
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 1, 2018 

183 | P a g e  

www.ijacsa.thesai.org 

Data Exfiltration from Air-Gapped Computers based 

on ARM CPU

Kenta Yamamoto, Miyuki Hirose, and Taiichi Saito 

Tokyo Denki University 

5 Senju-Asahi-Cho, Adachi-Ku, Tokyo 120-8551, Japan 

Tokyo, Japan 

 

 
Abstract—Air-gapped Network is a network isolated from 

public networks. Several techniques of data exfiltration from air-

gapped networks have been recently proposed. Air-gap malware 

is a malware that breaks the isolation of an air-gapped computer 

using air-gap covert channels, which extract information from 

air-gapped computers running on air-gap networks. Guri et al. 

presented an air-gap malware “GSMem”, which can exfiltrate 

data from air-gapped computers over GSM frequencies, 850 

MHz to 900MHz. GSMem makes it possible to send data using 

the radio waves leaked out from the system bus between CPU 

and RAM. It generates binary amplitude shift keying (B-ASK) 

modulated waves with x86 SIMD instruction. In order to 

efficiently emit electromagnetic waves from the system-bus, it is 

necessary to access the RAM without being affected by the CPU 

caches. GSMem adopts an instruction that writes data without 

accessing CPU cache in Intel CPU. This paper proposes an air-

gap covert channel for computers based on ARM CPU, which 

includes a software algorithm that can effectively cause cache 

misses. It is also a technique to use NEON instructions and 

transmit B-ASK modulated data by radio waves radiated from 

ARM based computer (e.g. Raspberry Pi 3). The experiment 

shows that the proposed program sends binary data using radio 

waves (about 1000kHz ~ 1700kHz) leaked out from system-bus 

between ARM CPU and RAM. The program can also run on 

Android machines based on ARM CPU (e.g. ASUS Zenpad 3S 10 

and OnePlus 3). 

Keywords—Air-Gapped Network; ARM CPU; data exfiltration; 

SIMD; NEON; GSMem 

I. INTRODUCTION 

Air-gapped network is a network physically separated 
from other unsecured networks, and air-gapped computer is a 
computer in an air-gap network. Industrial control systems and 
security protection systems are often constructed in the air-
gapped networks in which data leakage is prevented by 
restricting the use of Wi-Fi and Bluetooth and the access to 
removable storage such as USB flash drive. 

Air-gap malware is a malware that breaks the isolation of 
an air-gapped computer using air-gap covert channels, which 
extract information from air-gapped computers running on air-
gap networks. 

EMSEC (Emission Security) [1] is an approach against 
attack using electromagnetic waves leaked from the computer. 
Usually, a computer emits various energy by data 
communication such as Wi-Fi or Bluetooth. However, more 
energy emissions are generated than what the user aware. For 
example, the fact that an electric current flows in a base board 
or a wiring may itself be an antenna. TEMPEST [2] is a 
specification of the defense technology against an attacker to 
exploit and techniques to steal information by using the 
emitted energy, such as electromagnetic waves or sound by 
the National Security Agency. In 1985, Van Eck [3] showed 
that electromagnetic radiation of monitor can be captured and 
image can be reconstructed using inexpensive devices as 
concrete exploit method of TEMPEST. Kuhn and Anderson 
demonstrated that the emission of electromagnetic radiation 
emitted from desktop computers can be controlled by software 
[4], [5]. Several methods of air-gap covert channels have been 
recently proposed. Mordechai et al. [6] proposed a method of 
transmitting data through an air gap using electromagnetic 
waves from a display cable. Hanspach et al. [7] proposed a 
method of transmitting data through an air gap using 
ultrasonic waves from a speaker. 

Guri et al. a research team at Ben-Gurion University, 
presented an air-gap malware GSMem [8]. It generates 
electromagnetic waves from the memory bus between CPU 
and RAM to transmit B-ASK modulated signals in Intel 
architecture. GSMem executes an x86 SIMD instruction that 
exhausts the memory bus bandwidth to accelerate leakage of 
electromagnetic waves from the memory bus. 

This paper presents an air-gapped covert channel on air-
gapped computers based on ARM architecture CPU through 
which B-ASK modulated signals are transmitted over the AM 
frequency band (1,000 kHz - 1,600 kHz). GSMem adopts the 
particular instruction in x86 SIMD instruction set which can 
manipulate data without going through the CPU cache to 
efficiently access the memory bus, in order to transmit the 
modulated signal on Intel-based computer. On the other hand, 
since the CPU of the ARM architecture does not support 
instructions of application level to bypass the CPU cache, this 
paper proposes an algorithm that directly accesses memory 
avoiding CPU cache hit as much as possible and uses a NEON 
instruction that efficiently occupies the bandwidth of memory 
bus. The experiment executes the program that adopts the 
algorithm and shows the electromagnetic waves leaked from 
ARM computer with a spectrum analyzer. 

A poster presentation and preliminary version of this paper were 

presented at IWSEC 2017 and CSS 2017, respectively. 

 The authors declare that there is no conflict of interest regarding the 

publication of this paper. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 1, 2018 

184 | P a g e  

www.ijacsa.thesai.org 

The remainder of this paper is organized as follows: 
Section 2 describes the basic technology to understand the 
proposed method in this paper. Next, Section 3 presents 
assorted related works. Section 4 describes a main method. 
Section 5 presents the result of measurement. Finally, 
Section 6 concludes this paper. 

II. BASIC TECHNICAL OUTLINE 

This section provides a basic technical information to 
make it easier for readers to understand technical parts in the 
algorithm proposed by the previous researches and the 
proposed method. 

A. B-ASK Modulation 

Binary amplitude shift keying (B-ASK) modulation is one 
of the modulation techniques for transmitting digital signals. It 
changes the amplitude corresponding to the transmitting 
binary data.  B-ASK uses only amplitude modulation, and the 
frequency and phase are fixed. When the bit to be transmitted 
is “1”, the amplitude of the carrier wave becomes large, and 
when the bit to be transmitted is “0”, the amplitude of the 
carrier wave becomes small. Fig. 1 shows an example of an 
amplitude representation of bit string to be transmitted.  Fig. 2 
is an illustration of a signal to be sent (upper) and a signal 
modulated with B-ASK (lower). 

 
Fig. 1. Example of signal change according to bit string by B-ASK. 

 
Fig. 2. The signal to be transmitted (upper) and the modulated signal 

(lower). 

B. CPU Cache 

CPU cache is a small capacity memory installed in the 
CPU to hide the low-speed memory bus when the CPU 
transfers data to the memory. The bandwidth of the memory 
bus cannot catch up with the processing capability of the CPU, 
which becomes a bottleneck. CPU cache works as a very high-
speed memory that holds the data and addresses of the 
memory accessed by the CPU in order to complement the 
performance difference between the CPU and RAM. In the 
case that the CPU accesses the data stored in the cache 
memory, it does not need to go through the memory bus, and 
therefore it is possible to avoid the bottleneck. CPU cache has 
various features: capacity, speed, data update method, etc. 
depending on the architecture. However, since the hardware 
automatically operates the cache, an application software 
needs not to control it. Although it is a high-speed memory, 
CPU cannot have a large-capacity cache memory like RAM. 
In many cases, the CPU cache has a multistage structure in 
order to support with increasing the capacity of the RAM and 
multi-core. They are called Level 1 (L1), Level 2 (L2), Level 
3 (L3) in the order closest to the CPU core. Most of the L1 
caches are installed for each CPU core, and the L1 cache is the 
fastest cache memory with the smallest capacity. L2 and L3 
caches are cache memories with larger capacity, and they are 
shared with all CPU cores. 

In Intel-based CPU for individual products, they have L1 
and L2 caches about 32KB-256KB in each cores, and L3 as 
shared cache of up to 8MB. Cortex-A53, one of the ARM 
architectures, has up to 64KiB of L1 cache and 2MiB of L2 
cache in each core. 

In either architecture, in the L1 cache, it is divided into an 
instruction cache and a data cache. The instruction cache 
stores CPU instruction groups included in the program, and 
the data cache is an area for storing data processed by the 
program. 

The CPU cache is stored by a unit called line and 
associated with the tag generated from the memory address. 
The line length in the ARM architecture is eight words 
[9], [23]. 

C. SIMD Instructions 

Single Instruction Multiple Data (SIMD) is an instruction 
set that can manipulate multiple data with a single instruction. 
In an algorithm capable of parallelization, it is possible to 
increase the effective speed of a program by processing a 
plurality of data with one clock by using SIMD. It is effective 
in an algorithm that parallelly calculates data equal to or larger 
than the data width supported by the processor in the general-
purpose instruction set. Usually, the data width supported by 
the instruction set is divided and used for parallel calculation. 
For example, when the SIMD instruction set supports a 
calculation width of up to 128-bit, it is common to use a 
method of calculating four 32-bit floating point operations in 
parallel. 

The Intel CPU can use the SSE instruction set, AVX, etc. 
the SSE-based instruction set supports to use up to 128-bit and 
AVX supports up to 256-bit. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 1, 2018 

185 | P a g e  

www.ijacsa.thesai.org 

Some ARM architectures support SIMD instructions called 
NEON. NEON supports up to 128-bit and is available in the 
Cortex-A family. 

III. RELATED WORK 

A. GSMem 

GSMem presented by Guri et al., is a malware that 
exfiltrates data from an air-gapped computer based on x86 
CPU architecture. It utilizes the phenomenon that 
electromagnetic waves over the GSM frequency band are 
radiated when the CPU accesses RAM via the memory bus. 
GSMem malware infects a computer and performs it as a 
transmitter that sends a modulated signal by B-ASK over the 
GSM frequency band. The B-ASK modulation is a method of 
sending digital data by changing the amplitude of carrier wave 
according to binary symbols “1” and “0”. GSMem involves 
much RAM access to generate large amplitude and less access 
to generate small amplitude. The amplitude of leaked wave 
becomes significantly large at GSM frequencies when 
memory access occurs. The receiver tries to demodulate 
leaked wave at GSM frequencies measuring the amplitude 
of it. 

Guru et al. use the following technique for amplifying 
radiation of electromagnetic wave when accessing to RAM. 
They require the algorithm to involve direct RAM access 
avoiding CPU cache. Their technique uses an SSE2 
instruction “MOVNTDQ” [10] on x86 architecture CPU in 
order to produce efficient access to RAM. MOVNTDQ is an 
instruction that stores data to RAM bypassing CPU caches. 
This is named _mm_stream_si128 [11] in C++ library. 

Algorithm 1 is a concept code which sends B-ASK 
modulated data by GSMem. This algorithm reads a binary 
data from an element of array data at index bit_index, and if it 
is „1‟, the algorithm repeats executing MOVNTDQ for 
tx_time nanoseconds. If the bit is „0‟, the algorithm sleeps for 
the same period. 

Algorithm 1.  Transmit data by the GSMem 

  1: buffer ← ALIGNED_ALLOCATE(16,4096) 

  2: tx_time ← 500000 

  3: for bit_index ← 0 to 32 do 

  4:      if (data[bit_index] == 1) then 

  5:          start_time ←  CURRENT_TIME() 

  6:          while (tx_time > CURRENT_TIME () - start_time) do 

  7:               buffer_ptr ← buffer 

  8:               for i ← 0 to buffer_size do 

  9:                    MOVNTDQ (buffer_ptr, 128bit_register) 

10:                    buffer_ptr ← buffer_ptr + 16 

11:               end for 

12:          end while 

13:      else 

14:          SLEEP (tx_time) 

15:      end if 

16: end for 

B. System-Bus-Radio 

William Entriken (github.com: fulldecent) presented the 
program “System-bus-radio”1 that generates an AM frequency 
carrier wave amplification-modulated with sound data to be 
reproduced by a loudspeaker. System-bus-radio uses an 
algorithm similar to GSMem. It calculates “period” from 
audio frequency. It produces audio wave of frequency f by 
generating alternately “1” and “0”. Fig. 3 shows an example of 
generating audio wave by calculated “period” from 
frequency f. 

 
Fig. 3. System-bus-radio calculates “period” from       to obtain audio 

wave with frequency f. For example, if it wants sound of 2000 Hz, it 

calculates                              seconds. 

Even a common AM radio can be used to receive a signal 
as a receiver in System-bus-radio. Since the signal is 
amplitude-modulated, the AM radio can receive and 
demodulate it to reproduce the sound. System-bus-radio uses 
SSE2 instruction MOVNTDQ available on x86 architecture 
CPU. 

IV. PROPOSED METHOD 

This section proposes an algorithm that transmits B-ASK 
modulated signal in ARM-architecture-based computers. In 
GSMem, Guri et al. adopted the SIMD instruction, 
MOVNTDQ in x86 architecture CPU. They showed that the 
instruction can efficiently and massively send data to the 
memory bus. Since ARM, however, has a different 
microarchitecture from x86, the instruction cannot be used. 
The proposed algorithm adopts a SIMD instruction that 
efficiently accesses the memory bus in ARM CPU based 
computer. 

A. ARM Architecture 

Low Power Double Data Rate (LPDDR) [12], [13] is a 
power saving standard of DDR memory. LPDDR memory is 
often adopted for many devices with ARM architecture CPU 
for power saving. Since the LPDDR memory has a 32-bit 
bandwidth bus, it is possible to occupy the memory bus even 
by using a 32-bit or 64-bit general-purpose instruction set. 
However, if the computer is in a multi-channel environment, 
any instruction in the general purpose instruction set cannot 
occupy the memory bus bandwidth. 

In this paper, NEON instruction set is adopted for 
occupying the memory bus more certainly in a computer 
based on ARM CPU. NEON is a SIMD instruction set that is 
available on ARM architecture CPU. It can be used on 
ARMv7 and above, and operate 64-bit or 128-bit data. 

                                                           
1  William Entriken (fulldecent). (2017) System-bus-radio, [Online]. 

[Accessed 25 October 2017]. https://github.com/fulldecent/system-bus-radio/. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 1, 2018 

186 | P a g e  

www.ijacsa.thesai.org 

Therefore, it is suitable for bandwidth occupation of the 
memory bus. 

The instructions for operating data without using the CPU 
cache are equipped in x86 SIMD. However, in the NEON 
instruction set, there is no instruction to operate data explicitly 
without using the CPU cache. The ARM CPU has an 
instruction cache and a data cache, also has CPU modes 
disabling each cache. However, since the CPU's privileged 
mode is required to switch modes, invalidating the CPU cache 
is not a practical way for malware running in user application 
level. Therefore, it is needed to build an algorithm that 
generates access to RAM even if the CPU cache is valid, and 
select the optimal instruction from the NEON instruction set. 
The next section proposes an algorithm to avoid CPU data 
cache hit. 

B. Algorithm 

In order to avoid reading cached data, it is only necessary 
that the data is not stored in data cache when the CPU refers to 
it. Here a concept code realizing an algorithm to avoid CPU 
data cache in ARM CPU is presented in Algorithm 2. This 
code modulates the electromagnetic waves from memory bus 
by B-ASK and transmits 4-bit data “1010”. In order to 
transmit „1‟, it is necessary to repeat accessing the memory 
bus for a predetermined time to radiate electromagnetic waves. 
The algorithm repeats loading data on memory and releases 
electromagnetic radiation from the memory bus. 

Algorithm 2 is a simple algorithm for loading data from 
memory, but it changes the address of data to be loaded every 
time the load instruction is executed. CPU operates different 
data on different location each time. This trick makes it 
difficult to hit the CPU data cache. 

Algorithm 2.  A new algorithm for ARM computers 

  1:  p = (int32_t *)malloc(size) 

  2:  for (int i=0; i<=n; i++): 

  3:    p[i] = i; 

  4:  

  5:  data_bits[] = {1, 0, 1, 0,} 

  6:  period = 500000 

  7:  for data in data_bits : 

  8:    if (data == 1): 

  9:      i = 0 

10:        start = now() 

11:        while (period > now() - start): 

12:          va = vld1q_s32(p+i) 

13:          i+=8 

14:          if(i==limit) i=0  

15:    if (data == 0): 

16:      sleep(period) 

As a SIMD instruction executed for loading data, the 
proposed algorithm adopts "VLD1.32" [14] which allows more 
data to be transferred than a general-purpose instruction set. It 
is implemented as the function "vld1q_s32" in C ++ language 
library. VLD1.32 is an instruction to load four 32-bit data 
stored in the RAM as a single vector into a register. It allows 
loading 128-bits data at a time. 

This algorithm separates into a part of allocating a large 
array in memory and the other part of controlling the radiation 
electromagnetic waves from memory bus. When it executes 
RAM access, the CPU repeats loading the data allocated in the 
memory. 

In Algorithm 2, the first line allocates the memory. It 
reserves "size" bytes of 32-bit data array when working on a 
32-bit system. The size is needed to be at least larger than the 
L1 cache for the algorithm to effectively work. For example, 
the Cortex-A53 architecture, which is one of the ARM Cortex-
A series installed in Raspberry pi 3, can have an L1 cache up 
to 64 KiB, so the size is needed to be larger than 64 KiB. 

The lines 2-3 initialize each element of the array with each 
distinct value. “data_bits” is an array of binary data to be 
transmitted. In this case, the data "1010" is sent. 

The “period” means 500 microseconds. According to 
GSMem, if the period decreased, a higher bit rate is obtained, 
but the error rate is increased. The algorithm sets period to 500 
microseconds in our algorithm like GSMem‟s one. 

In the line 7, when a data in data_bits is 1, the block starts 
while loop that performs memory operations and generates 
electromagnetic wave. 

In the line 12, it loads the data into the registers as a single 
vector from the four addresses using the “vld1q_32” 
instruction. Then it adds 8 to the variable “i”. It is the index to 
select memory address. That is, the index of the memory 
address next to be loaded is shifted by 8. This integer 8 means 
the size of the cache line in the ARM CPU. If “i” reaches the 
overflow value, set it to 0. The program repeatedly executes 
the code written on the lines 12-14 for the “period” time, 
where electromagnetic waves are generated from the memory 
bus. 

In the last line, the algorithm sleeps for “period” 
microseconds when outputting “0”. The amplitude of 
electromagnetic waves from memory bus becomes small. 

C. Details of Avoiding Cache 

Once the CPU accesses a location in main memory, the 
data around the location is stored in the CPU cache in units of 
8 words. Even when the CPU reads data of index 0 to 3 in an 
array, there is a possibility that data of index 0 to 7 is stored in 
the cache. Accordingly, on every memory access, the 
algorithm needs to read data at least 8 words far from the 
previously accessed data. 

Fig. 4 shows the first action of loading four elements from 
an array, and Fig. 5 shows the next action of loading the four 
elements located 8 words far from the first ones in the array. 
Because the algorithm allocates an array larger than the total 
size of the CPU caches, the data in elements initialized in 
early stage have already been removed from the caches and 
then the actions success in causing cache miss and loading 
data directly from RAM. Also, by loading, CPU generates 
new data caches. To prevent loading from the same cache line, 
the algorithm shifts 8 words the position to be loaded each 
time. 

The algorithm is described based on virtual memory terms 
and it is assumed that the virtual memory is almost not 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 1, 2018 

187 | P a g e  

www.ijacsa.thesai.org 

fragmented. However, even though the virtual memory is 
fragmented and mapped to the physical memory, there is little 
influence for the purpose of outputting electromagnetic waves. 

 
Fig. 4. The action of the first loading elements from memory to 128-bit 

register. Algorithm selects four elements in index 0-3. 

 
Fig. 5. The next action of loading elements. Algorithm selects four elements 

in index 8-11. 

V. MEASUREMENTS 

In order to verify effects of the proposed algorithm in this 
section, frequency and time characteristics of the leaky 
electromagnetic wave from devices, based on ARM CPU, 
implemented the program described in the previous section, 
were measured by a spectrum analyzer and an oscilloscope. 

A. Frequency Domain 

1) Experimental arrangement 

Based on the algorithm in the previous section, a data 
transmission program was created. It was forked from System-
bus-radio made by William Entriken. This section shows the 
frequency characteristics when the program is executed on the 
computer based ARM CPU. Raspberry Pi 3 and ASUS 
Zenpad 3S 10 Z500M (Z500M) were used for the 
measurements. 

Raspberry Pi 3 is running with Broadcom BCM2837 2 , 
which is one in a series of ARM architecture. The BCM2837 

                                                           
2  RASPBERRY PI FOUNDATION (2017), Raspberry Pi 3 Model B 

- Raspberry Pi, [Online]. [Accessed 25 October 2017] 

https://www.raspberrypi.org/products/raspberry-pi-3-model-b/  

has four ARM Cortex-A533 CPU cores. Also Raspberry Pi 3 
has 1 GB of LPDDR2 SDRAM. Raspbian Linux for 
experiment OS is used in this experiment. 

Z500M uses Android 7.0 as operating system. Z500M is 
running on MediaTek MT81764.  Internally, the MT8176 has 
two cores of ARM Cortex-A725 and four Cortex-A53. Z500M 
is installed with 4 GB RAM. The RAM is connected to CPU 
by dual channel. 

The measurement campaigns were conducted in a radio 
anechoic chamber. The receiving antenna was an 
omnidirectional, vertically polarized mono-pole antenna. 
Frequency-domain propagation gains were measured with a 
spectrum analyzer, as shown in Fig. 6. The DUT (Device 
Under Test) were Raspberry Pi3 and Z500M. 

2) Results and analysis 

The frequency-domain gains of Raspberry pi 3 and Z500M 
are shown in Fig. 7 and 8, respectively. The blue lines stand 
for ON state, the proposed program is executing.  The black 
lines stand for OFF state, program is not executing. While a 
signal was found in ON state, no one was yielded practically 
in OFF state. From the measurement data, the peak (the 
highest amplitude value) of signals at approximately 1.5 MHz 
was observed in case of Raspberry Pi 3, and the peaks ranged 
1.2 – 1.4 MHz in case of Z500M. In both cases, peak gains 
were approximately 4 dB. 

 
Fig. 6. Experiment setup. 

                                                           
3  ARM Ltd., “ARM® Cortex®-A53 MPCore Processor Revision: 

r0p4 Technical Reference Manual”, [Online]. [Accessed 15 November 2017], 

http://infocenter.arm.com/help/topic/com.arm.doc.ddi0500g/DDI0500G_corte

x_a53_trm.pdf 
4  MediaTek Inc. (2016), MediaTek MT8176 for Tablets | MediaTek, 

[Online]. [Accessed 27 October 2017] 

https://www.mediatek.com/products/tablets/mt8176 
5  ARM Ltd., “ARM® Cortex®-A72 MPCore Processor Revision: 

r0p1 Technical Reference Manual”, [Online]. [Accessed 15 November 2017], 

http://infocenter.arm.com/help/topic/com.arm.doc.100095_0001_02_en/corte

x_a72_mpcore_trm_100095_0001_02_en.pdf 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 1, 2018 

188 | P a g e  

www.ijacsa.thesai.org 

 
Fig. 7. An example of frequency-domain gains.(Raspberry Pi 3). “on” is in 

the program execution state.“off” is the state in which the program is not 

running. 

 
Fig. 8. An example of measured frequency spectrum.(ASUS Zenpad 3S 10 

Z 500 M). “on” is in the program execution state.“off” is the state in which 

the program is not running. 

B. Time Domain 

1) Experimental arrangement 

The waveform in the time domain of the received signal 
with the same configuration was measured as in Fig. 6. The 
experiment was set up to analyze the time domain of the leaky 
waves, as show in Fig. 9. During the measurement, the 
oscilloscope was placed outside the radio anechoic chamber. 
The receiving antenna was an omnidirectional, vertically 
polarized mono-pole antenna. The DUT was Raspberry Pi3. 

2) Results and analysis 

Fig. 10 shows the waveform in the time domain of the 
received signal, and Fig. 11 shows the signal and the envelope 
of the received signal calculated from the measurement data. 
From the measured data, the received signal was performed 
the amplitude modulated. Also, the power of the envelope was 
distorted because of the noise from the DUT. 

 
Fig. 9. The picture of measurement setup. (During measurement, the 

oscilloscope was placed outside the radio anechoic chamber.) 

  
Fig. 10. An example of the waveform of the received signal (Raspberry pi 3). 

  
Fig. 11. The waveform and the envelope of the received signal 

(Raspberry Pi3). 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 1, 2018 

189 | P a g e  

www.ijacsa.thesai.org 

TABLE I.  A COMPARISON OF GSMEM AND PROPOSED ALGORITHM IN 

THIS PAPER 

 Frequency Platform 
Memory 

usage 
Languages 

GSMem 
GSM band 

(800MHz -) 

Intel based 

PC 

Low 

(~KB) 
C++ 

Proposed 

algorithm 

AM band 

(1.0 - 

1.6MHz) 

ARM and 

other CPUs 

Medium 

(~MB) 

C++, 

javaScript(asm.js) 

VI. DISCUSSION 

The results shown in the previous section shows that the 
proposed algorithm is able to emit electromagnetic waves 
from the device (Raspberry Pi 3). However, since the ARM 
architecture is adopted for power saving devices, there is a 
possibility that the power of the emitted electromagnetic wave 
becomes smaller than GSMem. 

Table I also shows a comparison between the proposed 
algorithm and GSMem. In GSMem, the frequency of 
electromagnetic waves emitted is the GSM frequency band, 
and the receiver is a modified mobile phone. In the proposed 
algorithm, the frequency of the emitted electromagnetic waves 
is AM frequency band, and ordinary AM radio can be used as 
the receiver. 

The environment in which GSMem operates is limited to 
computers equipped with Intel CPU. CPU instructions used by 
GSMem are unique instructions not found in other 
architectures, and it is difficult to replace them. On the other 
hand, the proposed algorithm operates on a computer 
equipped with an ARM CPU. Furthermore, it can be used also 
on other platforms simply by replacing ARM specific 
instructions. This algorithm does not depend on the 
architecture, and it can be replaced with CPU instructions with 
memory access. The authors are doing work to operate this 
algorithm with a web browser. 

The proposed algorithm requires assigning a memory 
greatly exceeding the capacity of the CPU cache. It involves 
more memory consumption than GSMem‟s algorithm. 

VII. CONCLUSION 

This paper presented a new algorithm to exfiltrate data 
from ARM-based computers causing electromagnetic wave 
radiation, while Guri et al. presented the algorithm on Intel-
based computers. Since the proposed algorithm accesses 
memory aggressively, the electromagnetic waves are radiated. 

Frequency response of the electromagnetic wave is 
measured when the proposed algorithm is running with 
Raspberry Pi 3 and ASUS Zenpad 3S 10 Z500. 

Guri et al. adopted an x86 CPU instruction that stores data 
in RAM explicitly bypassing the CPU cache. On the other 
hand, since SIMD of the ARM architecture has no instructions 
to bypass the CPU cache, the SIMD instruction (VLD 1.32) 
was adopted to load the data and proposed the algorithm that 
avoids CPU data cache hit by making data to be loaded 
different each time VLD 1.32 instruction is executed. 

The measurement is concluded and it is confirmed that the 
program implementing the proposed algorithm is able to 
successfully radiate electromagnetic waves. 

System administrator who manages ARM-based air-gap 
computers also needs to consider covert channels using 
electromagnetic radiation. Furthermore, the ARM computer is 
compatible with the mobile computer. Attackers will also be 
able to extract data without hacking the network. 

Although GSMem used a specific SIMD instruction to 
bypass the CPU cache, this algorithm does not have to use 
such an instruction. The algorithm can also use generic 
instruction set instead of SIMD instruction. It has a 
disadvantage of requiring more memory than the capacity of 
the CPU cache, but it is effective in environments where the 
cache cannot be ignored. And I think that this algorithm can 
also be used in web browser and mobile OS, for example. It 
does not matter what kind of CPU these platforms are using. 
In future research, we will work on making programs applying 
the algorithm proposed in this paper work on web browsers 
and others. 

REFERENCES 

[1] R. J. Anderson, "Emission security," in Security Engineering, 2nd 
Edition, Wiley Publishing, Inc., 2008, pp. 523-546.  

[2] Ric  Lehtinen,  Howard Hecht,  Deborah Russell,  G. T. Gangemi, 
“Computer Security Basics: Computer Security”, Oreilly & Associates 
Inc,  pp.256, 2006. 

[3] W. van Eck, "Electromagnetic Radiation from Video Display Units: An 
Eavesdropping Risk? , " Computers and Security 4, pp. 269-286, 1985.   

[4] M. G. Kuhn and R. J. Anderson, "Soft tempest: Hidden data 
transmission using electromagnetic emanations," in Information Hiding, 
1998, pp. 124--142.   

[5] M. G. Kuhn, "Compromising emanations: Eavesdropping risks of 
computer displays," University of Cambridge, Computer Laboratory, 
2003.    

[6] G. Mordechai, G. Kedma, A. Kachlon and Y. Elovici, "AirHopper: 
Bridging the air-gap between isolated networks and mobile phones using 
radio frequencies," in Malicious and Unwanted Software: The Americas 
(MALWARE), 2014 9th International Conference on, IEEE, 2014, pp. 
58-67. 

[7] M. Hanspach and M. Goetz, "On Covert Acoustical Mesh Networks in 
Air.," Journal of Communications, vol. 8, 2013. 

[8] Guri, M., Kachlon, A., Hasson, O., Kedma, G., Mirsky, Y. and Elovici, 
Y., (2015). GSMem: data exfiltration from air-gapped computers over 
GSM frequencies. In 24th USENIX Security Symposium, USENIX 
Security 15, pp. 849-864. 

[9] Sarah Harris,  David Harris, “Digital Design and Computer Architecture: 
ARM Edition”, Morgan Kaufmann, pp487-529, 2015. 

[10] Rajat Moona, “Assembly Language Programming in GNU/Linux for 
IA32 Architectures”, Prentice-Hall of India Pvt.Ltd, pp.404, 2007. 

[11] Richard Gerber, “The Software Optimization Coo boo : High-
Performance Recipes for the Intel Architecture (Engineer-To-Engineer)”, 
Intel Press, pp.97, 2002. 

[12] JEDEC Solid State Technology Association, “JEDEC Standard: Low 
Power Double Data Rate 4 (LPDDR4)”, JEDEC Standard JESD209-4, 
Aug 2014. 

[13] JEDEC Solid State Technology Association, “JEDEC Standard: DDR4 
SDRAM”, JEDEC Standard JESD79-4B, Nov 2013. 

[14] Bruce Smith, “ARM A32 Assembly Language: 32-Bit ARM, Neon, 
VFP, Thumb”, Bruce Smith Boo s, 2017. 

APPENDIX 

The proposed algorithm repeats trying to load four-word vector 8 words 
far from the previously loaded vector. It successfully generates 
electromagnetic radiation from memory bus between ARM CPU and RAM in 
the measurements. However, in order to estimate the efficiency that the 
algorithm avoids cache hit, this section presents an abstract data cache model 
and slightly modify the proposed algorithm into an inefficient version that 
randomly and independently chooses a position in the array and load four 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 1, 2018 

190 | P a g e  

www.ijacsa.thesai.org 

words at the position each time. For simplicity, it is assumed that in mapping 
from virtual memory to physical memory, paging does not cause 
fragmentation of the array and page fault. Thus we identify an array in virtual 
memory with mapped contiguous data in physical memory. 

This section considers an abstract data cache model and a modified 
algorithm as follows. The total amount of data cache is calculated in the form 
of (the cache line length) * (the number of cache line) * (the number of ways). 
Here let the cache line size be 32 words, the number of cache lines be 1024 
and the number of ways be 2. Then the total amount of data cache is 16384 
words. The modified algorithm allocates an array of the size three times as 
much as the total amount of data cache. For simplicity, it is also assumed that 
the data cache is used only for storing data in the array. Thus, each cache line 
stores only elements in the array. The algorithm randomly chooses an address 
of elements in the array and tries to load four-word data beginning at the 
address from the array. 

If the four-word data does not include any array element stored in the 
data cache as illustrated in Fig. 12, the algorithm successfully loads the four-
word data directly from memory through memory bus, without hitting cached 
data. 

 
Fig. 12. An example of loading non-cached data from array in the RAM. 

 
Fig. 13. An example of loading cached data from array in the RAM. Part of 

the data to be loaded is cached data. 

If the four-word data at the randomly chosen address includes at least one 
array element stored in the data cache as illustrated in Fig. 13, this case is 
called “hitting data cache” since the algorithm may hit cached data and fail in 
loading four-word data directly from memory. 

So, if the four-word area overlaps a part of the cached area, especially, if 
the chosen address is point to the position three words right shifted from the 
cached area, it is also the case of “hitting data cache”. In the case that an eight 
word cached area and a four-word area that the algorithm tries to load overlap 
each other, the size of the combined area is at most 11 words. Since there exist 
at most 2048 cached areas of eight words exist in the array, there also may 
exist 2048 such combined areas of at most 11 words. If there are such 
combined areas at 2048 locations in the array, and the algorithm tries to 
access any element in these areas (2048*11 words) in the array (49152 words), 
then the case of “hitting data cache” occurs. 

Since the algorithm randomly chooses four-word area from the array, the 
probability that it can avoid the case of “hitting data cache” is (49152-
22528)/49152. Consequently, the algorithm successfully causes 
electromagnetic radiation with the probability over 1/2. 

Here, in order to estimate the efficiency of algorithm a random algorithm 
is used and a worst case such that whole data cache is occupied with data in 
the array is assumed. 

However, in reality, since the operating system and device drivers may 
cause interrupts and many threads concurrently run, it is unlikely that the data 
cache holds only data from an array.  Since electromagnetic waves are 
constantly radiated in the experiment, it is concluded that the algorithm rarely 
occurs cache hits in practice. 

Algorithm 3.  A random algorithm for ARM computers 

  1:  p = (int32_t *)malloc(size) 

  2:  for (int i=0; i<=n; i++): 

  3:    p[i] = i; 

  4:  

  5:  data_bits[] = {1, 0, 1, 0,} 

  6:  period = 500000 

  7:  for data in data_bits : 

  8:    if (data == 1): 

  9:      i = 0 

10:        start = now() 

11:        while (period > now() - start): 

12:          va = vld1q_s32( random(0 to n) )   //Random select 

13:    if (data == 0): 

14:      sleep(period) 

 


