
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

284 | P a g e

www.ijacsa.thesai.org

Matrix Clustering based Migration of System

Application to Microservices Architecture

Shahbaz Ahmed Khan Ghayyur

Department of Computer Science & Software Engineering

Faculty of Basic and Applied Sciences

International Islamic University

Islamabad, Pakistan

Abdul Razzaq

Department of Computer Science & Software Engineering

Faculty of Basic and Applied Sciences

International Islamic University

Islamabad, Pakistan

Saeed Ullah

Department of Computer Science,

Federal Urdu University of Arts Science and Technology

Islamabad, Pakistan

Salman Ahmed

Department of Computer Science & Software Engineering

Faculty of Basic and Applied Sciences

International Islamic University

Islamabad, Pakistan

Abstract—A microservice architecture (MSA) style is an

emerging approach which is gaining strength with the passage of

time. Micro services are recommended by a number of

researchers to overcome the limitations and issues encountered

by usage of aging method of monolithic architecture styles.

Previously the monolithic applications cannot be decomposed

into smaller and different services. Monolithic styles application

was the one build application. The issue resolution has the focus

on lightweight independent application services in the form of

sizable services, self-contained units with primary focus on

maintenance, performance, scalability, and online services

eliminating dependency. All quality factors have been thoroughly

discussed in literature, system application migration is becoming

an emerging issue with different challenges. This study is

addressing the tight coupling to reducing this issue. Moreover,

this literature review indicates some complex problems about the

migration or conversion of system application into microservice.

In architecture, dependency is a big challenge and issue in recent

technology. Microservices are recommended by a number of

researchers to overcome the limitations issue about how to

migrate the existing system application to microservice. The need

for a systematic mapping is essential in order to recap the

improvement and identify the gaps and requirements for future

studies. This study shows open issues first, new findings of

quality attributes of microservices and then this study helps to

understand the difference between previous traditional systems

and microservices based systems. This research study creates

awareness about system migration to microservices.

Keywords—Monolithic architecture; microservices

architecture; systematic mapping; system migration; application

transformation; traditional application development; emerging

challenges; API

I. INTRODUCTION

A. Microservices

Microservice possesses important characteristics like it
claims the responsibility of a single task, it meets all the
requirements of a single business, it can be individually

deployed, it is loosely coupled and it is independently
responsible as it is self-contained [9], [10]. An enterprise
application which is designed for a particular organization
consists of different microservices which are responsible to
communicate with one another with the help of a light-weight
protocol and the API contract [2]. MSA design is generally
preferred to the conventional Monolithic Architecture due to
the fact that it can be continuously deployed and its scalability
has no parallel while the conventional Monolithic Architecture
lacks all these important features. Because of this undeniable
charm of MSA design, most of the enterprises tend to prefer
this design [6].

In the beginning, the developers introduced the concept of
service orientation with the help of SOA. Later, the
evolutionary process took place and service orientation
became capable of supporting the easy and swift operability of
the applications designed as per requirement [12]. Now, with
more research being carried out in this field, researchers have
started building independent, multiple and self-contained
services to meet the challenges of the market [23]. Because of
these features, there is no denying the fact that Software
Architecture plays very important role in software lifecycle to
support the quality and vital attributes of the software [13].
This approach helps the developers to make sure that quality
attributes are up to the complete satisfaction and there exists
no defect in the design of the software systems [23]. If
maintenance and development of information system needs to
be improved, Component Based Development is useful and
viable solution for these requirements [13]. Need of SOA
approach coupled with its products was felt because of the
reasons that a Component Based Distributed Architecture was
required in the market [30]. Moreover, a solution was required
to make the business agile and meet the challenges that arise
when a particular business need is to be met. Moreover, a
compatible and flexible solution was required which may
become capable of keeping pace with the evolution that takes
place with every single day that passes [8].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

285 | P a g e

www.ijacsa.thesai.org

In service oriented software companies, the micro services
have become architecture style that is inspired by service
oriented computing. [3], [6]. Microservices architecture helps
to develop the complex application along with the distribution
of the application in chunks or units by composing it [1].
Nowadays, in any system, the scalability, service discovery
and communication among services that are being supported
by microservices architecture in development phase are two
important sections [45]. Simultaneously, microservices
architecture also handles a heavy concurrency during input
load [2]. In fact, the purpose for using microservices is that it
works on latest platform and is independently deployable [1].
Microservices API can be written in any language. Then,
Microservices architecture would automatically make all the
languages compatible to display the desired output [4].

There is no denying the fact that the ever-changing
evolutionary process of styles of communication and
integration has proved to be cyclic. At times, some of its
concepts seem to fall apart and looks as if these concepts
would become obsolete with the passage of time but these
concepts resurface in different and refined forms as the time
elapses. Out of these two styles; Service Oriented Architecture
is relatively an older concept because of obvious reasons [8].

B. Migration

System application migration is becoming an emerging
issue with different challenges. Transform that migration is
the procedure of moving from the usage of one functional
environment to another operating environment with alike
functionalities [32]. The migration procedure contains, and
making sure the new environment's features are exploited, old
settings do not require changing and that
present applications continue to work.

C. Migration to Microservices

The focus of migration is that it indicates some complex
problems about the migration or conversion of system
application into microservice. Migration of the system to
microservice optimizes decentralization, replace-ability and
autonomy of software architectures [32]. Although,
researchers are not convinced on any specific definition of
microservice, its modelling techniques, and its properties [7],
it is aware about system migration to microservices.

The components which are used in these vital software
applications are made up of basic blocks which can be
combined together depending upon the requirement [17].
Microservice architecture is preferred owing to the reasons
that it has the capability to address all the concerns starting
from requirement of the enterprise to the operations to be
performed by the software of a particular business for which it
is designed. Moreover, it can also claim the responsibility for
individual teams [25], [38]. In this type of approach to find out
the solution, the architecture, open source development,
organizational structure and responsibility is vertically
decomposed [14], [43].

D. Clustering

In this technique, reverse engineering also produces
desired results. The technique used for the purpose of reverse
engineering is clustering which is the considered the simplest

and fundamental technique used in engineering and science
[17]. Main and most important objective of implementing this
technique is to make the observations clearer to develop a
better understanding. This better understanding makes it easy
to develop complex knowledge structure from given features.
Clustering technique or method is generally preferred to
identify all the related components of System Software
Application along with their responsibilities. As the input used
in this technique highlights the interconnectivity of all these
components, this clustering technique is quite useful to
minimize the interconnection among different components to
produce optimum results [30]. Clustering is a technique in
which large systems are decomposed into chunks and smaller
and manageable systems in a distinct way that the entities
which bear similarity with one another belong to the same
subsystem while the entities with difference among one
another are classified into different subsystems [17].
Clustering technique is generally used in identifying the
software components which generally adopts one metric so
that the similarity of components may be measured. The main
advantages of this technique are that low coupling and high
cohesion of components are achieved. These advantages play
very important role to solve the problems which require
software evolution [21, [27].

There exist a lot of clustering techniques out of which
Hierarchical Agglomerative Clustering (HAC) and K-means
clustering stand out. Hierarchical Agglomerative Clustering
(HAC) plays very important role to find out the number of
clusters or segments which do not work well or cause
inconvenience because of malfunctioning in practice [16].
Moreover, K-means is also used to locate the numbers of
clusters or segments which do not work well but the only
problem that occurs is the fact that it cannot be applied in
HAC algorithms.

E. Need of Systematic Mapping

Many different software companies have recently migrated
to microservices or are considering migrating to
microservices. These services are known as a style of an
architecture that develops an application as a set of small
services independently [7]. Now, microservices are becoming
very popular with cloud platform which is an emerging style
in the context of application development due to its
independency, scalability, flexibility, performance, and
manageability [3], [5]. There is a lot of research in this area
that needs to be address. In the previous a few years, the
software product companies and software consultancy firms
have found the microservices approach useful because it
allows the team and software organizations to increase the
productivity [6].

Ever-changing needs of customers due to ever-changing
situational contexts and business needs inspire the enterprises
to introduce evolutionary concepts in software products to
compete the market. Due to these developments, most of the
Software Development Organizations and the businesses
which include Software Production are facing bursting
pressure to improve their Software Intensive Systems on daily
basis. They can achieve this goal if they develop and release
valuable and compatible software in a very short span of time
to meet the challenges of the market [11].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

286 | P a g e

www.ijacsa.thesai.org

II. BACKGROUND KNOWLEDGE

Literature review sheds light upon the importance and
architecture of microservice. Moreover, this literature review
indicates some complex problems about the migration or
conversion of system application into microservice. This
discussion in literature answers the very first question of this
research paper. It highlights all the issues which involve
migration to microservice [32]. The main features which are
creating and promoting the demand of such a technology are
scalability, security, reliability, fast progress, and speed of the
network [20]. So, the researchers are trying hard to introduce
new software architecture styles and software development
methods to meet all the demands of enterprises [6]. Migration
of the system to microservice optimizes decentralization,
replace-ability, traceability and autonomy of software
architectures. Although, researchers are not convinced on any
specific definition of microservice, but it is modelling
techniques, and its properties [7].

Microservice plays very important role to capture software
maintenance, architecture and evolution [15]. If software
architecture recovery is taken into account, it becomes clear
that the prevailing techniques in this field are quite limited
because all these techniques are based upon reverse
engineering [5].

Software designer or developer generally encounters two
types of problems in practical. First issue is embedded in the
fact that it is quite tough to determine specific cluster which is
used for highly coupled components [15]. Second problem in
line is to determine the cluster mapping which is applied on
software modules [17]. Upon investigation, the technique of
decomposition of software has made sure that the source code
of software is in accordance with all the requirements
gathered.

Main drawback of the traditional monolithic services is its
lack of scalability when a certain task is to be executed within
the service [9]. Long software release cycle because of the
complexity of system is also a hurdle in traditional monolithic
services. Because of these limitations monolithic approach has
shifted towards the development of modern cloud application
[35], [36].

ICT is making a name and becoming a reliable partner in
demand driven and dynamic market environment because of
its customer experienced, customer centered and ever-
changing demand driven competitive market [38]. Because of
this competitive race of different enterprises, most of the
companies are transforming themselves into virtually
organized bodies with pure digital styles. These virtually
organized bodies are supported and enabled by the
applications based on microservice [18]. Genuinely,
microservice in any application is responsible to execute a
single task, i.e. it works on only one business requirement at a
time. Moreover, it is self-contained that it can complete its
responsibility without depending upon any other software [6].
For example, it contains business and data layers, and
presentation all together. Additionally, it is loosely coupled,
light-weighted and autonomous [1].

If the applications are to be run in cloud with efficiency, it
requires much more skill than what is necessary to deploy any
type of software in virtual machines. It is always
recommended to manage cloud applications continuously in
order to utilize their resources according to the incoming load
and to face the failures in order to replicate and restate all the
components to provide resilience in case of unreliable
infrastructure [42]. Once a program or software is designed
keeping in view all the requirements, it becomes extremely
tough for the designer to introduce radical changes which are
later on demanded by business models or user frequently
because it becomes more complicated for the developer to
make changes when the code starts expanding because of the
involvement of different people or specialist who make
changes in the software [14], [26]. As more and more effort is
required to coordinate for updating in tightly coupled model of
monolithic approach, this whole process ultimately makes the
release cycle of the application slow [37]. It also makes the
model fragile and unreliable. Scalability is also a vital feature
which is required in the operation and development of
enterprise applications [9], [14], [22].

III. RESEARCH METHOD

A. Planing of Mapping

This mapping study, researcher is combining the
knowledge for all issues which are related to system
migration. There are different types of systems migration
techniques but researcher is migrating the system migration
that is based on components. This knowledge will help us to
migrate the system application and mitigate these issues
during migration and why researcher needs migration of
system application. This study will aware about microservices

understanding and its characteristics.

B. Search Strategy

The term of „microservice‟ keyword and microservice
architecture that found in the published articles journals, and
conferences but rest were excluded. Our selected research
papers 48 which are published between 2010 and 2017.
Selected research papers‟ electronic digital libraries are
included which are Four (IEEEXplore, ACM DL,
DirectScience, ResearchGate, GoogleScholar) (Table I). In
this systematic mapping study the selected papers are
maximum from the IEEEXplore.

TABLE I. SELECTED ELECTRONIC DATABASES

Electronic Database URL

IEEE http://ieeexplore.ieee.org/Xplore/

ACM http://dl.acm.org/

ScienceDirect http://www.sciencedirect.com/

GoogleScholar https://scholar.google.com.pk/

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

287 | P a g e

www.ijacsa.thesai.org

C. Keywords

These keywords which are used for finding all the
studies are:

((({Microservice} OR {Monolithic} OR {Traditional})
AND {Architect*}) AND ({System Migrat*} OR
{Transform*} OR {Component} OR {API} OR {Cloud})
AND year >= 2010 AND year =< 2017

D. Selection of Primary Study

This section suggests that many studies were deeply
checked before the selection of this study. Moreover,
relevance to the research question was also given due
consideration. At first, the papers were included after carefully
reading title and abstract. In case of any ambiguity about the
paper in title and abstract section, the researcher reviewed the
complete paper by applying inclusion and exclusion criteria.

E. Search Engine

The term of „microservice‟ keyword and microservice
architecture that found in the published articles journals, and
conferences but rest were excluded. Selected research papers‟
electronic digital libraries are included which are four
(IEEEXplore, ACM DL, DirectScience, GoogleScholar). In
this systematic mapping study the selected papers are
maximum from the IEEEXplore.

F. Inclusion Criteria

 Studies had been published in journals, conferences,
and workshops.

 Studies must be written in English.

 Studies must be accessible electronically.

 Collected studies must be published after 2010.

 Research papers will be included which are based on
the expert opinion

 Research papers related to the topic, will be included as
weak evidence which do not provide evidence

G. Exclusion Criteria

 Non peer reviewed studies (tutorials, slides, editorials,
posters, keynotes) are also excluded.

 Peer reviewed but not published in journals, or
conferences (e.g. Book, and blogs articles).

 Publications not in English

 Electronically non-accessible.

H. Conducting Mapping Study

Research papers which are published in different
conferences or journals that would be a complete version, on
the basis of studies, discussed in this article, will be included.
Selected primary studies are 48 (Table II). But the further
evaluation for these studies researcher has included the studies
that are most appropriate to the topic.

TABLE II. ELECTRONIC DATABASE

Digital Library Publications Selected

IEEE explorer 208 32

ACM Digital Library 796 4

Science Direct 140 1

ResearchGate 3 1

Other 10

Total 1147 48

1) Challenges of Microservices (RQ1): These challenges

are shown in the challenges keyword graph in Fig. 2. Selected

papers have discussed about challenges in depth. Researchers

have shown a list of open issues in table of current challenges

that are open issues of microservices architecture. These open

challenges are not discussed in detail in literature. Table IV

shows the challenges of microservices.

2) Quality Attributes of Microservices (RQ2): These are

quality attributes Scalability, Independency, Maintainability,

Deployment, Performance, Reusability, Security, and Load

Balancing have been discussed in this mapping study [9], [42].

But researcher have identified few more attributes of

microservices which are Reliability, Portability, Availability,

these are also important attributes. Other previous quality

attributes have been discussed in this mapping study [6], but

researcher find out different few more.

3) Motivation for Microservice Architecture (RQ3):

Microservices is a new emerging style which is becoming

very familiar adopting by industries. It helps the developer to

develop the large and complex application to distribute the

application in chunks or unit by composing this application

[1]. It can be written in language by using APIs for

microservices [3]-[5]. Mostly papers are discussing about its

independent services that can be upgrade or new addition or

services any time. Table III shows the motivations of

Microservices.

TABLE III. RESEARCH QUESTIONS

No. Research Question Motivation

1

What challenges has been

reported in literature about

microservices architecture?

This question MSA will elaborate

the current challenges. It will

discuss in detail about research

challenges of microservices.

2

What are the new quality

attributes of microservice

architecture?

This question aim to identify the

new quality attributes of

microservice architecture.

3
What are the main

motivations for using MSA?

In this question will discuss the

benefits of microservices and the

aim is to get insight in what are the

main reasons for organizations to

architect in a microservices style.

4

What are the existing

techniques to migrate the

application to microservices?

The main to explore this question to

highlight the techniques and

methods which are helping to

migrating the system application

from traditional to microservices.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

288 | P a g e

www.ijacsa.thesai.org

TABLE IV. COMPARISON BETWEEN TRADITIONAL & MICROSERVICES

ARCHITECTURE

Traditional SOA Microservices

1 Single large

application

Several applications

sharing services
Small autonomous

services

2 Single deployment

unit

Multiple units

depending on each

other

Independently

deployable units

3 Limited clustering

possibilities

Distributed

deployment
Distributed deployment

4 Homogeneous

technologies

Heterogeneous

technologies
Heterogeneous

technologies

5 Shared data

storage
Shared data storage

Independent data

storage

6 Single point of

failure

Single point of failure

ESB
Resilient to failures

7 In-memory

function calls

Remote calls through

ESB
Lightweight remote

calls

8 Single large team
Multiple teams with

shared knowledge
Independent teams

owning full lifecycle

4) Migrating to Microservices (RQ4): There is not proper

technique that helps to migrate the complete application to

microservices. One paper introduces its method to migrate the

application to microservices by independent components but

not dependent components [24], [36]. But this method does

not help to migrate the complete system to microservices.

Fig. 1. Related to challenges keywords in architecture.

Fig. 2. No. of factors in papers of microservices.

Fig. 3. Microservices factor list analysis variation graph.

5) Discussions of Figures

Fig. 1 shows all the challenges keywords of architecture,
this figure shows the growth of keywords Table VI. All these
keywords have been reported in literature.

Fig. 2 shows all factors of microservices architecture that
can be easily measured. Graph shows the importance of
factors by percentages.

Fig. 3 shows the variation of all factors. Researchers use
the Minitab stats tool to find the variations of all factors.

Fig. 4 shows the analysis result of all factors that how
many papers have discussed each factor.

Challenges Keywords of

Architecture

Service Discovery Communication

Performance Deployment

Security Migration

Architecture Recovery Scalability

5% 3% 5%
7%

7%
1%
7%
3%
6%

2% 8% 1%

11%

5%

9% 8%

12%
45%

Microservices Factors

No. of papers

Scalability

Reusability

Dependency

Configure

Processes

Concurrency

Continuous Development

Maintainability

161412108642

2.5

2.0

1.5

1.0

0.5

0.0

Factor Number

E
ig

e
n

v
a
lu

e

Scree Plot of Scalability, ..., Independence

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

289 | P a g e

www.ijacsa.thesai.org

Fig. 4. Factors list of microservices and analysis result graph.

TABLE V. TOP FIVE EMERGING CHALLENGES

Challenge Description Ref.

1
Challenges of reimagining

and re-architecting a

software product.

It is the big challenge for

software architect considering

microservices is the need to

reimagine and also re-think how

the application will work.

[1],

[5],

[7],

[12],

[18],

[31],

[34]

2 Testing can become

challenging.

Integration testing, it is

necessary for the quality

assurance engineer to clearly

understand each of the different

services in order to write the test

cases effectively. Debugging

meanwhile can mean the QA

engineer having to analyze logs

across different microservice

environments.

[6],

[31],

[33],

[34]

3 System migration to

microservices

Old system application needs to

be migrated to microservices.

[3],

[9],

[24],

[31],

[33],

[34]

4
Databases need to be

completely decoupled from

each other.

It‟s easy to be decoupled but also

a big challenge because previous

database schemas worked with

different table by its relations

now in microservices it need to

be changed this. When

transitioning to cloud

microservices, you need

database models 100%

decoupled from each other.

[6],

[9],

[31]

5
Performance monitoring

under continuous software

change

It‟s part of microservice

architecture that need to be

continually changes.

Performance does matter very

much when following this

microservice architecture.

[2],

[3],

[4],

[6],

[10],

[22],

[31],

[33],

[34]

Fig. 5 found the frequency of all factors that how many
papers discussed the each factor.

0 50 100 150 200

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

MIcroservices factors

analysis

Scalability

Reusability

Dependency

Configure

Processes

Concurrency

Continuous Development

Maintainability

Load balancing

Portability

Security

Modularity

Performance

Reliability

Cost

Availability

Independence

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

290 | P a g e

www.ijacsa.thesai.org

TABLE VI. FACTORS RELATED TO CHALLENGES

No. Challenges Factors

1
Challenges of reimagining and re-

architecting a software product.
Dependency, Deployment, Configure, Process, Continues, Development, Maintainability.

2 Testing can become challenging. Security, Dependency.

3 System migration to microservices Performance, Independency, Cost, Scalability, Reusability, Continues, Development.

4
Databases need to be completely decoupled

from each other.
Independency, Load Balancing, Process.

5
Performance monitoring under continuous

software change
Performance, Continues Development, Availability, Load Balancing, Deployment.

Fig. 5. Frequency of microserives‟ factors.

TABLE VII. IDENTIFIED FACTORS LIST OF MICROSERVICES

No. Factors Paper Reference

1 Scalability 2, 3, 4, 5, 8, 9, 10, 12, 14, 18, 19, 20, 26, 31, 37, 38, 39, 41, 42, 44, 15, 45, 47, 48

2 Reusability 18, 26, 37, 38, 48

3 Dependency 1, 3, 4, 5, 9, 11, 12, 19, 20, 46

4 Configure 1, 4, 8, 10, 12, 19, 20, 29, 37, 38, 39, 42, 44, 15, 45, 46

5 Processes 10, 11, 12, 8, 9, 18, 19, 26, 29, 37, 39, 40, 41, 45

6 Concurrency 2

7 Continuous Development 2, 7, 9, 11, 14, 19, 20, 26, 31, 39, 40, 42, 44, 15, 45, 48

8 Maintainability 3, 5, 9, 37, 38, 40, 44

9 Load balancing 2, 3, 5, 9, 12, 14, 15, 19, 38, 39, 40, 44, 47, 48

10 Portability 20, 31, 39, 42

11 Security 3, 4, 5, 12, 8, 9, 18, 19, 26, 37, 38, 39, 40, 41, 42, 46, 47, 48

12 Modularity 38, 41

13 Performance 1, 2, 3, 4, 5, 8, 9, 10, 12, 14, 15, 19, 26, 29, 31, 39, 41, 42, 44, 45, 46, 47, 48

14 Reliability 3, 4, 5, 7, 8, 14, 31, 37, 40, 41, 45

15 Cost 3, 4, 7, 8, 9, 10, 14, 15, 18, 19, 20, 26, 31, 37, 38, 39, 42, 45, 46, 48

16 Availability 1, 4, 5, 7, 8, 9, 10, 12, 14, 15, 19, 31, 38, 39, 41, 45, 48

17 Independence 1, 2, 3, 5, 7, 8, 9, 10, 11, 12, 14, 15, 18, 20, 24, 26, 29 31, 37, 38, 39, 40, 41, 42, 44, 45, 46

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

291 | P a g e

www.ijacsa.thesai.org

6) Factors analysis method: In this section, researcher

used a Minitab tool of stats to analyze the factors of

microservices. This tool creates the four different graphs

based on analysis result. Graph of scree plot tell us about

variation among each factor and show it by dotted line that

where the variation is occurring and how much it is.

Researcher analyze the result of factors by values, these values

mean that how many time each factor is used in literature that

is counted as a value of factor for each paper. It means it will

help to find the importance of factor and literature focus on

factor. Researcher attached the results of all factors in

Appendix A section, factor analysis result table (Tables VIII

and IX). This research brings forth the number of factors in

row and name of factors in column. And in Appendix B

section, Fig. 6, 7 and 8 show the result in different view.

IV. CONCLUSION

This critical evaluation and mapping study has reviewed
carefully the given studies on microservices architecture and
the relevant architectural challenges reported in literature.
Researchers have discussed in details about microservices.
Write the planning of mapping study to produce the results
that how it will be shown in this study and the major keywords
that support to find the literature related to microservices.
Research flow diagram is showing the flow or this study the
selection of research papers. Research Questions is a major
part of this study these are impact on result of this study. The
first research question addresses the different challenges in
microservices that is shown in Fig. 1 challenges keywords.
These challenges keywords are discussed in depth in
literature, but open issues are not deeply discussed. The
second question discusses about quality attributes of
microservices, most of them quality attributes are discussed in
previous literature, but the researcher has identified few more
quality attributes which are also important in microservices.
The third question discusses motivations of microservices that
can be seen in literature and comparison Table IV. The last
fourth question is very important of this study is migration of
system application to microservices, it shows the importance
of migration to microservices in the comparison Table IV.
Researcher found the list of emerging challenges in Table V.
And highlight the factors of microservices in a list form of
Table VII then use the Minitab static tool to analyze the
factors of microservices and produce the result in the form of
quantitative values and different graph. Scree plot is the major
graph of this analysis and is discussed above in Fig. 5. Other
graph and results are shown in Appendix sections which are
Fig. 6, 7, and 8.

V. FUTURE WORK

Analyzed material is based on the state of the art research
mined for migration, clustering, and services of Microservices.
There is need for performing a detailed empirical analysis of
system migration based on software industry input to establish
a gap between theory and practice.

Further plans include for proposal of a migration technique
for practitioners of micro-services, by which guidelines for
software firms shall be proposed to increase their scalability

with productivity. Future research in the area shall consider
comparison of proposed methods to similar methods in
literature, using a suitable framework.

REFERENCES

[1] Luca Florio, Elisabetta Di Nitto. Gru: an Approach to Introduce
Decentralized Autonomic Behavior in Microservices Architectures.
2016 IEEE International Conference on Autonomic Computing. IEEE,
2016.

[2] Nam H. Do, Tien Van Do, Xuan Thi Tran, Lorant Farkas, Csaba Rotter.
A Scalable Routing Mechanism for Stateful Microservices. IEEE, 2017.

[3] Christian Esposito, Aniello Castiglione, Kim-Kwang Raymond Choo.
Challenges in Delivering Software in the Cloud as Microservices. IEEE
Cloud Computing published by the IEEE computer society. IEEE, 2016.

[4] Hamzeh Khazaei, Cornel Barna, Nasim Beigi-Mohammadi, Marin
Litoiu. Efficiency Analysis of Provisioning Microservices. 2016 IEEE
8th International Conference on Cloud Computing Technology and
Science. IEEE, 2016.

[5] G. Granchelli, M. Cardarelli, Towards Recovering the Software
Architecture of Microservice based system, IEEE, 2017

[6] Nuha Alshuqayran, Nour Ali and Roger Evans. A Systematic Mapping
Study in Microservice Architecture. 2016 IEEE 9th International
Conference on Service-Oriented Computing and Applications. IEEE,
2016.

[7] Sara Hassan, Andreas Oberweis, Rami Bahsoon. Microservices and
Their Design Trade-offs: A Self-Adaptive Roadmap, 2016 IEEE
International Conference on Services Computing, 2016.

[8] Zhongxiang Xiao, Andreas Oberweis, and Thomas SchXinjian Qiang.
Reflections on SOA and Microservices, 2016 4th International
Conference on Enterprise Systems. IEEE, 2016.

[9] Mohsen Ahmadvand and Amjad Ibrahim. Requirements Reconciliation
for Scalable and Secure Microservice (De)composition. 2016 IEEE 24th
International Requirements Engineering Conference Workshops. IEEE,
2016.

[10] Stefan Haselböck, Rainer Weinreich, Decision Guidance Models for
Microservice Monitoring. 2017 IEEE International Conference on
Software Architecture Workshop. IEEE, 2017.

[11] Rory V. O‟Connor, Peter Elger, Paul M. Clarke, Exploring the impact of
situational context – A case study of a software development process for
a microservices architecture. IEEE, 2016.

[12] Csaba Rotter, Gergely. Telecom Strategies for Service Discovery in
Microservice Environments. IEEE, 2017.

[13] Gholam Reza Shahmohammadi, Saeed Jalili. Identification of System
Software Components Using Clustering Approach. 2010.

[14] Wilhelm Hasselbring, Guido Steinacker. Microservice Architectures for
Scalability, Agility and Reliability in E-Commerce. 2017 IEEE
International Conference on Software Architecture Workshops. IEEE,
2017.

[15] Mario Villamizar, Oscar Garces, Harold Castro. Evaluating the
Monolithic and the Microservice Architecture Pattern to Deploy Web
Applications in the Cloud. IEEE. 2015

[16] Abdulaziz Alkhalid, Chung-Horng Lung, Duo Liu, Samuel Ajila.
Software Architecture Decomposition Using Clustering Techniques.
2013 IEEE 37th Annual Computer Software and Applications
Conference. IEEE, 2013

[17] Duo Liu, Chung-Horng Lung, Samuel A. Ajila. Adaptive Clustering
Techniques for Software Components and Architecture. 2015 IEEE 39th
Annual International Computers, Software & Applications Conference.

[18] Yale yu, Haydn Silveira, Max Sundaram. A Microservice Based
Reference Architecture Model in the Context of Enterprise Architecture.
IEEE, 2016.

[19] Giovanni Toffetti, Sandro Brunner, Martin Bl ochlinger. An architecture
for self-managing microservices. ACM, 2015.

[20] David Jaramillo, Duy V Nguyen. Leveraging microservices architecture
by using Docker technology. IEEE, 2016.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

292 | P a g e

www.ijacsa.thesai.org

[21] Ibrar Hussain, Aasia Khanum, Abdul Qudus Abbasi, Muhammad
Younus Javed. A Novel Approach for Software Architecture Recovery
using Particle Swarm Optimization. 2014.

[22] Nam H. Do, Tien Van Do. A Scalable Routing Mechanism for Stateful
Microservices. IEEE, 2017.

[23] Ben Horowitz. Website: "Adapting the Twelve‑ Factor App for
Microservices". July 28, 2016. Copied date: July 13, 2017.

[24] Alessandra Levcovitz, Ricardo Terra, Marco Tulio Valente. Towards a
Technique for Extracting Microservices from Monolithic Enterprise
Systems. Google Scholar. Website 1, 2, Copied date: July 14, 2017

[25] Bc. Tomáš Livora. Thesis: “Fault Tolerance in Microservices”. Masaryk
University, 2016.

[26] Sascha Alpers, Christoph Becker, Andreas Oberweis.Microservice based
tool support for business process modelling. IEEE, 2015.

[27] Jagdeep kaur, Pradeep tomar Validation of Software Component
selection algorithms based on Clustering. Indian Journal of Science and
Technology, 2016.

[28] Kamran Sartipi. Software Architecture Recovery based on Pattern
Marching. IEEE ICSM.

[29] Matthias Vianden, Horst Lichter, Andreas Steffens. Experience on a
Microservice-based Reference Architecture for Measurement Systems,
2014 21st Asia-Pacific Software Engineering Conference. IEEE, 2014.

[30] Suresh Marru, Marlon Pierce. Apache Airavata as a Laboratory:
Architecture and Case Study for Component-Based Gateway
Middleware. ACM, 2015.

[31] Robert Heinrich, André van Hoorn, Holger Knoche, Fei Li, Lucy Ellen
Lwakatare, Claus Pahl, Stefan Schulte. Performance Engineering for
Microservices:Research Challenges and Directions. ACM, 2017.

[32] Armin Balalaie, Abbas Heydarnoori, Pooyan Jamshidi. Microservices
Migration Patterns.

[33] Nicola Dragoni, Saverio Giallorenzo, Alberto Lluch Lafuente, Manuel
Mazzara Fabrizio Montesi, Ruslan Mustafin, Larisa Safina.
Microservices: yesterday, today, and tomorrow. 2017.

[34] Armin Balalaie, Abbas Heydarnoori, and Pooyan Jamshidi. Migrating to
Cloud-Native Architectures Using Microservices: An Experience
Report. ResearchGate, 2017

[35] Jyhjong Lin, Lendy Chaoyu Lin, S. Huang. Migrating Web Application
To Cloud with Microservice Architecture.

[36] Holger Knoche. Sustaining Runtime Performance while Incrementally
Modernizing Transactional Monolithic Software towards Microservices.
ACM, 2016

[37] Mazedur Rahman, Jerry Gao. A Reusable Automated Acceptance
Testing Architecture for Microservices in Behavior-Driven
Development. IEEE. 2015

[38] Alexandr Krylovskiy∗ , Marco Jahn∗ , Edoardo Patti. Designing a Smart
City Internet of Things Platform with Microservice Architecture. IEEE.
2015

[39] Hui Kang, Michael Le, Shu Tao. Container and Microservice Driven
Design for Cloud Infrastructure DevOps. IEEE. 2016

[40] Gabor Kecskemeti, Attila Csaba Marosi and Attila Kertesz.
Microservices validation:Mjolnirr platform case study. IEEE. 2015

[41] Joao Rufino, Muhammad Alam, Joaquim Ferreira, Abdur Rehman.
Orchestration of Containerized Microservices for IIoT using Docker.
IEEE. 2017

[42] Dong Guo, Wei Wang*, Guosun Zeng, Zerong Wei. Microservices
Architecture based Cloudware Deployment Platform for Service
Computing. IEEE. 2016

[43] Gabor Kecskemeti, Attila Csaba Marosi and Attila Kertesz. The
ENTICE Approach to Decompose Monolithic Services into
Microservices. IEEE. 2016

[44] Bj¨orn Butzin, Frank Golatowski, Dirk Timmermann. Microservices
Approach for the Internet of Things. IEEE. 2016

[45] Gustavo Sousa, Walter Rudametkin, Laurence Duchien. Automated
Setup of Multi-Cloud Environments for Microservices Applications.
IEEE. 2016

[46] Srikanta Patanjali, Benjamin Truninger, Piyush Harshand Thomas
Michael Bohnert. A Micro Service based approach for dynamic Rating,
Charging & Billing for cloud.

[47] Yuqiong Sun, Susanta Nanda, Trent Jaeger. Security-as-a-Service for
Microservices-Based Cloud Applications. IEEE. 2015

[48] Tomislav Vresk* and Igor Čavrak. Architecture of an Interoperable IoT
Platform Based on Microservices. 2016

FACTOR ANALYSIS RESULT REPORT

APPENDIX A

Factor Analysis: Scalability, Reusability, Dependency, Independence

A. Principal Component Factor Analysis of the Correlation Matrix

TABLE VIII. UN-ROTATED FACTOR LOADINGS AND COMMUNALITIES

Variable Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7

Scalability 0.109 -0.687 0.507 0.066 -0.263 -0.097 -0.170

Reusability -0.151 -0.165 -0.495 -0.214 -0.340 0.041 -0.558

Dependency -0.023 -0.468 0.527 -0.324 -0.273 0.299 0.069

Configure 0.697 0.350 -0.107 -0.075 -0.031 0.338 -0.277

Processes 0.042 0.034 -0.328 -0.558 -0.141 -0.258 0.300

Concurrency -0.110 -0.218 0.196 0.095 0.729 -0.275 -0.359

Continuous

Development
0.561 -0.469 -0.238 0.009 0.058 -0.170 0.392

Maintainability 0.017 -0.626 -0.394 -0.146 -0.241 -0.041 -0.224

Load balancing 0.477 -0.531 -0.041 0.059 0.527 -0.103 0.024

Portability 0.647 0.201 0.087 -0.406 -0.061 -0.373 0.012

Security -0.165 -0.201 0.418 -0.206 -0.051 0.382 0.263

Modularity -0.199 0.149 -0.071 0.358 -0.204 -0.248 0.227

Performance 0.345 0.217 0.393 0.241 -0.159 -0.155 -0.000

Reliability -0.012 -0.077 0.187 0.614 -0.423 -0.340 -0.105

https://arxiv.org/abs/1605.03175
https://scholar.google.com.pk/scholar?q=Towards+a+Technique+for+Extracting+Microservices+from+Monolithic+Enterprise+Systems&hl=en&as_sdt=0&as_vis=1&oi=scholart&sa=X&ved=0ahUKEwjhts3Vp4nVAhWBv48KHUnMDGYQgQMIHzAA

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

293 | P a g e

www.ijacsa.thesai.org

Cost 0.625 0.058 -0.059 0.353 0.027 0.586 -0.037

Availability 0.574 0.201 0.281 -0.130 -0.258 -0.289 -0.157

Independence 0.198 -0.328 -0.542 0.436 -0.156 0.089 0.212

Variance 2.4409 2.0895 1.9048 1.6085 1.4945 1.3187 1.0477

% Var 0.144 0.123 0.112 0.095 0.088 0.078 0.062

Variable Factor8 Factor9 Factor10 Factor11 Factor12 Factor13 Factor14

Scalability -0.104 0.243 0.123 -0.036 -0.089 -0.080 0.020

Reusability -0.060 -0.147 0.343 0.035 0.085 -0.154 0.221

Dependency 0.140 0.318 -0.031 0.246 0.020 -0.067 -0.088

Configure 0.073 0.162 0.143 -0.135 -0.108 0.158 -0.207

Processes -0.307 0.318 0.247 0.053 0.295 0.217 -0.066

Concurrency 0.006 0.128 0.251 -0.020 0.107 -0.072 -0.144

Continuous

Development
-0.264 -0.116 0.060 0.049 -0.260 -0.090 0.151

Maintainability 0.184 -0.310 -0.183 0.084 -0.127 0.265 -0.215

Load balancing 0.194 -0.072 0.003 0.017 0.157 0.212 0.138

Portability 0.134 -0.052 0.116 -0.250 -0.199 -0.213 -0.104

Security 0.127 -0.442 0.292 -0.408 0.157 0.063 0.014

Modularity 0.620 0.121 0.431 0.172 -0.146 0.108 0.042

Performance -0.259 -0.485 0.186 0.425 0.145 -0.029 -0.173

Reliability -0.292 0.110 -0.007 -0.343 0.029 0.206 -0.006

Cost -0.117 0.152 0.141 0.097 0.020 0.065 0.130

Availability 0.350 -0.009 -0.280 0.012 0.301 0.008 0.195

Independence 0.178 0.074 -0.050 -0.116 0.311 -0.312 -0.211

Variance 1.0140 0.9291 0.7360 0.6743 0.5294 0.4405 0.3555

% Var 0.060 0.055 0.043 0.040 0.031 0.026 0.021

Variable Factor15 Factor16 Factor17 Communality

Scalability 0.011 0.165 -0.139 1.000

Reusability 0.059 -0.021 0.054 1.000

Dependency 0.050 -0.121 0.130 1.000

Configure 0.021 0.148 0.101 1.000

Processes -0.035 0.002 -0.043 1.000

Concurrency -0.187 -0.052 0.039 1.000

Continuous Development -0.145 0.041 0.117 1.000

Maintainability -0.110 -0.057 -0.053 1.000

Load balancing 0.255 -0.002 0.009 1.000

Portability 0.091 -0.142 -0.070 1.000

Security -0.072 0.009 0.009 1.000

Modularity -0.024 0.006 0.000 1.000

Performance 0.054 0.017 0.001 1.000

Reliability 0.037 -0.101 0.080 1.000

Cost -0.102 -0.145 -0.114 1.000

Availability -0.167 0.034 0.020 1.000

Independence 0.017 0.024 0.001 1.000

Variance 0.1976 0.1253 0.0938 17.0000

% Var 0.012 0.007 0.006 1.000

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

294 | P a g e

www.ijacsa.thesai.org

TABLE IX. FACTOR SCORE COEFFICIENTS

Variable Factor1 Factor2 Factor3 Factor4 Factor5 Factor6 Factor7

Scalability 0.044 -0.329 0.266 0.041 -0.176 -0.074 -0.163

Reusability -0.062 -0.079 -0.260 -0.133 -0.228 0.031 -0.532

Dependency -0.009 -0.224 0.277 -0.201 -0.183 0.227 0.066

Configure 0.286 0.168 -0.056 -0.047 -0.021 0.257 -0.264

Processes 0.017 0.016 -0.172 -0.347 -0.094 -0.196 0.287

Concurrency -0.045 -0.105 0.103 0.059 0.488 -0.208 -0.343

Continuous

Development
0.230 -0.224 -0.125 0.006 0.039 -0.129 0.374

Maintainability 0.007 -0.299 -0.207 -0.091 -0.161 -0.031 -0.214

Load balancing 0.195 -0.254 -0.022 0.037 0.352 -0.078 0.023

Portability 0.265 0.096 0.046 -0.252 -0.041 -0.283 0.011

Security -0.067 -0.096 0.220 -0.128 -0.034 0.289 0.251

Modularity -0.081 0.071 -0.038 0.223 -0.136 -0.188 0.217

Performance 0.141 0.104 0.206 0.150 -0.106 -0.118 -0.000

Reliability -0.005 -0.037 0.098 0.382 -0.283 -0.258 -0.100

Cost 0.256 0.028 -0.031 0.220 0.018 0.444 -0.035

Availability 0.235 0.096 0.147 -0.081 -0.173 -0.219 -0.150

Independence 0.081 -0.157 -0.285 0.271 -0.104 0.067 0.202

Variable Factor8 Factor9 Factor10 Factor11 Factor12 Factor13 Factor14

Scalability -0.102 0.262 0.167 -0.054 -0.168 -0.183 0.056

Reusability -0.059 -0.158 0.466 0.052 0.161 -0.349 0.622

Dependency 0.138 0.342 -0.042 0.365 0.038 -0.152 -0.247

Configure 0.072 0.175 0.194 -0.200 -0.203 0.358 -0.582

Processes -0.303 0.342 0.336 0.078 0.558 0.493 -0.185

Concurrency 0.006 0.138 0.341 -0.030 0.202 -0.163 -0.406

Continuous

Development
-0.260 -0.125 0.081 0.073 -0.491 -0.204 0.425

Maintainability 0.182 -0.334 -0.249 0.125 -0.240 0.601 -0.605

Load balancing 0.191 -0.077 0.004 0.026 0.296 0.482 0.388

Portability 0.132 -0.056 0.157 -0.371 -0.376 -0.483 -0.294

Security 0.125 -0.476 0.397 -0.605 0.297 0.142 0.041

Modularity 0.611 0.130 0.586 0.255 -0.276 0.246 0.119

Performance -0.255 -0.522 0.253 0.631 0.273 -0.067 -0.485

Reliability -0.288 0.118 -0.010 -0.508 0.054 0.467 -0.016

Cost -0.115 0.163 0.192 0.144 0.038 0.147 0.366

Availability 0.346 -0.010 -0.381 0.018 0.569 0.019 0.550

Independence 0.176 0.080 -0.067 -0.171 0.587 -0.707 -0.594

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

295 | P a g e

www.ijacsa.thesai.org

Variable Factor15 Factor16 Factor17

Scalability 0.056 1.316 -1.480

Reusability 0.300 -0.164 0.572

Dependency 0.254 -0.968 1.383

Configure 0.104 1.179 1.074

Processes -0.175 0.020 -0.456

Concurrency -0.945 -0.412 0.418

Continuous Development -0.732 0.326 1.245

Maintainability -0.555 -0.454 -0.562

Load balancing 1.289 -0.013 0.099

Portability 0.459 -1.131 -0.749

Security -0.364 0.075 0.093

Modularity -0.124 0.050 0.001

Performance 0.275 0.132 0.015

Reliability 0.189 -0.810 0.850

Cost -0.519 -1.158 -1.215

Availability -0.847 0.275 0.216

Independence 0.087 0.191 0.007

APPENDIX B

B. Analysis Graph section

Fig. 6 shows us relationship among factors in form of groups. It tells the
different relationships in order to positive and negative. This graph allows us
to rapidly locate similar observations.

Fig. 7 tells us the co-relationships in two ways among factors horizontally
and vertically. It tells us the relationship just between two components.

Fig. 8 shows us relationships among factors in the form of pairs.

Fig. 6. Score plot.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

296 | P a g e

www.ijacsa.thesai.org

Fig. 7. Loading plot.

Fig. 8. Biplot.

0.70.60.50.40.30.20.10.0-0.1-0.2

0.50

0.25

0.00

-0.25

-0.50

-0.75

First Factor

S
ec

o
n

d
 F

ac
to

r

Independence

Availability

Cost

Reliability

Performance

Modularity

Security

Portability

Load balancing

Maintainability

Continuous Development

Concurrency

Processes

Configure

Dependency

Reusability

Scalability

Loading Plot of Scalability, ..., Independence

43210-1

2

1

0

-1

-2

-3

First Factor

S
ec

o
n

d
 F

ac
to

r

Independence

Availability
Cost

Reliability

PerformanceModularity

Security

Portability

Load balancingMaintainability
Continuous Development

Concurrency

Processes

Configure

Dependency

Reusability

Scalability

Biplot of Scalability, ..., Independence

