Monitoring the application-layer DDoS sttacks for
popular websites,” IEEE/ACM Trans. Netw., vol. 17, no. 1, pp. 15–25,
2009.

[18] R. Wang, Z. Jia, and L. Ju, “An Entropy-Based Distributed DDoS
Detection Mechanism in Software-Defined,” in
Trustcom/BigDataSE/ISPA, IEEE, Vol. 1, 2015, pp. 310–317.

[19] T. Chin and X. Mountrouidou, “Selective Packet Inspection to Detect
DoS Flooding Using Software Defined Networking (SDN),” 2015.

[20] K. Giotis, “Leveraging SDN for Efficient Anomaly Detection and

governments and institutions are,” 2014.

[21] P. Berde et al., “ONOS: Towards an Open, Distributed SDN OS.”

[22] Z. Sanaei, S. Abolfazli, A. Gani, and R. Buyya, “Heterogeneity in
Mobile Cloud Computing: Taxonomy and Open Challenges,” IEEE
Commun. Surv. Tutorials, vol. 16, no. 1, pp. 369–392, 2014.

[23] H. Kim and N. Feamster, “Improving network management with
software defined networking,” IEEE Commun. Mag., vol. 51, no. 2, pp.
114–119, Feb. 2013.

[24] A. Martinez et al., “Network Management Challenges and Trends in
Multi-Layer and Multi-Vendor Settings for Carrier-Grade Networks,”
IEEE Commun. Surv. Tutorials, vol. 16, no. 4, pp. 2207–2230, 2014.

[25] T. Benson and A. Akella, “Unraveling the Complexity of Network
Management,” in e 6th USENIX Symposium on Networked Systems
Design and Implementation, ser. NSDI’09, Berkeley, CA, USA, 2009,
pp. 335–348.

[26] M. Casado, N. Foster, and A. Guha, “Abstractions for software-defined
networks,” Commun. ACM, vol. 57, no. 10, pp. 86–95, Sep. 2014.

[27] Ligia Rodrigues Prete, A. A. Shinoda, C. M. Schweitzer, and R. L. S. de
Oliveira, “Simulation in an SDN network scenario using the POX
Controller,” in 2014 IEEE Colombian Conference on Communications
and Computing (COLCOM), 2014, pp. 1–6.

[28] N. Gude et al., “NOX: towards an operating system for networks,” ACM
SIGCOMM Comput. Commun. Rev., vol. 38, no. 3, p. 105, Jul. 2008.

[29] D. Erickson and David, “The beacon openflow controller,” in
Proceedings of the second ACM SIGCOMM workshop on Hot topics in
software defined networking - HotSDN ’13, 2013, p. 13.

[30] A. Shalimov, D. Zuikov, D. Zimarina, V. Pashkov, and R. Smeliansky,
“Advanced study of SDN/OpenFlow controllers,” in Proceedings of the
9th Central & Eastern European Software Engineering Conference in
Russia on - CEE-SECR ’13, 2013, pp. 1–6.

[31] J. Medved, R. Varga, A. Tkacik, and K. Gray, “OpenDaylight: Towards
a Model-Driven SDN Controller architecture,” in Proceeding of IEEE
International Symposium on a World of Wireless, Mobile and
Multimedia Networks 2014, 2014, pp. 1–6.

[32] Z. K. Khattak, M. Awais, and A. Iqbal, “Performance evaluation of
OpenDaylight SDN controller,” in 2014 20th IEEE International
Conference on Parallel and Distributed Systems (ICPADS), 2014, pp.
671–676.

[33] J. Tourrilhes, P. Sharma, S. Banerjee, and J. Pettit, “SDN and OpenFlow
Evolution: A Standards Perspective,” Computer (Long. Beach. Calif).,
vol. 47, no. 11, pp. 22–29, Nov. 2014.

[34] A. Auyoung et al., “Corybantic: Towards the Modular Composition of
SDN Control Programs.”

[35] “Brocade SDN Controller - Brocade,” 2015. [Online]. Available:
http://www.brocade.com/en/products-services/software-networking/sdn-
controllers-applications/sdn-controller.html. [Accessed: 23-Jul-2017].

[36] S. Shin and G. Gu, “Attacking software-defined networks,” in
Proceedings of the second ACM SIGCOMM workshop on Hot topics in
software defined networking - HotSDN ’13, 2013, p. 165.

[37] S. Scott-Hayward, G. O’Callaghan, and S. Sezer, “Sdn Security: A
Survey,” in 2013 IEEE SDN for Future Networks and Services
(SDN4FNS), 2013, pp. 1–7.

[38] ONOS organization, “Use Cases - ONOS,” 2015. [Online]. Available:
http://onosproject.org/use-cases/. [Accessed: 23-Jul-2017].

[39] A.-S. Ali and L. Peterson, “CORD: Central Office Re-architected as a
Datacenter,” in OpenStack Summit, 2015.

[40] L. Peterson and A. Bavier, “CORD: CENTRAL OFFICE RE-
ARCHITECTED AS A DATACENTER.”

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 8, 2017

208 | P a g e

www.ijacsa.thesai.org

[41] D. Ongaro and J. Ousterhout, “In Search of an Understandable
Consensus Algorithm,” in Proceedings of USENIX Annual Technical
Conference, 2014.

[42] M. Johns, Getting Started with Hazelcast. Packt Publishing Ltd, 2015.

[43] N. Z. Bawany and J. A. Shamsi, “Application Layer DDoS Attack
Defense Framework for Smart City using SDN,” Comput. Sci. Comput.
Eng. Soc. Media (CSCESM), 2016, pp. 1–9, 2016.

[44] S. Mousavi, “Early Detection of DDoS Attacks in Software Defined
Networks Controller ,” 2014 , 2014.

[45] Q. Niyaz, W. Sun, and A. Y. Javaid, “A Deep Learning Based DDoS
Detection System in Software-Defined Networking (SDN),” Nov. 2016.

[46] P. Fonseca, R. Bennesby, E. Mota, and A. Passito, “A replication
component for resilient OpenFlow-based networking,” in 2012 IEEE
Network Operations and Management Symposium, 2012, pp. 933–939.

[47] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning Network Visibility in
Software-Defined Networks: New Attacks and Countermeasures.”

[48] A. Aleroud and I. Alsmadi, “Identifying DoS attacks on software
defined networks: A relation context approach,” in NOMS 2016 - 2016
IEEE/IFIP Network Operations and Management Symposium, 2016, pp.
853–857.

[49] Y. Cui et al., “SD-Anti-DDoS: Fast and efficient DDoS defense in
software-defined networks,” J. Netw. Comput. Appl., vol. 68, pp. 65–79,
2016.

[50] F. Botelho, A. Bessani, F. M. V. Ramos, and P. Ferreira, “On the Design
of Practical Fault-Tolerant SDN Controllers,” in 2014 Third European
Workshop on Software Defined Networks, 2014, pp. 73–78.

[51] M. P. Fernandez, “Comparing OpenFlow Controller Paradigms
Scalability: Reactive and Proactive,” in 2013 IEEE 27th International
Conference on Advanced Information Networking and Applications
(AINA), 2013, pp. 1009–1016.

[52] D. Manual, A. Botta, W. De Donato, A. Dainotti, S. Avallone, and A.
Pescap, “D-ITG 2.8.1 Manual,” pp. 1–35, 2013.

