
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

29 | P a g e

www.ijacsa.thesai.org

Design and Control of Self-Stabilizing Angular

Robotics Anywalker

Igor Ryadchikov, Semyon Sechenev, Sergey Sinitsa, Alexander Svidlov, Pavel Volkodav, Anton Feshin, Anas

Alotaki, Aleksey Bolshakov, Michail Drobotenko

Kuban State University,

Krasnodar, Russia

Evgeny Nikulchev

Moscow Technological Institute

Moscow, Russia

Abstract—Walking robots are designed to overcome obstacles

when moving. The walking robot AnyWallker is developed, in

the design of which the task of self-stabilization of the center of

the mass is solved; a special type of chassis is developed,

providing movement on high cross-country capability. The paper

presents the results of designing and controlling the robot, the

architecture of the software complex provides management and

mastification of the hardware platform. AnyWalker is actually a

chassis which can be used to build robots for many different

purposes, such as surveying complex environment, industrial

operations, and work in hazardous environment.

Keywords—Walking robots; self-stabilization platform; stability

of dynamic systems; chassis of robotic complexes

I. INTRODUCTION

A significant number of moving transport robotic
complexes are wheeled or caterpillar. However, such robots
become practically useless in rough terrain, in rooms with
stairs and a large number of obstacles [1]. This is especially
important in hazardous environments, in mines or where it is
necessary to preserve the landscape. Many studies in recent
years are aimed at implementing and studying the quality
characteristics of walking robot designs [2].

The restriction imposed on overcoming obstacles by
wheeled robots directly depends on the diameter of the wheel.
While walking robots can overcome obstacles and are limited
by the length of the leg. Another important advantage of
walking robots is that only local horizontal supports should be
present in the terrain. This allows overcoming very steep
angles while maintaining the stability of the body [3]. Walking
robots were used to investigate remote locations and hostile
environments, such as the seabed, space, nuclear power plants,
and in rescue operations [4]. In addition, vehicles with a
walking principle can be used, for example, for collecting
materials, for transporting goods, as service robots, for moving
to hard-to-reach areas of production and main pipelines.
According to the leading US universities and companies,
expressed in the report A Roadmap for US Robotics 2016: “To

extend the automation of the logistics chain into the world,
robots must have mobility that matches human mobility –
robots must negotiate stairs, elevators, doorways, curbs, broken
concrete, cluttered environments, and go where people go. This
type of advanced mobility is becoming realistic for robotic
systems, legged and otherwise - and with such a solution,
logistics will become fast, 24/7, on-demand, inexpensive,
predictable, and well-tracked.”

Despite a wide range of applications, many tasks remain
unresolved, which makes it difficult to widely use walking
robots. The drawbacks include: high complexity of control and
stabilization, cost, low energy efficiency and relatively low
speed. Modern research is concerned with these issues [5].

In the basis of the movement of walking systems, the
principles of movement by man and animals are laid: step,
jogging, jumping [6]. By design, we can distinguish a class of
humanoid robots, the advantage of which is the reduction of
energy costs due to the use of natural oscillations, but a poorly
solved problem here is the stabilization of the center of mass
due to the complex geometry of the object [7]. Another big
class are six-legged mobile platforms with various types of
chassis [4]. There are other developments: from the repetition
of kangaroo jumps [8] to tripod systems [9].

The report is devoted to the design of the walking robot, the
development of the control software and hardware of the
mobile robot AnyWallker. In the presented design, the task was
to design a robot in an easily controlled self-stabilizing
platform, with a large range of patency (overcoming high and
complex obstacles). The solution of these problems is ensured
by the design of the hull, which allows for quick-setting
stabilization, as well as the original chassis scheme aimed at
overcoming obstacles.

II. CONSTRUCTION AND KINEMATIC SCHEME

As a body (a stabilizing center of mass), a sphere with a
diameter of 0.4 m was selected (Fig. 1).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

30 | P a g e

www.ijacsa.thesai.org

Fig. 1. Schematic arrangement of device elements in space.

Stabilization of the body position is carried out due to the
force compensation of the deflecting influences. The design of
this device includes two flywheels, flywheel actuators, a
control unit, body position sensors, flywheel speed sensors and
a power source. Both flywheels are inside the stabilized body.
In this case, the mass centers of the flywheels coincide, and
their axes of rotation intersect. External actions are recorded by
the body position sensors and transmitted to the control unit,
sending the corresponding signal to the flywheel drives and
thereby driving them. The moment of inertia of the rotating
flywheels compensates for the deviations caused by external
influences, stabilizing the position of the body in space [10].

The stabilization device includes two flywheels 11 and 12
with flywheel actuators 111 and 121 connected to a volumetric
body, a control unit 3 connected to position sensors 4, a power
supply 5 and flywheel actuators 111 and 121. The rotation axes
of all flywheels 11 and 12 intersect at one point O (Fig. 1).
Each flywheel has a flywheel position sensor and/or an angular
speed sensor connected to the control unit. Alternatively, each
flywheel drive has a flywheel position sensor, and/or a
flywheel angular velocity sensor connected to the control unit.
The flywheel actuators 111, 121, 131 can be made in the form
of electric motors, including having their own controllers and
servo drives, are shown as 112, 122, 132.

A kinematic scheme of the chassis [11] has been
developed, each of the robot legs comprising an upper link for
supporting the volumetric body through the first hinge, and a
lower link for supporting the upper link through the second
hinge, and also the feet movably connected to each lower link
through the third hinge. The upper link consists of two parts,
the first and the second, connected to each other through a
fourth hinge, the first part of the upper link of the body being
connected to the body by the first hinge and the second part of
the upper link through the second hinge connected to the lower
link, robot standing on two legs, the fourth hinge of each

robot’s leg is located above the first, second and third hinges
(see Fig. 2).

Fig. 2 shows the following parts of the walking robot: 1 is
the body of the robot, 5 is the module for correcting the
displacement of the center of mass of the robot, 6 is the
surface, 8 is the axis of gravity passing through the center of
mass, 9 is the obstacle, 11 is the first part of the upper leg of
the robot, 12 is the second part of the upper leg of the robot,
13 is the lower leg of the robot, 14 is the foot, 21 is the first
hinge, 22 is the second hinge, 23 is the third hinge, 24 is the
fourth hinge.

Fig. 2. Kinematic scheme.

The calculated speed of moving the platform with the
dimensions of the body, fitting into the sphere of 40 cm, along
the horizontal, on the average surface, in the step mode will be
5 km/h, and in the rolling mode on the body with the
manipulators up to 15 km/h, it can autonomously function for
24 hours in the video broadcast mode, active control and
moving through the terrain of medium cross-country, while
carrying 3.8 kg payload [12].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

31 | P a g e

www.ijacsa.thesai.org

Fig. 3. Assignments to servos for a single half-step.

Fig. 4. The moment of force developed in the servo drives when making a

half step.

Fig. 5. Phases of overcoming the robot step, with a height equal to the height

of the robot.

In Fig. 3 there are graphs of the task of the angle to the
servos of the legs. The graphs with index l correspond to the
left leg, with the index r to the right. The moments of force
developed in the servo drives when making a half step are
shown in the graphs in Fig. 4. An example of overcoming a
robot step, with a height equal to the height of the robot is
shown in Fig. 5.

III. SELF-STABILIZATION OF THE PLATFORM

To stabilize the walking robot, algorithms based on the
following model are implemented. The ball, which is the basis
of the walking robot, is regarded as an inverted pendulum with
a flywheel. This was inspired by the Cubli robot presented in
[17]. The pendulum has a non-holonomic connection with the
support surface. This makes it possible to find a solution to the
problem of stabilizing the mobile structure in dynamics, by
adding internal degrees of freedom. It is proposed to assign the
stabilization tasks to a system of two flywheels operating as an
ordinary pendulum with a flywheel [13], [14], but in contrast to
these studies, it is proposed to combine the mass centers of two
flywheels at one point and obtain a more compact design (see
Fig. 6).

Fig. 6. Simulation model of self-stabilizing platform (inverted pendulum

with flywheel).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

32 | P a g e

www.ijacsa.thesai.org

Applying the approach described in [14], the dynamics of
the system can be described as follows:

   

   

¨

¨
2

sin ,

 ,

 .

r M

r M r M

u v

J J J mb Ml g

J J J J L

L c u c

       

   












 



ù

 (1)

Here the states of the system are: ()t is the angle between

the axis of the pendulum and the direction “up” counter-

clockwise; ()t is the angular speed of rotation of the

flywheel; control: u is the voltage applied to the motor [В];

design parameters of the model: mJ is the moment of inertia

of the pendulum relative to its axis of rotation [kg·m
2
];

rJ is

the moment of inertia of the rotor of the engine with respect to

its axis of rotation [kg·m
2
];  is the reduction ratio;

MJ is the

moment of inertia of the flywheel relative to its axis of rotation
[kg·m

2
]; m is the mass of the pendulum [kg]; b is the distance

from the point of pendulum fixation to its center of mass [m];
M is the total mass of flywheel and engine [kg]; l is the length
of the pendulum [m]; g is the acceleration of gravity [m·s

−2
];

ù is the coefficient of friction [N·m·s];
uc [N·m·B

−1
]; vc

[N·m·s];
2 m r MJ J Ml J J    .

Linearized equation, taking into account the assumptions

that there is no reducer (1  and 0)MJ  ; the intrinsic mass

of the pendulum is small (m = 0 and 0mJ ); the friction in

the support is insignificant (0ù), looks like:

   

2 2

2 2
1 1 1 1

0 1 0 0

0 .

0

v u

r r

c cg

l Ml Ml

g

v ul J JMl Ml

d
u

dt
c c

       
                
                   

or

.x Ax bu  (2)

The characteristic polynomial of the matrix A has the form:

 

 

2

2
1 1

2

2 2

1 0

0

1 1
.

v

r

cg

l Ml

g

vl J Ml

v
v

r

F

c

cg g
c

J Ml l Ml l



   

    

    
                

The matrix has one positive root and two negative roots,
which follows from the following facts:

 (0) 0,v

r

c g

J l
F       2

 · 0,vcg g g

l l lMl
F F   

()F    at   . The eigenvector corresponding to

the eigenvalue λ can be written as  2, , ()
T

v vc c Ml g   . The

presence of a positive eigenvalue indicates the instability of the

stationary point () in the absence of control.

Making a change of variables x Ky , where

     
1 2 3

2 2 2

1 2 3

 ,

v v v

v v v

c c c

K c c c

Ml g Ml g Ml g

 
 

    
      
  (3)

we get

 .Ky AKy bu 

We multiply the equation on
1:K 

1 1 1

1 2 3 diag(, ,) ,y K AKy K bu y K bu        

Let
1 m K b , then

1 2 3 diag(, ,) ,y y mu     (4)

Without loss of generality, we assume that

1 2 3 0 .    
 Let

 (,)u u y t
 be such that

| | .maxu u

Under these conditions, the following results are proved.

The system described by (4) can not go from a state with

1 1 1 maxy m u  into a state with a smaller
1y (it can not go

from a state with 1 1 1 maxy m u   to a state with a larger

1).y

There exists a control (,)u u y t such that the solution of

(4) from a state with 1 1 maxm u  tends to the equilibrium point

() .

The results obtained are realized in the construction of
control actions.

IV. ARCHITECTURE OF THE SOFTWARE THAT CONTROLS

THE ROBOT

To control the robot, a hardware/software system with a
three-level architecture was developed [15]. The subsystem of
the first level is implemented on the ARM microcontroller of
the STM32F4 family under the control of the real-time
program based on the ST HAL library. The second-level
control subsystem is implemented on a single-board computer
of the Raspberry Pi family running the Robot Operating
System (ROS) Kinetic Kame. The third application level is the
program on MATLAB, Python and the web interface. The
hardware architecture of the robot AnyWalker is shown in
Fig. 7.

The main elements in this architecture are the STM32F407
microcontroller, which is a peripheral controller, and the
Raspberry Pi 3 microcomputer, which plays the role of a top-
level controller and provides interfaces for the interaction of
control software and various clients with peripheral devices.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

33 | P a g e

www.ijacsa.thesai.org

The peripheral controller interacts with the 9-axis inertial
navigation system represented by the MPU9250 chip, using the
SPI protocol. The flywheels installed in the robot are controlled
by the drivers of the EPOS2 motors, communication with
which is carried out via the CAN protocol. The limbs of the
robot are driven by the Dynamixel MX-106 servo drives,
which are connected via RS-485 protocol. Servo drives are
connected in series with 6 elements per leg. Both buses are
connected to two independent interfaces of the UART
microcontroller.

The interaction between the upper-level controller and the
peripheral controller is carried out through the UART interface,
through which the peripheral control commands are
transmitted, and the INS sensor readings, the flywheel speed
and the temperature and load values on the servos are
requested. Also, the STM32F407 controller is connected via
USB for debugging and downloading updated software for the
controller via the STLink v2 protocol.

The scheme also provides customers implementing various
elements of logic. The clients are connected to the high-level
controller via an Ethernet link or via a wireless WiFi network.

The hardware layer is the basis for organizing the software
layer, the architecture of which is shown in Fig. 8.

The interaction of logic nodes present on a high-level
controller and various clients with peripheral nodes is carried
out through a specialized communication module with a
peripheral controller. The communication module with the
peripheral controller is a driver that interacts the system with a
lower-level controller based on the STM32F407 chip. The
driver is written in C ++ language, it accepts commands
coming from the modules of automatic and manual control.
The interaction with the STM32F407 is carried out via the
UART via the MODBUS protocol at a speed of 921600 baud,
which makes it possible to achieve a control loop frequency on
the order of 150-200 Hz. Using the graph structure of ROS
[16], the driver sends information about the status of the robot
nodes to all network members who have subscribed to receive
this data. In turn, the driver is signed to receive commands for
controlling flywheel drives and servo positions. The diagram of
the graph structure is shown in Fig. 9.

Fig. 7. Hardware architecture of the robot components.

Fig. 8. The architecture of the program layer of the robot.

The driver /aw_driver continuously polls the peripheral
controller, requesting the readings of the INS, servo sensors,
Hall sensors from the EPOS2 drivers to monitor the speed of
the flywheel and the pressure sensors on the feet. The received
data are organized in a special structure, which is published in
the topic /aw_driver/status/robot_status. With this data, various
nodes of logic, as well as software for visualization and
simulation, for example, Gazebo, RViz and MATLAB can
work.

Information about the state of the robot is transmitted to a
web client connected to the robot through a WiFi network or an
Ethernet cable. The web client interacts with the ROS system
through a two-way communication channel based on the
WebSocket technology implemented by the
/rosbridge_websoket node.

The network also presents the /aw_main node, which is an
intermediate layer between the user and peripheral devices.
This site is written in the Python language and is engaged in
converting a text-based command system into a set of values
intelligible to the driver, converting the readings of sensors into
a user-friendly form, for example, translating the readings of
servo encoders to degrees, and also calculating the speeds of
the robot's nodes in automatic control mode. The node
communicates with the web client via the /aw_driver/py_js (to
the client) and /aw_driver/js_py (from the client) topics. The
node itself refers to the driver through the system of control
topics /aw_driver/control/*.

Fig. 9. The architecture of the ROS network presented in graphs.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

34 | P a g e

www.ijacsa.thesai.org

V. CONCLUSION

The task of obtaining a stable, and energy-efficient walking
robot with the ability to navigate through unknown terrain has
been a big problem in the field of robotics for many years. The
developed robotic platform demonstrates high energy
efficiency, in comparison with other designs of walking robots
[11]. The developed walking robot AnyWallker is an example
of a service mobile device capable of coping with an unknown
terrain, reliably and flexibly moving along the way.

ACKNOWLEDGMENT

The work was carried out within the framework of the state
task of the Ministry of Education and Science, project No.
8.2321.2017 “Development and adaptation of control systems
for compensation of dynamic deflecting effects on mobile
objects in a state of dynamic equilibrium”.

REFERENCES

[1] D. C. Kar, “Design of a statically stable walking robot: A review,”
Journal of Robotic Systems, vol. 20, no. 11, pp. 671–686, 2003

[2] A. Goswami, “Walking Robots. Encyclopedia of Systems and Control,”
pp. 1537-1548, 2015.

[3] T. Booysen and S. Marais, “The development of a remote controlled,
omnidirectional six legged walker with feedback.”, In AFRICON 2013,
pp. 1-6, 2013.

[4] F. Tedeschi and G. Carbone, “Design issues for hexapod walking
robots,” Robotics, vol. 3, no. 2, pp. 181-206, 2014.

[5] X. Xiong, F. Wörgötter, and P. Manoonpong, “Adaptive and energy
efficient walking in a hexapod robot under neuromechanical control and
sensorimotor learning,” IEEE transactions on cybernetics, vol. 46, no.
11, pp 2521-2534, 2016.

[6] N. S. Szczecinski, A. J. Hunt, and R. D. Quinn, “Design process and
tools for dynamic neuromechanical models and robot controllers,”
Biological cybernetics, vol. 111, no. 1, pp. 105-127, 2017.

[7] J. Zhao, Q. Liu, S. Schütz and K. Berns, “Experimental verification of
an approach for disturbance estimation and compensation on a simulated
biped during perturbed stance,” 2014 IEEE International Conference on
Robotics and Automation (ICRA), pp. 5082-5087, 2014.

[8] G. H. Liu, H. Y. Lin, H. Y. Lin, S. T. Chen, and P. C. Lin, “Design of a
kangaroo robot with dynamic jogging locomotion,” 2013 IEEE/SICE
International Symposium on System Integration (SII), pp. 306-311,
2013.

[9] Borràs, J., & Dollar, A. M. (2012) Static analysis of parallel robots with
compliant joints for in-hand manipulation. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp.
3086-3092.

[10] Patent RU160949U1. (2016/04/10).

[11] I. Ryadchikov, S. Sechenev, A. Svidlov, S. Sinitsa, Z. Buskandze and E.
Nikulchev, “AnyWalker: all-terrain robotic chassis. In 47st International
Symposium on Robotics;” Proceedings of ISR 2016, pp. 696-701, 2016.

[12] I. Ryadchikov, S. Sechenev, A. Svidlov, S. Sinitsa and E. Nikulchev,
“Development of a self-stabilizing robotic chassis for industry,”
MATEC Web of Conferences, vol. 99, art. 02007, 2017

[13] M. Shahbazi, R. Babuška and G. A. Lopes, “Unified modeling and
control of walking and running on the spring-loaded inverted
pendulum,” IEEE Transactions on Robotics, vol. 32, no. 5, pp. 1178-
1195, 2016.

[14] A. M. Formalsky, Controlling the motion of unstable objects, Moscow,
2013. [In Rus]

[15] I. Riadchykov, S. Sechenev, S. Sinitsa and E. Nikulchev, “Constructive
solution of the robotic chassis AnyWalker,” ITM Web of Conference,
vol. 6, no. 01003, 2016.

[16] http://wiki.ros.org/ROS/Concepts#ROS_Computation_Graph_Level

[17] M. Gajamohan, M. Muehlebach, T. Widmer and D’Andrea, “R.: The
Cubli: A reaction wheel based 3D inverted pendulum,” 2013 European
Control Conference (ECC), pp. 268-274. 2013.

http://wiki.ros.org/ROS/Concepts#ROS_Computation_Graph_Level

