
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

433 | P a g e

www.ijacsa.thesai.org

Defense against SYN Flood Attack using

LPTR-PSO: A Three Phased Scheduling Approach

Zonayed Ahmed

Lecturer, Department of Computer

Science and Engineering

Stamford University Bangladesh

Dhaka, Bangladesh

Maliha Mahbub

Lecturer, Department of Computer

Science and Engineering

Stamford University Bangladesh

Dhaka, Bangladesh

Sultana Jahan Soheli

Lecturer, Department of Information

and Communication Engineering

Noakhali Science and Technology

University

Dhaka, Bangladesh

Abstract—Security has become a critical factor in today’s

computation systems. The security threats that risk our

confidential information can come in form of seemingly

legitimate client request to server. While illegitimate requests

consume the number of connections a server can handle, no valid

new connections can be made. This scenario, named SYN-

flooding attacks can be controlled through a fair scheduling

algorithm that provides more opportunity to legal requests. This

paper proposes a detailed scheduling approach named Largest

Processing Time Rejection-Particle Swarm Optimization (LPTR-

PSO) that defends the server against varying intensity SYN-flood

attack scenarios through a three-phased algorithm. This novel

approach considers the number of half-open connections in the

server buffer and chooses a phase accordingly. The simulation

results show that the proposed defense strategy improves the

performance of under attack system in terms of memory

occupancy of legal requests and residence time of attack requests.

Keywords—SYN flood; Largest Processing Time Rejection-

Particle Swarm Optimization (LPTR-PSO); three-phased

algorithm; legal request; buffer

I. INTRODUCTION

As far as security in data and telecommunications go,
technology has sure come a long way, but it still seems to halt
at some known stations. One of the most important aims in
using of computer networks is to be able to share resources,
and reduce network costs while ensuring total reliability.
Therefore, it seems likely that these issues are often the most
vulnerable while facing breach of security in various forms of
attacks. One of the most common and also consistent threats
to network reliability and resource availability is the Denial of
Service (DoS) attack which can probably be dated back to the
time data sharing and networking came into existence.

The goal of DoS attacks is to exhaust a system’s resources
such that it compromises its ability to provide the intended
service and thus rendering it unavailable. DoS attacks
typically trust on the misuse of exact susceptibility in such a
way that it consequences in a denial of the service. New
arithmetical assessment show that DoS positions at the quarter
place in the list of the most poisonous attack classes in
contradiction of information systems [1].

DoS attacks can be classified into two types. In one type,
the malicious user crafts a packet very carefully trying to

exploit vulnerabilities in the implemented software [2]. The
second type is where the malicious user is trying to
overwhelm system’s resources of the provided service-like
memory, CPU or bandwidth, by creating numerous of useless
well-formed requests. This type of attack is well known as
flooding attack [3].

One of the most common DoS attacks is called SYN-Flood
attack. This flooding attack is caused by attackers through
TCP three-way handshaking. It has been reported that more
than 90 percent of the existing DoS attacks are TCP based [4].

Three-way handshaking procedure starts when the client
sends a SYN request to the server. When the client receives
the SYN request, it sends a SYN-ACK packet that contains
the synchronization request and acknowledgement. Lastly the
client receives it and sends an ACK packet to the server. This
is how a connection is established through three way
handshaking and then data transfer starts. The procedure is
demonstrated in Fig. 1.

Fig. 1. TCP three way handshaking process.

Transmission Control Block (TCB) is a transport protocol
data structure which contains all the information about a
connection. Usually, each TCB exceeds at least 280 bytes, and
in some operating systems currently takes more than 1300
bytes. The TCP SYN-ACK state indicates that the connection
is only half open, and that the legitimacy of the request is still
in question. The important aspect to note is that the TCB is

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

434 | P a g e

www.ijacsa.thesai.org

allocated based on reception of the SYN packet—before the
connection is fully established or the initiator’s return
reachability has been verified [5].

The system attacker targets this particular aspect of this
process. The attacker sends lots of requests to the server so
that the server assigns TCB to each of these requests. The
problem is in both ends. If the server continues to assign data
to these attack requests, legitimate requests might not be
getting resources. Again, as there is no easy way to detect
legitimate requests beforehand, the server can’t close all half-
open connections beforehand.

Now, SYN-flooding attacks don’t usually affect the factors
such as the link bandwidth, dispensation capital, data rate and
so on. Therefore, most of the defense against SYN flood
attack can be conjured by an effective scheduling algorithm
that helps detect the attack half open connections and discard
them. A scheduling algorithm helps assigning resources to the
requests in a particular order based on various parameters such
as priority, processing time, etc. Since SYN flood attacks
target to tie up the resource allocation process, a scheduling
algorithm can be implemented which identifies the harmful
requests while sorting arrived requests and rule them out.
Although using scheduling approach to detect or simply
identify the SYN attack requests has been proposed before but
none of them has been very effective in successfully removing
the attack requests and thus allowing more memory space for
legal requests. This principle has been the foundation of the
proposed algorithm Largest Processing Time Rejection-
Particle Swarm Optimization (LPTR-PSO) which actually
uses three separate algorithms for different phases based on
the degree of attack to the server.

The rest of the paper is organized as follows: the previous
approaches, studies and works related to the addressed
premise of this paper are listed in Section 2, proposed
algorithm and its working principle along with system model
are demonstrated in Section 3, performance analysis and
simulation results are included in Section 4 and the conclusion
along with future works is stated in Section 5, followed by the
references.

II. RELATED WORKS

Many researchers have been done focusing on SYN-
flooding attacks. Some of them are briefly discussed here.

Shahram et al. [2] proposes that SYN flooding attack can
be viewed metaphorically as result of an unfair scheduling that
gives more opportunity to attack requests but prevents legal
connections from getting services. In this paper, a scheduling
algorithm named HRTE (Highest Residence Time Ejection) is
proposed that ejects the half connection with the longest
duration. When number of half open connections reaches to
the upper bound. The simulation results show that the
proposed defense mechanism improves performance of the
under attack system in terms of loss probability of requests
and share of regular connections from system resources.

In [6] the authors have analyzed the traffic at an Internet
gateway and the results showed that we can model the arrival
rates of normal TCP-SYN packets as a normal distribution.

Lemon et al. [7] proposed two queuing models for the DoS
attacks in instruction to get the pack postponement jitter and
the loss probability.

D.J. Bernstein et al. [8] presents a simple and robust
mechanism, called Change-Point Monitoring (CPM), to detect
denial of service (DoS) attacks. The core of CPM is based on
the inherent network protocol behaviors, and is an instance of
the Sequential Change Point Detection. To make the detection
mechanism insensitive to sites and traffics patterns, a non-
parametric Cumulative Sum (CUSUM) method is applied.

Another research offers protection against SYN flooding
for all hosts connected to the same local area network,
independent of their operating system or networking stack
implementation [9].

Vasilios A. Siris et al. proposed the two algorithms
considered are an adaptive threshold algorithm and a
particular application of the cumulative sum (CUSUM)
algorithm for change point detection [10]. The performance is
investigated in terms of the detection probability, the false
alarm ratio, and the detection delay. Particular emphasis is on
investigating the tradeoffs among these metrics and how they
are affected by the parameters of the algorithm and the
characteristics of the attacks.

Gholam Shaker et al. [11] proposes a self-managing
approach, in which the host defends against SYN flooding
attack by dynamically tuning off its own two parameters, that
is, m (maximum number of half open connections) and h (hold
time for each half-open connection). In this way, it formulates
the defense problem and optimization problem and then
employs the particle swarm optimization (PSO) algorithm to
solve it. The simulation results show that the proposed defense
strategy improves performance of the under attack system in
terms of BUE and PSA.

Chen et al. [12] addresses the issue of how to define the
hash functions in Bloom filter to avoid threat of DoS attacks.

Compilation of an IP address database of previous
successful connections is proposed in Peng et al. [13]. When a
network was suffering from traffic congestion, an IP address
that did not appear in the database was construed as more
suspicious.

A similar approach called SYN cookie was proposed in
Zuquete et al. [14]. This approach removes the backlog queue
from the operating system. The SYN cookie receives an ACK
packet it checks the sequence number to see if it is valid. If
validated, the packet is accepted and the victim’s host
allocates resources for the connection, otherwise the packet is
dropped.

Center Track [15] and SOS [16] both use overlay
techniques with selective rerouting to prevent large flooding
attacks.

The proposed algorithm LPTR-PSO is a combination of
the principle of Highest Residence Time Ejection (HRTE) [2]
and Particle Swarm Optimization (PSO) algorithms. The basic
principle of HRTE is that it ejects the job with the highest
residence time. However this algorithm does not hold up
against multiple attacking half open connections and does not

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

435 | P a g e

www.ijacsa.thesai.org

provide any solution for the blocked legal requests. It only
ejects one request with highest residence time. The
proposed LPTR on the other hand sets a threshold value for
determining the presence of all the requests which can pose as
a threat and ejects them from the buffer queue. And even if the
buffer still gets occupied by more attack half open
connections, our algorithm then switches to self-adjusting
optimization algorithm Particle Swarm Optimization (PSO)
which effectively handles both the processing time of half
open connections and buffer size.

III. PROPOSED THREE PHASE DEFENSE ALGORITHM

AGAINST SYN FLOOD: LPTR-PSO

The goal of TCP SYN flood attack is to consume up the
TCP buffer space. It does not usually affect the factors such as
the link bandwidth, dispensation capital, data rate and so on.
Therefore, most of the defense against SYN flood attack can
be conjured by an effective scheduling algorithm that helps
detect the attack half open connections and discard them. This
principle has been the foundation of our proposed algorithm
LPTE-PSO which actually uses three separate algorithms for
different SYN attack scenarios. When the server is not under
any attack, the buffer queue is not fully occupied and the
scheduling algorithm will go along with a traditional Round
Robin algorithm for scheduling all the jobs (TCP service
requests). However, if the buffer is full and the residence time
for any job aka the turn-around time of a process exceeds a
given threshold value (which in this case is the average
turnaround time of all the process in the buffer queue), then
the second phase of the algorithm starts which is the Largest
Processing Time Rejection (LPTR) algorithm. In this phase,
the jobs with residence time higher than the threshold value
are considered to be attack half open connections and they are
ejected from the queue. The released queue space is added to
the buffer to accommodate more TCP service requests.

However, if the attacker keeps sending half open requests
and the number of service requests exceeds the maximum
TCP buffer size, the legal TCP service requests are blocked.
Keeping this in mind, we augmented the third phase of the
algorithm which uses a very useful optimization algorithm
Particle Swarm Optimization (PSO). This phase starts if the
number of service request exceeds the maximum buffer space
in order to accommodate the legal request as well as ejecting
attack half open connections.

A. Scheduling using LPTR (When n=m)

The proposed algorithm LPTR is based on the principle of
Highest Residence Time Ejection (HRTE). The basic principle
of HRTE is that it ejects the job with the highest residence
time. However this algorithm does not hold up against
multiple attacking half open connections and does not provide
any solution for the blocked legal requests. It only ejects one
request with highest residence time at a time. This could be
highly ineffective during a distributed SYN flood attack since
most of the time the attacker sends many attack half open
request at a time to use up all the buffer space. LPTR on the
other hand sets a threshold value for identifying tall the half
open connections that has been occupying the buffer for too
long and ejects them, thus freeing the memory space for
arrived requests which otherwise would have been blocked.

The TCP buffer queue has a limited space it can allocate
for incoming service requests and they are considered as half
open connection waiting for their turn to get the resources
from server they requested. The size of the queue i.e. the
maximum number of arrival request that can be held at the
buffer is m. The arrivals of the regular request packets and the
attack packets are both Poisson processes with rates λ1 and λ2,
respectively. The two arrival processes are independent.
Obviously, when the system is under attack then number of
pending connections increases and in a point in which there is
no more space then the arriving requests will be blocked,
which is commonly known as the SYN flooding attack.

The paper proposes that the defense against this attack can
be considered as a queue scheduling algorithm LPTR that
differentiates attack requests from regular requests by using a
threshold value and then ejects the attack requests thus freeing
up the space for more arrival requests. The current number of
half open connections that are residing in the queue is n. When
the queue is full, i.e. n=m, the newly arrived request faces a
full buffer, then the algorithm switches to LPTR mode. This
algorithm calculates the average turnaround time for all the
half open connections or jobs that are currently waiting for
their turn where,

Turnaround time of a process = Burst time of the process+
waiting time.

The turnaround time is therefore the processing time
required by a connection to get the resource they asked for and
thus completing their time at the queue. LPTR calculates the
average turnaround time of each process present in the queue
and sets this value as a threshold. It then compares the
turnaround time of each process with the threshold. If the
current turnaround time of a process exceeds the average
turnaround time allotted for the process, then that process is
considered to be an attack request and it is ejected from the
queue, thus freeing the space occupied by the attack request to
be allocated to the arrived requests.

However, even if the memory space released from the
attack requests gets consumed by further attack request the
queue gets full again where n>m. In this scenario, our
proposed algorithm switches to PSO, popular swarm
intelligence based optimizing algorithm which rather than
deleting any requests, adjusts the burst time for each request
and sets new size of the queue as to accommodate more
arrived requests in the face of a serious SYN flood attack.

B. Scheduling using PSO (When n>m)

The last phase of the proposed algorithm includes PSO, a
population based optimization algorithm that assigns possible
solutions of a problem in a search space. The method of PSO
optimized was introduced in 1995 by James Kennedy and
Russel Eberhart [17]. It has been a noteworthy nature-inspired
metaheuristics used in science and engineering specially in
biotechnology. PSO is mostly used in real world data analysis,
resource allocation, scheduling problems [18] and more.

The basic idea of PSO is to assign multiple solutions of a
target problem to a search space, or ―swarm‖ of particles. The
basic idea of PSO is to assign multiple solutions of a target
problem to a search space, or ―swarm‖ of particles which

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

436 | P a g e

www.ijacsa.thesai.org

coexist and share information with the neighboring particles.
PSO has an objective function which undergoes a number of
iterations and the goal of this objective function is to provide
optimal solutions. All the particles in the search space have
fitness value that is obtained by the objective function. As the
algorithm goes through multiple iterations, each particle
moves in the problem search space by changing its velocity
vector looking for the optimal solution provided by the
objective function. Therefore, each particle has to adjust its
position in the search space under the influence of its own top
solution, known as the local best and the best solution found
by the entire swarm which is also known as the global best
position [19]. The particles are essentially characterized by
two properties: the particle position, which defines where the
particle is located with respect to other solutions in the search
space, and the particle velocity, which defines the direction
and how fast the particle should move to improve its fitness
compared to the rest of the neighbor particles [18]. The
proposed algorithm switches to PSO when the number of half
open connection n exceeds the maximum buffer queue size m,
which can be considered a heavy attack scenario. Two
parameters are considered here: the maximum residence time
each half open connection is allowed to hold in the queue, t
and the maximum number of half open connection that the
buffer can allow.

1) Objective Function of PSO
For defense against SYN flood attack PSO algorithm, an

objective function has been selected which consists of the
following parameters: t and m as mentioned earlier. The goal
here is to minimize the occupancy of attack requests in the
queue and preventing the loss of legal requests while
simultaneously increasing the space occupied by legitimate
requests. So, the objective function of this problem is
formulated as,

Objective function = min [(attack half open
connections*rate of packet loss)/(regular half open
connections)]

By calculating the objective function at iterative steps and
comparing it to the objective function obtained from the
previous steps of all particles in swarm, the parameters t and
m of the queue at any moment are calculated.

The basic PSO algorithm, which minimizes this objective
function in a swarm consisting of a finite number of particles.
Each particle i of the swarm is associated with a position in a
continuous n-dimensional search space. Similarly, the velocity
is also an n-dimensional vector. The position and velocity of
each particle i at an iteration k is denoted as x

ki
 and V

ki

respectively, the following equations are used to iteratively
modify the velocities of the particles and positions:

Vt
k+1

= wvt
k
 + c1r1(Lbestt

k
 - x

k
) + c2r2(Gbest

k
 - x

k
) (1)

x
k+1

= x
k
 + Vt

k+1
 (2)

Vp
k+1

= wvp
k
 + c1r1(Lbestp

k
 - p

k
) + c2r2(Gbest p

k
 - p

k
) (3)

p
k+1

= p
k
 + Vp

k+1
 (4)

where, Vt
k+1

represents the distance that needs to be
traveled by the ith particle from its current position in the kth

iteration, x
k+1i

represents the particle position in the kth
iteration, w is the inertia parameter that weights the previous
particles velocity, pbest represents its best personal position of
the particle and gbest represents the global best position
among all particles in the swarm. The parameters c1 and c2
enable the movement of the particle for its personal best
position towards the global best position and their values
should satisfy the condition, c1 + c2>4. In this case, the values
of acceleration parameters have been chosen to be 2.
Parameters r1 and r2 are two random numbers uniformly
distributed in [0, 1] that are used to weight the velocity toward
the particle personal best and toward the global best solution
[18]. As stated earlier, PSO algorithm minimizes the objective
function and each particle of the swarm tries to tune its
positions to fit to the global best position, i.e. t and m seeks the
best position in the whole swarm. The best defense positions
of the parameters t and m are therefore utilized by the server to
defend the flooding attack. When the half open connections
exceed the maximum queue size, PSO with objective function
including parameters t and m is executed. The proposed PSO
reduces the residence time t of each request in the queue
which allows the attack requests to be discarded quickly and
simultaneously increases the buffer size so that incoming legal
requests can be accommodated. The overall workflow of the
algorithm is shown in the flow chart in Fig. 2.

Fig. 2. Flow chart for LPTR-PSO algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

437 | P a g e

www.ijacsa.thesai.org

C. Efficiency Measurement Parameters (ARTR and RRTR)

In order to effectively measure the efficiency of the
algorithm in different attack scenarios, two parameters, Attack
Request Time Rate (ARTR) and Regular Request Time Rate
(RRTR) has been chosen.

RRTR is the ratio of the sum of all the regular connection
duration in the queue to the total available resources or
memory space. ARTR is the ratio of all the attack connections
duration to the total available resources or memory space [2].

The efficiency of both LPTR and PSO algorithm has been
measured using the same parameters to show that both the
algorithms are capable of defending SYN flood attack. The
goal here is to assure a lower ARTR and higher RRTR while
the server is under attack.

IV. PERFORMANCE ANALYSIS, COMPARISON AND RESULTS

The working principle of this algorithm considered a
server under SYN flood attack with buffer size m=15 dealing
with TCP requests each with different burst time (time
required to complete the task) and each set had variations in
the turnaround time depending on the attack intensity. Three
attack scenarios are considered, namely high attack intensity,
medium attack intensity and low attack intensity. Comparative
analysis of LPTR and HRTE and performance of PSO when
request number is increased have been illustrated in this
section.

For LPTR algorithm, n=15 sets of TCP requests at a time
processed at a time which meets the requirement n=m.

In the three scenarios, length of turnaround time has been
used as the threshold for selecting attack request and regular
request. If turn-around time of a request is greater than
average turnaround time, then it is considered an attack
request. Otherwise it is a regular request. Three samples are
shown for request sets for three scenarios. 10 such TCP
request sets each containing n=15 requests are selected to
measure the performance of LPTR. HRTE algorithm has been
employed on the same data set to compare the results between
them.

In case of PSO, n=16 sets of TCP requests has been used
at a time processed at a time which meets the requirement
n>m. PSO has reduced the total duration time of all the
requests in the queue, simultaneously showing equal or even
better performance than LPTR which is desirable as PSO will
be used when attack risk is greater. PSO has also allotted
different queue size m for different attack scenarios so that the
incoming legal requests are not blocked from getting service.
All the numerical analysis and simulations have been
conducted using Matlab.

A. High Attack Intensity

In a high attack intensity, where k is the intensity factor
determined by the ratio of attack request arrival rate λ2, and
regular request arrival rate λ1 respectively, so k= λ2/ λ1. A
sample set of requests in a low attack scenario may contain 1-
4 attack requests with high burst time and 11-14 regular
requests. The ARTR and RRTR have been plotted for each
request set over the total duration of requests in each set.

1) Using LPTR(n=m):
For LPTR, the value of k=0.7-0.8. The total duration of

requests ranges from 33 to 40. The performance of request set
under high attack using LPTR is shown below.

Fig. 3. ARTR for high attack intensity using LPTR and HRTE.

Fig. 4. RRTR for high attack intensity using LPTR and HRTE.

As seen from Fig. 3, the ratio of attack requests to the total
requests gradually decreases as the total duration of each
request set increases when the requests are sorted using LPTR
and it shows a better performance than HRTE.

As seen from Fig. 4, the ratio of regular request to total
requests increases as the request duration increases while
LPTR is used and shows better performance than HRTE.

2) Using PSO(n>m)
For PSO, the value of k=2 in high attack scenario. As seen

from the figures, PSO reduces the duration of each request in
the queue thus reducing the total duration time is reduced from
that in LPTR. The request duration ranges from 18 to 34 in
case of attack requests and 8 to 20 in case of regular requests.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

438 | P a g e

www.ijacsa.thesai.org

Fig. 5. ARTR for high attack intensity using PSO.

Fig. 6. RRTR for high attack intensity using PSO.

As seen from Fig. 5, the total duration of all request is
reduced and the ratio of attack requests to the total requests
gradually decreases as the total duration of each request set
increases when the requests are sorted using PSO.

As seen from Fig. 6, the total duration of all request is
reduced and the ratio of regular requests to the total requests
gradually increases as the total duration of each request set
increases when the requests are sorted using PSO.

B. Medium Attack Intensity

In medium attack intensity, a sample set of requests in a
medium attack scenario may contain 7-8 attack requests with
high burst time and 8-9 regular requests.

1) Using LPTR(n=m)
For LPTR, the value of k=0.5-0.6. The total duration of

requests ranges from 19.5 to 22. The performance of request
set under high attack using LPTR is shown below.

As seen from Fig. 7, the ratio of attack requests to the total
requests gradually decreases as the total duration of each
request set increases when the requests are sorted using LPTR,
and shows a better performance than HRTE.

Fig. 7. ARTR for medium attack intensity using LPTR and HRTE.

Fig. 8. RRTR for medium attack intensity using LPTR and HRTE.

As seen from Fig. 8, the ratio of regular requests to the
total requests gradually increases as the total duration of each
request set increases when the requests are sorted using LPTR
and shows better performance than HRTE.

2) Using PSO(n>m)
For PSO, the value of k=1 in medium attack scenario. As

seen from the figures, PSO reduces the duration of each
request in the queue thus reducing the total duration time is
reduced from that in LPTR. The request duration ranges from
9.75 to 20 in case of attack requests and 11 to 21.5 in case of
regular requests.

As seen from Fig. 9, the total duration of all request is
reduced and the ratio of attack requests to the total requests
gradually decreases as the total duration of each request set
increases when the requests are sorted using PSO.

As seen from Fig. 10, the total duration of all request is
reduced and the ratio of regular requests to the total requests
gradually increases as the total duration of each request set
increases when the requests are sorted using PSO.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

439 | P a g e

www.ijacsa.thesai.org

Fig. 9. ARTR for medium attack intensity using PSO.

Fig. 10. RRTR for medium attack intensity using PSO.

C. Low Attack Intensity

A sample set of requests in a low attack scenario may
contain 7-8 attack requests with high burst time and 8-9
regular requests.

1) Using LPTR(n=m)
For LPTR, the value of k=0.2-0.3. The total duration of

requests ranges from 7.5 to 20.9. The performance of request
set under high attack using LPTR is shown below.

Fig. 11. ARTR for low attack intensity using LPTR and HRTE.

Fig. 12. RRTR for low attack intensity using LPTR and HRTE.

As seen from Fig. 11, the ratio of attack requests to the
total requests gradually decreases as the total duration of each
request set increases when the requests are sorted using LPTR
and shows better result than HRTE.

As seen from Fig. 12, the ratio of regular requests to the
total requests gradually increases as the total duration of each
request set increases when the requests are sorted using LPTR
and shows better result than HRTE.

2) Using PSO(n>m)
For PSO, the value of k=0.5 in low attack scenario. As

seen from the earlier figures, PSO reduces the duration of
each request in the queue thus reducing the total duration time
is reduced from that in LPTR. But since here the attack
intensity is lower, PSO seems to extend the duration time a
little more as opposed to reducing it too much so that every
request can stay a little longer. The request duration ranges
from 5 to 25.75 in case of attack requests and 11 to 30.5 in
case of regular requests.

As seen from Fig. 13, the total duration of all requests is
reduced but not to a great extent since this is a low attack
scenario. The ratio of attack requests to the total requests
gradually decreases as the total duration of each request set
increases when the requests are sorted using PSO.

Fig. 13. ARTR for low attack intensity using PSO.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

440 | P a g e

www.ijacsa.thesai.org

Fig. 14. RRTR for low attack intensity using PSO.

As seen from Fig. 14, the ratio of regular requests to the
total requests gradually decreases as the total duration of each
request set increases when the requests are sorted using PSO.

D. Variations of Buffer Size m using PSO

As stated earlier, the proposed objective function of PSO,
reduces the duration of half open connection in the queue as
well as increases the maximum number of half open
connections that can reside in the buffer or buffer size m based
on different attack scenario. This allows the victim server to
accommodate more legal requests even if the server is under
attack. The gradual rise in the buffer size of m of the server
under different attack scenario is shown in next subsections.

1) High Attack Scenario
When the attack intensity is much high, the PSO increases

the maximum capacity of the buffer m from 20 up to 65 to
prevent blockage of arrived requests. In Fig. 15, as the total
duration of half open connection in the buffer increases
gradually, so does the maximum capacity of buffer.

Fig. 15. Increase of maximum buffer size m in high attack intensity.

2) Medium Attack Scenario
When the attack intensity is medium, the PSO increases

the maximum capacity of the buffer m from 20 up to 45 to
prevent blockage of arrived requests. In Fig. 16, as the total
duration of half open connection in the buffer increases
gradually, so does the maximum capacity of buffer.

Fig. 16. Increase of maximum buffer size m in medium attack intensity.

3) Low Attack Scenario
When the attack intensity is much low, the PSO still

increases the maximum capacity of the buffer m from 20 up to
41 to prevent blockage of arrived requests. In Fig. 17, as the
total duration of half open connection in the buffer increases
gradually, so does the maximum capacity of buffer.

Fig. 17. Increase of maximum buffer size m in medium attack intensity.

V. CONCLUSION AND FUTURE WORKS

The proposed scheduling approach to detect and defend
SYN flood attack executes a three phase scheduling algorithm
based on three different situations a server can handle. While
the server is not under attack and the buffer is not fully
occupied, the newly arrived requests are allotted into the
queue and traditional round robin approach is used to schedule
their resource allocation. If the buffer is full, then the proposed
novel LPTR algorithm is called which compares each half
open connection in the queue with a threshold value and ejects
the connections that exceed this threshold. If the buffer is still
overflowed, PSO algorithm is called to schedule the existing
and arrived requests by optimizing the residence time of each
half open connection in the queue and the maximum number
of connections that the queue can hold. As a result, the
incoming requests can be allotted into the queue and the
duration of half open connection in the queue is reduced
which reduces the presence of attack requests in the queue.
This novel approach takes various aspects of the server under

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 8, No. 9, 2017

441 | P a g e

www.ijacsa.thesai.org

attack instead of one and shows effective results in all the
cases. Instead of using different approaches to defend the
attack, this mechanism can serve as both scheduling and
defending framework that could ensure maximum defense
with efficient scheduling at the same time. While the ongoing
work focuses on the theoretical framework and simulated
analysis, there are strong considerations of moving to the
directions of implementing the model on real network traffic
and study the effects and scope of this approach to defend
similar Distributed DoS attacks on clustered and virtual
networks as well. This approach can be further extended to
defend other security issues and common attacks on virtual
networks, especially in cloud computing which might be a
future scope for the premise to be explored.

REFERENCES

[1] Gordon L.A., Martin P. L., Lucyshyn W., Richardson R., ―2005 CSI/FBI
computer crime and security survey‖, Computer Security Journal, 2005.

[2] Jamali S., Shahram, and Gholam Shaker. ―Defense Against SYN
Flooding Attacks: A Scheduling Approach.‖ Information Systems &
Telecommunication , pp.55, 2014.

[3] D. Geneiatakis, N. Vrakas, C. Lambrinoudakis, ―Utilizing Bloom Filters
for Detecting Fooding Attacks Against SIP Based Services‖, Computers
& Security, 2009.

[4] H. Wang, D. Zhang, and K. G. Shin., ―Detecting SYN flooding
Attacks‖, Proceedings of Annual Joint Conference of the IEEE
Computer and Communications Societies(INFOCOM) volume 3, pages
1530-1539, June 23-27 2002.

[5] Eddy, Wesley M. ―Defenses against TCP SYN flooding attacks.‖ The
Internet Protocol Journal 9.4, pp. 2-16, 2006.

[6] Divakaran, Dinil Mon, Hema A. Murthy, and Timothy A. Gonsalves.
―Detection of SYN Flooding Attacks Using Linear Prediction Analysis.‖
Networks, 2006. ICon'06. 14th IEEE International Conference on. vol.
1. IEEE, 2006.

[7] Lemon, Jonathan. ―Resisting SYN Flood DoS Attacks with a SYN
Cache.‖ BSDCon. vol. 2002, 2002.

[8] Bernstein, Daniel J. ―Cache-timing attacks on AES.‖ On PALMS-
Princeton University, 2005.

[9] C. L. Schuba, I. V. Krsul, M. G. Kuhn, E. H. Spafford, A. Sundaram and
D. Zamboni,‖Analysis of a Denial of Service Attack on TCP‖,
Proceedings of IEEE Symposium on Security and Privacy, May 1997.

[10] Vasilios A. Siris and Fotini Papagalou et al. ―Application of Anomaly
Detection Algorithms for Detecting SYN Flooding Attacks‖, Journal of
Computer Communications, 2006.

[11] Jamali, Shahram, and Gholam Shaker. ―PSO-SFDD: Defense against
SYN flooding DoS attacks by employing PSO algorithm.‖ Computers &
Mathematics with Applications 63.1, pp. 214-221, 2012.

[12] Chen, Wei, and Dit-Yan Yeung. ―Throttling Spoofed SYN Flooding
Traffic at the Source.‖, Telecommunication Systems 33.1, pp. 47-65,
2006.

[13] Peng, Tao, Christopher Leckie, and K. Ramamohanarao. ―Protection
from Distributed Denial of Service Attacks Using History-Based IP
Filtering.‖, Communications, 2003, ICC'03, IEEE International
Conference on vol. 1, IEEE, 2003.

[14] Zuquete, Andre, ―Improving the functionality of SYN cookies.‖
Advanced Communications and Multimedia Security. Springer US, pp.
57-77, 2002.

[15] Stone, Robert. ―CenterTrack: An IP Overlay Network for Tracking DoS
Floods.‖, USENIX Security Symposium, vol. 21, 2000.

[16] Keromytis, Angelos D., Vishal Misra, and Dan Rubenstein. ―SOS:
Secure Overlay Services.‖ ACM SIGCOMM Computer Communication
Review. vol. 32, no. 4, ACM, 2002.

[17] J. Kennedy and R. Eberhart, Particle Swarm Optimization. In
Proceedings of IEEE International Conference on Neural Networks, vol.
IV, doi: 10.1109/ICNN.1995.488968 pp. 1942–1948, 1995.

[18] Pacini E., Mateos C., Garcia C., Dynamic Scheduling based on Particle
Swarm Optimization for Cloud-based Scientific Experiments, Technical
Report, University of Maryland at College Park. Clei Electronic Journal,
Volume 14, Number 1, Paper 2, 2014.

[19] Szymon L, Piotr A. Kowalski, Fully Informed Swarm Optimization
Algorithms: Basic Concepts, Variants and Experimental evaluations.
Proceedings of the 2014 Federated Conference on Computer Science
and Information Systems, pp. 155-161, 2014

