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Abstract—Features of leaves can be more precisely captured
using 3D imaging. A 3D leaf image is reconstructed using two
2D images taken using stereo cameras. Reconstructing 3D from
2D images is not straightforward. One of the important steps to
improve accuracy is to perform camera calibration correctly. By
calibrating camera precisely, it is possible to project measurement
of distances in real world to the image plane. To maintain the
accuracy of the reconstruction, the camera must also use correct
parameter settings. This paper aims at designing a method to
calibrate a camera to obtain its parameters and then using the
method in the reconstruction of 3D images. Camera calibration
is performed using region-based correlation methods. There are
several steps necessary to follow. First, the world coordinate and
the 2D image coordinate are measured. Extraction of intrinsic and
extrinsic camera parameters are then performed using singular
value decomposition. Using the available disparity image and
the parameters obtained through camera calibration, 3D leaf-
image reconstruction can finally be performed. Furthermore, the
results of the experimental depth-map reconstruction using the
intrinsic parameters of the camera show a rough surface, so that
a smoothing process is necessary to improve the depth map.

Keywords—Camera calibration; image reconstruction; 3D leaf
images; singular value decomposition

I. INTRODUCTION

Automatically recognizing leaf objects using a computer
is a challenging task. The main challenge lies in the image
variation. A different position of the camera can see the object
in a different variation. The image will also vary depending on
the direction and position of the object. To maintain the correct
direction and position of the image, a 3D stereo concept can be
used. This technique is a stereoscopic technique of computer
vision that has been developed by several researchers in the
field of agricultural automation [1], [2].

Camera calibration is a necessary step for 3D computer
vision to extract information on the distance measurement from
a 2D image. It is widely studied in the fields of computer
vision and photogrammetry. Developing computer vision al-
gorithms with high accuracy is not easy. Designing computer
vision algorithms for two cameras requires knowledge and
understanding in how images of the same scene are viewed
from different viewpoints. Camera calibration system should
be designed in such a way that the image coordinates of
the world point will remain detached from the position and
direction of the camera.

A calibration process refers to a process of determining
intrinsic and extrinsic camera parameters from a number of
correspondences between the 3D point and the projection of

that point to one or several 2D images [3]. Most frequently,
this is done by using the calibration checkerboard or other
easily recognized marker patterns [4].

Various algorithms have been presented in the literature to
solve this calibration problems. Salvi et al. [5] compared sev-
eral methods, namely, Halls and Faugeras, who employed the
technique of least squares to generate camera parameters, and
Tsai and Weng, who used a two-stage technique, where the first
stage used a linear approach with the aim of generating initial
guesses and the second stage used an iterative algorithm to
optimize the parameters [5]. Zhang [3] proposed a calibration
method using multiple images of a planar calibration grid.

Many researches also proposed camera calibration for
reconstructing 3D objects. Weng et al. [6], for instance, pre-
sented a camera model that accounts for major sources of
camera distortion, namely, radial decentering, and thin prism
distortions. Zhu et al. [7] proposed reconstructing 3D-models
of old Beijing city by a structured light photogrammetry.

This paper focuses on calibration problems of a camera
with two lenses (stereo camera), where the relative projection
matrix between the lenses must be highly accurate. This
projection matrix is usually used in the calculation of the depth
of the images taken using the stereo camera [8] or for human
pose reconstruction [9]. For this application, the quality of the
camera calibration has a direct impact on the quality of the
overall results.

The method we propose in this paper is based on [10].
Consider Fig. 1, in which an imaging model of two cameras
C and C ′ is depicted.

 

Fig. 1. Imaging an object using two cameras [10].

Fig. 1 shows a model imaging from a camera with double
lenses (a stereo camera) or two separate physical cameras
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or a camera moving at different positions. Assume that the
scene coordinate for a point X in the coordinate system C
is (X,Y, Z) and in the coordinate system C ′ is (X ′, Y ′, Z ′).
Then, u = (x, y) and u′ = (x′, y′) are the coordinates for
the image of X that correspond to the planes of the images,
P and P ′, respectively. The points u and u′ are called the
corresponding points.

Therefore, the same scene of the world coordinates is
mapped onto a different system of image coordinates. This
is to adjust points that are mathematically related by a one-
to-one mapping explicitly. In other words, after a camera is
calibrated, the scene of the world coordinates is the same and
each camera describes the same pixels.

In this paper, 3D leaf images are captured using Fuji
Finepix stereo camera Real 3D W3 Camera. This camera has
two 10 MP lens, and 3D real-time screen, with no glasses.

The rest of the paper is organized as follows: Section II
describes the basis of parameter extraction using singular value
decomposition and transformation of coordinate systems. Sec-
tion III describes the proposed method of camera calibration.
Section IV presents the result of our experiments with the
proposed method and provides analysis. This chapter also
discusses the application of the method on 3D leaf-image
reconstruction. Finally, Section V concludes the chapter.

II. PRELIMINARIES

A. Orthogonal and Orthonormal Vectors

Two vectors ~x, ~y that are perpendicular to one another
are called orthogonal, denoted by ~x ⊥ ~y. In this case,
inside/outside multiplication (inner/dot product), denoted by
〈~x, ~y〉, is zero. Two vectors are said to be orthonormal if they
are orthogonal and have a unit length, i.e., the length (norm)
of the vectors equals to one.

B. Singular Value Decomposition

Singular value decomposition (SVD) is one of many factor-
ization methods applied in least-squares calibration to resolve
linear equations, to compute the rank and the null spaces of
matrices, and so on. A system of linear equations can be
written in the form of A~x = ~b, where A is a matrix of
size m × n, where m > n. Then, A can be factorized using
SVD: A = USV>, where U is an (m × n)-matrix formed
by orthogonal vectors, S is a diagonal matrix with positive or
zero elements of size n×n, and V is an (n×n)-matrix formed
by orthogonal vectors.

The terms above is called the SVD of matrix A. For
example, let S = diag {σ1, σ2, . . . , σn}, where σ1 ≥ σ2 ≥
. . . ≥ σn ≥ 0. Therefore, σ1, σ2, . . . , σn are regarded as
singular values of A. Columns of U and V are left and right
singular vectors, respectively, for the corresponding singular
values. For a system of homogeneous linear equations A~x = ~0,
vector ~x in the null space of A is a solution. Columns of
V, whose corresponding singular values approach zero, are
solution vectors.

For a system of non-homogeneous linear equations A~x =
~b 6= ~0, we aim at finding the solution ~x with the shortest length
|~x|2, where ~x = V[diag(σ−11 , σ−12 , . . . , σ−1n )]U>~b. In this

case, for each singular value σi = 0, σ−1i is replaced by 0. If ~b
is not in the range of A, then vector ~x that satisfies the system
of equations cannot be found. Moreover, it is impossible to
generate an exact solution.

If n = m, i.e., A is a square matrix, SVD is determined by
A = USV>, where U and V are orthogonal square matrices.
Then, A−1 = V[diag(σ−11 , σ−12 , . . . , σ−1n )]U>). The range of
A is the same as the rank of A. If A is singular, the rank of
A is therefore lower than n, where n = rank(A) + null(A).
Columns of U, associated with singular values that are not
equal to zero, is an orthonormal set for the range of A.
Columns of V, associated with singular values that are not
equal to zero, is an orthonormal set for the null space of A.

III. PROPOSED METHOD

The proposed method is oriented to the final objective,
i.e., to bring together different camera views by ignoring lens
distortions. Fig. 2 depicts the proposed calibration method.

Establishing a calibration pattern that will function 
as an object in the 3D world coordinate system. 
For example, a pattern for a chessboard taped to 
a mutually orthogonal wall.

Measuring calibration 
points of the global 
coordinate system.

Adjusting the position 
of the stereo camera 
to the object to be 
captured.

Capturing the object 
using a stereo 
camera at several 
distances.

Measuring calibration 
points of the local 
coordinate system 
from the calibration 
box.

Calibrating each camera. Calculating the 
transformation matrices of each camera for its 
own local coordinate system using a method of 
Singular Value Decomposition (SVD).

Producing intrinsic and extrinsic parameters using 
a method of least squares.

Using parameters to reconstruct the stereo.

Fig. 2. The proposed calibration method.
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At the initial stage, the calibration pattern is built using
a checkerboard pattern. The checkerboard uses size of 2 cm
for each box and is placed in the wall angled to the real
world. Some vertices of each checkerboard box are calculated
as 3D coordinates and are used as calibration points (global
coordinates). Furthermore, a checkerboard image from the
camera portrait is taken and the coordinates of the pixels
from the predetermined points are measured as 2D coordinates
(local coordinates). Once the camera parameters of the local
coordinate system have been calculated, the global coordinate
data are then used to transfer all local coordinate data to the
same global coordinates to register everything into the same
global coordinate system.

After all these operations are done, the image’s coordinates
are calculated using pixel coordinates of the predetermined
calibration points within the space. It can be seen that although
the world coordinates of the image remain the same, they
are different in terms of the position and direction of the
camera. Then, the system is calibrated in such a way that the
coordinates of the image from this point are not different from
the position and orientation of the camera, or in other words,
the whole system is calibrated.

Furthermore, the parameter values generated are subse-
quently used to reconstruct the stereo images, whose disparity
values have been obtained. There are five intrinsic parameters,
namely, a scale factor s, an image center (u0, v0), and (alpha
and beta) focal lengths f . They are not independent. The focal
lengths are used to construct depth map.

A. Camera Parameters Extraction

To express a point of any object in the world coordinate
system, it is necessary to first transform the point into the
camera’s coordinates. This transformation consists of transla-
tion and rotation. Following [10], let the coordinate of the
world is denoted by Pw(xw, yw, zw) while the coordinate
of a 3D camera is denoted by C(x, y, z). Furthermore, the
transformation of the 3D world’s coordinate to the 3D camera’s
coordinate can be expressed by:[

x
y
z

]
=

[
R11 R12 R13

R21 R22 R23

R31 R32 R33

]
︸ ︷︷ ︸

R

[
xw
yw
zw

]
+

[
tx
ty
tz

]
.︸ ︷︷ ︸

~t

(1)

If f refers to the focal length of the camera, the geometric
pinhole can be written as:

x = f
x

z
and y = f

y

z
. (2)

Intrinsic camera parameters typically have an effective
focal length f , a scale factor s, and an image center (u0, v0),
which are also called a principal point. As usual, in the liter-
ature on computer vision, the origin of the image coordinate
system is located at the upper left corner of the image. The
unit of image coordinate is in pixels. For example, (xim, yim)
is a pixel coordinate and (Ox, Oy) is the optical center. If the
scale factors along the direction of x and y axis are sx and
sy , respectively, then:

x = (xim −Ox)sx, and y = (yim −Oy)sy. (3)

Based on Equations (2) and (3), we obtain:

f

sx

x

z
= xim −Ox and

f

sy

y

z
= yim −Oy, (4)

which implies:

xim = αx
x

z
Ox and yim = αy

y

z
Oy, (5)

where αx and αy are considered as parameters for scaling at
the direction of x and y.

In this method, a linear transformation equation can be
made to map the world coordinate (xw, yw, zw) to pixel
coordinates (x, y) as:[

x
y
1

]
∼

[
fsx fsθ Ox
0 fsy Oy
0 0 1

]
︸ ︷︷ ︸

K

[
1 0 0 0
0 1 0 0
0 0 1 0

]
︸ ︷︷ ︸

M0

[
R ~t
0 1

]

︸ ︷︷ ︸
M

xwywzw
1



(6)
and therefore: [

x
y
1

]
∼M

xwywzw
1

 . (7)

Showing the elements of the composite matrix M:[
x
y
1

]
∼

[
m11 m12 m13 m14

m21 m22 m23 m24

m31 m32 m33 m34

]xwywzw
1

 . (8)

For a given constant α, we have:[
αx
αy
α

]
=

[
m11xw +m12yw +m13zw +m14

m21xw +m22yw +m23zw +m24

m31xw +m32yw +m33zw +m34

]
, (9)

and therefore:

x =
m11xw +m12yw +m13zw +m14

m31xw +m32yw +m33zw +m34
, and (10)

y =
m21xw +m22yw +m23zw +m24

m31xw +m32yw +m33zw +m34
. (11)

In the end, two equations with 12 unknown parameters
(m11,m12, . . . ,m34) are obtained. This is an over-determined
system of linear equations. There are many ways to solve such
system of linear equations, one of which is by using least-
squares method [11]. In this paper, we will use singular value
decomposition to solve such systems of linear equations.

B. Parameters Extraction using SVD

Extraction of parameters M cannot be solved directly,
because the system of equations is over-determined. However,
over-determined systems can be solved using SVD. In this
method, the singular matrix M can be decomposed into:

M = USV>. (12)

Since the vectors in V provide solutions related to the smallest
eigenvalues, they provide real solutions. This way, parameters
encoded in M are then extracted.
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IV. RESULTS AND ANALYSIS

A. Experimental Procedures

Two checkerboard patterns are pasted on the walls angled
perpendicularly to one another as depicted in Fig. 3. Axes for
the frame of the world are selected with the following steps:
The point of origin is in the most bottom part, where two
images meet at that angle. Axis Z moves upwards the point
of origin. Axis X moves to the left wall of the point of origin.
Axis Y moves to the right wall of the point of origin. The point
of origin and three axes, namely, X , Y , and Z are shown in
Fig. 3.

 

Fig. 3. Checkerboard pattern on the walls angled perpendicularly to one
another and the coordinate axes for the frame of the world.

Points measured are shown with red dots on the image. A
total of 60 points are selected, i.e., 30 points in the left-hand
checkerboard and 30 points in the right-hand checkerboard as
shown in Fig. 3. Coordinates of the real world for the 60 points
are measured using a ruler with a unit of centimeters.

 

 

 

distance 30 cm

 

 

 

distance 40 cm

 

 

 

distance 50 cm

Fig. 4. Checkerboards captured from different distances.

Experiments are performed for three different distances
from the camera to the object, i.e., at a distance of 30 cm, 40
cm, and 50 cm as depicted in Fig. 4. Measurement for each
distance is then repeated three times. This is to confirm the
intrinsic parameters’ values to be generated. Table I presents
the resulting values for the intrinsic parameters generated from
the experiments of camera calibration at different distances.

B. Results of the Calibration

Based on the results of the experiments, the following
intrinsic parameters are obtained: the theta value is approx-
imately π

2 (see Table I), meaning that the camera coordinate
is not too skewed, and hence, the axes X and Y that are
in the image frame are perpendicular to one another. The
image resolution used in the experiments is 2592 × 1944,
meaning that the center of the image is supposed to be at
(1296, 972). Nevertheless, experiments obtain u0 = 1701.2
and v0 = 1592.3 for the distance of 301, u0 = 794.1 and
v0 = 1093.5 for the distance of 401 and so on. As measured in
the experiments, the center of the image does comply with the
principal point C0 and differs (405.2, 620.3) for the distance
of 301.

TABLE I. THE RESULTING INTRINSIC PARAMETERS OBTAINED FROM
EXPERIMENTS OF CAMERA CALIBRATION USING CHECKERBOARDS

Distance Theta u0 v0 Alpha (kf) Beta (lf)

301 15.910 rad (90◦) 1701.2 1592.3 2155.7 2062.1

302 15.789 794.1 1093.5 5057.3 4748.6

303 15.764 803.8 1202.7 5069.3 4764.6

401 15.787 1056.4 1071.4 5206.2 4921.4

402 16.343 976.0 1814.2 3406.9 3204.2

403 15.738 733.6 1108.2 5187.4 4885.9

501 15.762 1022.2 1012.7 5398.7 5108.4

502 15.746 833.7 1092.9 5440.6 5141.6

503 15.764 788.1 1083.4 5451.5 5159.6

Alpha and beta take measurement units of kf and lf , where
k and l represent the number of pixels per centimeter, and f
refers to the distance of the image frame physically from the
equivalent pinhole or lens. Alpha and beta measurement units
constitute the basis of the view point. It is revealed that the
number of pixels per centimeter is 37.795275591. If alpha =
kf = 2155.7 where k = 37.795275591, then f = 57.03623 is
obtained and if beta = lf = 2062.1 where l = 37.795275591,
then f = 54.55973 is obtained.

Based on the results of the experiment, the focal length
obtained for each distance is given in Table II.

TABLE II. FOCAL LENGTHS OBTAINED IN THE EXPERIMENTS FOR
VARIOUS DISTANCES

Distance Left f Right f

30 cm 134 126

40 cm 137 130

50 cm 143 136

The output of the extrinsic parameters for images at a

www.ijacsa.thesai.org 368 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 8, No. 9, 2017

distance of 301 is as follows:

R =

[−0.5077 0.8614 −0.0130
0.1941 0.0997 −0.9759
−0.8394 −0.4980 −0.2179

]
, and

~t = [−4.0121 −0.0267 28.9814] .

Using the approach of least squares or SVD, rotation and
translation matrices are obtained from the global coordinate
system. Then, using the transformation matrices R and ~t
obtained from each of those cameras (which are in their own
local coordinate systems), the local coordinate systems can be
translated into the same global coordinate system.

C. Application to Leaf Images

The values of the intrinsic camera parameters such as focal
length (f ) can be used to determine the depth of an image
(z). If the disparity value (d) of a stereo image and a camera
baseline (B) is known, the depth value of each point of the
image can be determined by:

z =
fB

d
. (13)

The basic concept of disparity is shown in Fig. 5, where P
is a random point in three dimensions, which is considered as
an object viewed from two cameras positioned in the same
direction. Meanwhile, the two cameras may have different
baselines. Furthermore, the object will appear in different
positions in both stereo images.

 

Fig. 5. A simple stereo system [12].

Disparity (d) is defined as the distance between the same
object on the left and right stereo images, which can be
expressed by:

d = xL − xR = f(
xp + 1

zp
− xp − 1

zp
), (14)

where, xL and xR are the coordinates of object x on the left
and right stereo images [13]. From the disparity values of all
points, we can construct a disparity image. An example of a
disparity image can be seen in Fig. 6 [14].

Fig. 7 depicts the result of a 3D leaf-image reconstruction
using disparity values obtained from correspondence calibra-
tion of stereo images and using baseline B = 75mm and focal
length f = 136 [14].

Disparity Image

 

 

Left Image

Right Image

Fig. 6. The disparity image of a stereo leaf image.

 

Fig. 7. Depth-map reconstruction based on disparity values of a leaf image
with f = 136 and B = 75mm.

The results obtained show a rough surface, but the 3D
leaf-surface results indicate that intrinsic parameters of camera
calibration greatly contribute to building a disparity or depth
map of a 3D leaf object. Fig. 7 in detail shows the depth
of each pixel coordinate of the 3D leaf image. To obtain
smoother depth map, it is necessary to perform smoothing
on the resulting depth map or we can also use image recti-
fication and segmentation [6]. Another solution can be done,
namely, by refining calibration parameters through a non-linear
optimization. The solution is obtained through minimizing an
algebraic distance, which is not physically meaningful. This
can be done through a maximum likelihood inference, which
can be solved with the Levenberg-Marquardt algorithm [15].

D. Discussion

If the 3D point of the world model and the pixel coordinates
of 2D projections are known, calibration matrices, rotation
matrices, translation vectors, parameters for a scale at X and
Y , and the optical center of the image (x, y) can be solved
using a linear method with SVD, if the 3D point of the world
model and pixel coordinates of 2D projections are known. By
using SVD, the 3D point can be re-projected and by comparing
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with the 2D point, the average pixel errors in the direction of
X and Y can be revealed. For some experiments, different
intrinsic values of focal length are generated. f values that
can be used to find the depth are obtained from the mean of
the obtained f values. Then, we have presented an experiment
of depth map reconstruction using the intrinsic parameters of a
camera. The results obtained show a rough surface compared
with the results of this study [13]. Therefore, it is necessary
to perform smoothing on the resulted depth map.

Although the results obtained show a rough surface, the
3D leaf-surface results indicate that intrinsic parameters (such
as focal length) of camera calibration greatly contribute to
building a disparity or depth map of a 3D leaf object. The depth
maps generated in this study show nearly the same quality
compared to the depth map of color imagery with region-
based stereo image algorithms [16], even though the object’s
focus (i.e., a leaf object) in this study tends to be small objects
and, hence, to distinguish the coordinate points or object pixels
on the image is more difficult. This suggests that the method
proposed in this study may work well.

V. CONCLUSION

This paper has presented a simple approach to the recon-
struction of the leaf image. Using SVD, calibration matrices,
rotation matrices, translation vectors, parameters for a scale at
X and Y , and the optical center of the image (x, y) can be ob-
tained if the 3D point of the world model and pixel coordinates
of 2D projections are known. SVD can also note the average
pixel errors in the direction of X and Y by projecting a 3D
point by comparing the return of 2D points. The 3D layout
of the leaf image can be reconstructed into a 2D leaf image.
Camera calibration is performed by observing a calibration
object where the geometry of the 3D space is known with
highly accurate precision. The intrinsic parameters of camera
calibration greatly contribute in constructing disparity map or
depth map of 3D leaf images. Furthermore, the results of
the depth map reconstruction using intrinsic parameters of the
camera show a rough surface making it necessary to perform
essential post-processing steps, such as image rectification and
segmentation, i.e., smoothing the results of the depth map.
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