
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

568 | P a g e

www.ijacsa.thesai.org

Reverse Engineering State and Strategy Design

Patterns using Static Code Analysis

Khaled Abdelsalam Mohamed, Amr Kamel

Faculty of Computers and Information, Cairo University

Giza, Postal Code: 12613, Egypt

Abstract—This paper presents an approach to detect

behavioral design patterns from source code using static analysis

techniques. It depends on the concept of Code Property Graph

and enriching graph with relationships and properties specific to

Design Patterns, to simplify the process of Design Pattern

detection. This approach used NoSQL graph database (Neo4j)

and uses graph traversal language (Gremlin) for doing graph

matching. Our approach, converts the tasks of design pattern

detection to a graph matching task by representing Design

Patterns in form of graph queries and running it on graph

database.

Keywords—Reverse engineering; source code analysis; design

patterns; static analysis; graph matching; Gremlin; Joern; Neo4j

I. INTRODUCTION

Software as an artifact is not static. Software is in
continuous change. During the software lifetime, there are a
number of sources of change that affects it, e.g., bug fixing,
new features added, requirements changes or technology
changes. To make such changes, the assigned developers
should have a good understanding of the software internals s/he
is going to change. Typically, a team of developers implements
applications. Sometimes, the developer who is assigned to
change the application is not a member of the original
development team, even if the developer was one of the team,
it is unlikely that he knows every little detail of the software
implementation. Here comes the importance of having a
complete documentation of the software, so all development
team have required insight of the software.

The documentation always has many problems. An extreme
problem is that documentation may be lost, so the developer
will need to start understanding the software from scratch,
although this not always the case, the most probable problem
of documentation is not being synchronized with the
application. If a developer depends on this outdated
documentation s/he will get wrong understanding of the
software at hand, which will be an obstacle for the developer to
accomplish the task.

As the documentation goes out of sync, it will be a source
of problems. If a developer starts from outdated document and
makes his changes without reflecting changes in the
documentation continuously, the significance of the
documentation will diminish over time, eventually the
documentation will be useless. One reason of such problem is
that the job of updating documentation is a tedious task for the
developers.

A lot of research effort has been done in the field of gaining
insight of legacy software and knowing the intentions of
software code. In addition, it is considered one of the important
reverse engineering research fields. One of the different
approaches for gaining understanding of legacy software is to
extract design patterns out of the source code; design patterns
[1] describe high quality practical solutions to recurring
programming problems.

Design patterns are a toolbox of reusable solutions and best
practices that have been refined over many years to a compact
format. Design patterns do not describe specific algorithms or
data structures like linked list or variable length arrays, which
are traditionally implemented in individual classes. As each
design pattern has a specific intention, detecting them out of
source code can lead to understanding the usage of different
parts of the software, design patterns provide a coherent map
that leads the developers through the design of the software
analyzed.

This document is divided into four sections. In Section II,
The different approaches used for detecting design patterns are
presented. In Section III, structural similarities and behavioral
differences between State design pattern and Strategy design
pattern are presented. In Section IV, The different techniques
and frameworks used for doing static analysis to source code
are presented. In Section V, Our approach for detecting design
patterns in source code using graph enrichment and static
analysis techniques is presented. Finally, Section VI, offers the
conclusions and future work.

II. RELATED WORK

The architecture design of software highly affects its
quality. The high quality software follows design patterns. The
mining of design patterns can be helpful in understanding and
knowing design decisions in legacy systems [2]-[5].

The design pattern recovery is considered one of the hot
topics in reverse engineering research field [2], [6], [7]. There
are many approaches used in literature to recover design
patterns from source code to facilitate software maintenance
[8], [9] and program comprehension [10]-[12]. The techniques
used in literature can be classified based on two factors [13],
the type of analysis and the search methodology.

A. Analysis Type

Based on the analysis type, the pattern recovery approaches
can be classified [13] into structural analysis, behavioral
analysis and semantic analysis.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

569 | P a g e

www.ijacsa.thesai.org

Structural analysis [14] are based on recovering inter-class
relationships such as class inheritance, association,
composition, modifiers of classes and methods, method
parameters, etc. They focus on recovering structural design
patterns such as Proxy, Decorator and Adapter, but they
completely miss the behavioral aspects of design patterns.

Behavioral analysis [15] focuses on the execution behavior
of the program. These approaches are based on dynamic
analysis, machine learning and static analysis techniques to
extract behavioral aspects of the pattern. Supplementing
behavioral analysis by structural analysis techniques helps in
recovery of identical or weak-structure patterns where
structural analysis fails.

Semantic analysis approaches supplements both structural
and behavioral analysis approaches to reduce the false positive
rate of recognition of design patterns. The semantic analysis
approach uses the naming convention of classes and methods
in recovering different roles inside design patterns.

B. Searching Techniques

Based on the searching techniques, the pattern recovery
approaches can be summarized as follows:

1) Database queries
In this approach, the source code is first transformed to an

intermediate representation such as (ASG, AST, XMI, meta-
data and UML structures etc.) then SQL queries are used to
extract information from a specific representation.

2) Constraint Resolver
The approach [14] used by The PTIDEJ team is a

multilayered approach, where design motifs are described as
constraint systems where each role is represented as a variable.
Relationships among roles are represented as constraints
among these variables.

3) XPG formalism and parsing
This approach [6] used a technique where SVG (scalable

vector graphics) format is used as an intermediate
representation of source code and design patterns are
represented using a visual language. Patterns are recovered
using a visual language parsing technique by mapping visual
language grammar of the patterns with the graph
representation. The advantages of these approaches are the
visualization and good precision, but are limited only to
structural design patterns.

4) UML structures and matrices techniques
Metrics techniques [16]-[18] compute program metrics

such as generalization, aggregation, association, etc. from
different representations of source code and then a number of
techniques are used to compare metric values of each design
pattern definition with source code metrics. These techniques
are computationally efficient because of search space reduction
through filtration.

III. STATE VS STRATEGY DESIGN PATTERNS

State and Strategy design patterns are two interesting
patterns, as both of them have the same structure although each
of them have a different behavior.

Balanyi and Rudolf [19] stated that during their process of
pattern formalization, they found an interesting problem, which
is that both State and Strategy patterns have identical structure,
and the differences between them are in motivation and
intention that they could not formalize.

Aikaterini et al. [20] proposed a method to automatically
transform/refactor source code to comply with the Strategy
design pattern. Their method complements JDeodorant [21]
that focuses mainly on the State pattern, by taking into account
behavioral properties of the Strategy design pattern during
candidate selection phase.

Von Detten and Platenius [22] used dynamic analysis to
analyze the runtime behavior of the system. First static analysis
is used to detect the structure of a design pattern, the detected
classes, methods are annotated, then during the dynamic
analysis phase the behavior of annotated classes, and methods
are traced during the software execution. For each pattern
candidate, a number of traces are generated. A behavioral
analysis algorithm assess if traces of each pattern candidate
conform to the corresponding behavioral pattern. If most of the
traces of a candidate match the behavioral pattern, the
candidate pattern is accepted and if the most of traces do not
match then the candidate pattern is rejected.

Hummel and Burger [23] mentioned that the class diagram
of the strategy and state patterns are identical from the class
diagram perspective. In addition, the main difference between
them resides in who controls the change of state or strategy.
The state implementations have control over state changes
themselves, but for strategy pattern, the client is responsible for
the changes of the applied strategy.

Uchiyama et al. [24] used an approach of metrics and
machine learning technique to detect design patterns. This
work was interested in distinguishing between State patterns
from Strategy pattern. They firstly using various metrics and
their machine learning identify the roles and secondly detect
patterns as structure of those roles.

The below class diagram (Fig. 1) shows the structure of the
Strategy Design Pattern.

Fig. 1. Class diagram of strategy design pattern.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

570 | P a g e

www.ijacsa.thesai.org

A. Structural Characteristics of Strategy Design Pattern

1) Classes: Client, Context, Strategy, ConcreteStrategy.

2) Use: Client uses Context

3) Aggregation: Context aggregates Strategy.

4) Inheritance: More than one ConcreteStrategy inherits

Strategy.

5) Abstract Method: Strategy contains an abstract method.

6) Method Overriding: ConcreteStrategy(ies) override

Strategy Abstract Method “algorithm”.

The below sequence diagram (Fig. 2) show the behavior of
Strategy pattern:

Fig. 2. Sequence diagram of strategy design pattern.

B. Behavioral Characteristics of Strategy Design Pattern

1) Call A: A call from "Client” to “Context”, to set the

required strategy.

2) Object Creation: “Context” created

“ConcreteStrategy”, based on value sent by “Context”.

3) Call B: A call from “Context” to the abstract method

implementation in “ConcreteStrategy”.

4) Call C: A call from "Client” to “Context”, to start

execution.

5) Call D: A call from "Context” to “ConcreteStrategy”,

to perform the algorithm.

IV. TECHNIQUES AND FRAMEWORKS

Static analysis [25] is the most frequently used approach
for code analysis, dynamic analysis needs that the source code
to be runnable; however, static analysis can be used for
incomplete source code.

A number of techniques are used for doing static analysis
for source code. Next, a number of most common static
analysis techniques are presented.

A. Techniques

1) Call Graph
Gall Graph [26] represents the possible callers at each call

site in each function. Call Graph is a directed that represents
the relationships between the program’s functions. There is a
wide range of algorithms for call graph construction [26], e.g.
RTA, 0-CFA and SCS.

2) Control Flow Graph
Control flow [27] graph, is a directed graph where nodes

represent program statements, and edges represent flow paths
from one program statements to another.

Constructing CFG can be for source code or byte codes, for
example JavaPDG [28], constructed the Control Flow Graph
from byte code using the following steps:

a) Get all instructions/statements of the method.

b) Create a node that represent method entry.

c) Make a link between entry node and first

instruction/statement.

d) Create a node that represent method exit.

e) Get reference to last instruction/statement.

f) Make a link between last instruction and method exit

node, if last instruction/statement is not "Return".

g) Make a reference to previous and current instruction

and Loop all instructions.

h) If previous instruction type is not ("CP" or "JU" or

"Return"), make link between pre and cur instructions.

i) If current instruction type is ("CP" or "JU"), make a

link between cur instruction and all jump labels.

j) If current instruction of type "Return", make a link

between cur instruction and method exit node.

3) Dominator Tree
A dominator tree [29] is a graph , Where V is

the set of vertices, E is the set of edges and r is the root node of
the graph. Every node except root node in the graph has a
unique immediate dominator. If two nodes “v” and “w” in the
dominator tree, and “v” is the ancestor of “w”, then “v”
dominates “w”. Node “v” dominates “w” if all paths from the
entry node to “w” contains “v”. In addition, “w” post-
dominates “v” if all paths from “v” to exit node contains “w”.

The dominator tree is computed from Control Flow Graph.
By having CFG and DT, control dependence graph can be
derived.

4) Control Dependence Graph
Control Dependence Graph [30] is a merge between

Control Flow Graph and Dominator Tree, It can be defined as a
directed graph “G”, it has two unique entries, entry node
“START” and exit node “STOP”. For any node “N” there
exists a path from “START” to “N” and from “N” to “STOP”.
So, node “Y” control dependent on “X” iff:

 There is a directed path “P” from “X” to “Y”, which
contains node “Z”, where “Y” post-dominate “Z”.

 “Y” doesn’t post-dominate “X”.

 Node “V” is post-dominated by “W”, if every directed
path from “V” to “STOP” contains “W”.

5) Data Dependence Graph
A data dependence graph (DDG) for every method is

calculated by tracking data flows on its CFG. A definition-use
chain, i.e., one instruction assigns a value to an abstract
variable, usually represents a data flow and the other
instruction uses the value. Reaching-definition and upward-
exposed-uses analyses are conducted following the steps:

Analyze the effect of each instruction in terms of its
variable definition and use sets.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

571 | P a g e

www.ijacsa.thesai.org

Iteratively propagate the information over the CFG;

During each iteration, inspect whether there is any
unknown definer/assigner of the variable(s) used in each
instruction, and update its information sets accordingly.

Once the information propagation ends (no changes are
found), the data dependences between instructions is calculated
by the definition-use chain analysis.

6) Program Dependence Graph
A PDG [30] is defined as a labeled, directed graph that

maps out control dependences and data dependences between
elements in a program.

7) System Dependence Graph
A system dependence graph (SDG) [31] is a generalization

of PDG and contains one procedure dependence graph (pDG)
for each method.

8) Code Property Graph
A single representation alone to represent the source code

in insufficient. Fabian et al. [32] combines three
representations into a unified data structure. In [32], author
introduced a new concept of Code Property Graph which
models ASTs, CFGs and PDGs as property graphs.

Fabian et al. [32] showed that common types of
vulnerabilities can be modeled as a traversal of code property
graph, also by importing code property graph into a graph
database, makes traversals can be executed efficiently on large
code base.

A code property graph is a property graph
constructed from AST, CFG and PDF of source code:

 ,

 ,

 And

 ,

B. Frameworks

Here, a number of frameworks that provides
implementations, for different static analysis techniques, first
works on binary level, and the second works on source code
level.

1) JavaPDG
JavaPDG [28] implements static dependence analysis for

Java Virtual Machine (JVM) bytecode. The tool parses the
bytecode of a Java program, computes the SDG and related
graphs, and stores the data for each program in a database.
JavaPDG includes tools for visualizing the graphs it produces
and for exporting the data in the JSON format. Additionally,
users are able to query the output using SQL by utilizing
Apache Derby. The analysis process takes as input the
compiled class files of a Java program, and yields a SDG and
related graphs as the final output.

The steps for building SDG are as follows:

a) Preprocessing

In the SDG, one PDG vertex represents each instruction.
Artificial entry and exit vertices for every method are added to
the graph to represent the start and end of the method,
respectively. A vertex is added for every call-site as its actual-
output parameter if the callee method has any return value.

b) Inter-procedural Analysis

An SDG is a collection of interconnected pDGs, each of
which is composed of the CDG and DDG for a method. The
static call graph of a program is used to investigate
communications between methods. Based on the call graph,
three types of inter-procedural control and data dependences
are computed.

The output SDG is a labeled, directed graph consisting of
multiple PDGs. Besides the SDG, JavaPDG outputs some
additional information, including:

 Static structure of a program that describes classes,
fields, methods, and relationships among them.

 Variable information that contains the name, type and
scope of every class field, object field and local variable
(including formal input parameter).

 Control flow graphs and dominance trees that are
constructed during dependence analysis and share the
same vertices as in the SDG.

 A static call graph whose vertices correspond to Java
methods and whose edges represent potential caller-
callee relationships indicated in the program.

2) Joern
Joern [33] is a platform for robust analysis of C/C++ code.

It generates code property graphs; code property graph [32]
consists of code’s syntax, control-flow, data-flow and type
information. These graphs are then stored in Neo4J database.
By this, it is possible to do code mining through running search
queries formulated in the graph traversal language Gremlin.

Joern platform [33] consists of three components joern(-
core), python-joern and joern-tools. Joern(-core) is the main
component, it takes the source code and parses it, creates a
code property graphs [32] and finally, import the graphs into
Neo4j database. Python-joern is a python interface to Joern
database. It provides a number of utilities for the common
operations of traversing code property graphs. Joern-tools is a
collection of command line tools that makes using python-
joern utilities possible form the shell.

3) Gremlin
Gremlin [34] is the graph traversal language of Apache

TinkerPop. Gremlin is a functional, data-flow language that
enables users to succinctly express complex traversals on (or
queries of) their application's property graph.

Gremlin recently appeared in a number of works such as
Model-to-Model transformation [35], modeling and
discovering vulnerabilities in source code [32].

V. APPROACH

In our approach, detecting behavioral design patterns from
source code using static analysis techniques is chosen. Program

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

572 | P a g e

www.ijacsa.thesai.org

Dependence Analysis, Control Dependence Analysis and Data
Dependence Analysis are applied on source code to be able to
capture the behavioral characteristics of design patterns.

In our approach, The detection problem is represented as a
graph matching problem, the source code graphs is stored in a
graph database e.g. Neo4j, and the design pattern features are
extracted by running graph matching queries against the
database where the source code graphs are saved.

In our approach, Joern platform [33] is used to analyze the
source code and save the analyzed source code in graph
database.

Joern platform is designed mainly for the detection of
vulnerabilities in code. Therefore, Joern is mainly interested in
C++ code at functions level and not interested in Object
Oriented interactions between classes.

As inheritance between classes forms an important
information that is required during the process of detecting
design patterns, a minor change to Joern platform is made to
store the parent class of each class during the parsing step of
the analysis process.

The following figure (Fig. 3) shows a high-level view of
the steps of our approach:

Fig. 3. Approach steps.

The steps of our approach is as follows:

1) Load Source Code

2) Generate Code Property Graphs [32] of the source code

under investigation

3) Insert the Code Property Graph into a graph database.

4) Enrich Generated Code Property Graph with properties

and relations between nodes to simplify the graph matching

steps.

5) Decide the design pattern(s) to detect.

6) Load the list of features (structural and behavioral) that

represent the design pattern.

7) Load the corresponding graph matching query for each

design pattern features

8) For each design pattern, run features detection queries

using Gremlin language [34] against the Enriched Code

Property Graphs in the Neo4j.

9) Inspect detected features and decide if design pattern

instance is found or not.

10) Display results.

Our approach enriches the Code Property Graph with a
number of properties and relations between vertices to make
the phase of detecting State and Strategy patterns straight
forward. Once these relations and properties are constructed,
the pattern detection graph matching algorithms for State and
Strategy patterns are used to detect State and Strategy patterns
from the Enriched Code Property Graph.

To express the capabilities of our approach, differentiating
between State and Strategy design patterns is selected, as they
are identical from the structural perspective but differs from the
behavioral and run time perspective. Our approach show that
differentiating between these patterns is possible, while still
using static analysis and no dynamic analysis is needed.

The enrichments required for differentiating between State
and Strategy Patterns are listed:

1) Methods to Classes: C++ class methods can be defined

outside its class, in such case Joern tool does not link between

the class and its member method, so a link between methods

and their classes is created.
The steps are as follows:

a) List all methods that their names contains symbol

“::”.

b) Split the method name into two parts, class name and

method name.

c) Search for class with the same name of first part of

full method name.

d) Make a link of type “IS_CLASS_OF” between the

class and method.

2) Inheritance: An inheritance relation between each

super class and their subclasses (Fig. 4).

The steps used to construct the inheritance relationship:

 List all classes that their base class name not equals to
“<unnamed>”.

 For each class in the list, get the class’s base class
name.

 Search for a class that its name equals to child’s base
class name.

 Make a link of type “INHERITS” between the class and
its base class.

Fig. 4. Inheritance relation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

573 | P a g e

www.ijacsa.thesai.org

3) Abstract (Virtual) Methods: Abstract methods can have

two types, one that has no body definition (Pure Virtual),

second that has body definition and declared with virtual

keyword as modifier (Fig. 5).
The steps to mark a method declaration as virtual are as

follows:

a) Get list of node that are of type “Decl”

b) Extract nodes that contain brackets, as indication that

they are methods declaration.

c) Extract nodes that do not have body definition.

d) Mark extracted nodes as abstract.

Fig. 5. Pure abstract method.

The steps to mark a method with body definition as virtual
are as follows (Fig. 6):

a) Get list of node that are of type “Function”.

b) Traverse to the return type of the function.

c) If return type contains keyword “virtual”, then this

function is marked as abstract.

Fig. 6. Abstract method.

4) Class Aggregates Class: A new relation between two

classes are created if one aggregates the other (Fig. 7).
The steps to construct aggregation relation between two

classes are:

a) Get all declaration statements for each class e.g.

“Class A”.

b) For each declaration statement extract class name

from its “baseType“.

c) Search for the class with same name extracted in

previous step “Class B”.

d) Create a link between that represents the aggregation

between “Class A” and “Class B”.

Fig. 7. Class aggregates class.

5) Method Creates Class: A relation between a method

and a class is created, if a method creates a class (Fig. 8).
The steps to create relation between class and the method

that creates it are:

a) Get all method statements that contains “new”

statement.

b) Extract class name from the new statement.

c) Search for a class that has the same name of step b.

d) Create a link of type “Create” between the Method

and the Class.

Fig. 8. Method creates class.

6) Method Overrides Method: A new relation between two

methods, if one method overrides the other method (Fig. 9).

a) Get list of all functions and declaration statements.

b) Get list of classes of step “a”.

c) Get list of classes that are super class of classes in

step “b”.

d) Get list of all functions and declaration statements

that are abstract of classes in step “c”.

e) Filter list of step “d”, which Subclass method name

should be equals to Superclass method name of step “c”.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

574 | P a g e

www.ijacsa.thesai.org

Fig. 9. Method overrides method.

7) Method Calls Method: A relation between two methods

are created if one method creates the other.
The steps to construct these new relations (Fig. 10) are:

a) Get list of all method “Caller Methods”.

b) Get list of classes of step “a”, and keep method that

are not related to classes e.g. main method.

c) Get list of all statements of type “Callee” of step “a”

“Call Sites”.

d) Get list of nodes of types “PtrMemberAccess”,

“MemberAccess”, or “Identifier” that are linked to step “c”.

e) Get list of nodes that are linked to nodes of type

“PtrMemberAccess” or “MemberAccess” of step “d” with in-

edge of type “USE”.

f) Get list of nodes of type “Parameter”, “Decl”, or

“IdentifierDeclStatement” and having in-edge of type “DEF”

from step “e”.

g) Keep nodes of type “Identifier” or “Symbol” that are

not in step “f” but have declaration in classes of caller

methods of step “a”.

h) Loop lists of steps “f” & “g”.

i) Get callee method name.

j) Get callee class name.

k) Get node represented by class and method names

(Callee Method).

l) Create a link between Caller Method and Callee

Method (Step “h.iii”).

m) Create a link between Call Site (Step “c”) and Callee

Method (Step “h.iii”).

Fig. 10. Method calls method.

Fig. 11. State and strategy design pattern candidates.

After enriching phase, the code graph is ready for the
detection phase, the detection phase for State and Strategy
design patterns is divide into two steps, first step to detect
candidates that can be State or Strategy (Fig. 11), this step
captures the structure of these design patterns. The second step
is for differentiating between State and Strategy patterns.

The steps for deciding if a candidate is a State or a Strategy
design patterns are:

a) Loop each candidate.

b) Get symbols that used by Context Class to aggregate

Base Class.

c) Get methods that use the symbols from step (b).

d) Check if methods from step (c) includes sub classes

methods from pattern candidates.

e) If step (d) is true then the candidate is a State design

pattern.

f) Check of methods from step (c) includes the client

method from pattern candidates.

g) If step (f) is true, then the candidate is a Strategy

design pattern.

VI. CONCLUSION AND FUTURE WORK

In this work, an approach is presented for detecting design
patterns in source code, by representing the source code in
form of a special graph named Code Property Graph [32],
using Joern platform [33]. In addition, our approach is shown
to able to differentiate between State and Strategy design
patterns, which are identical from structural perspective, but
differs at run time, using advanced static analysis techniques
without the need to use run time dynamic analysis. The code
property graph is enriched by constructing new properties and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

575 | P a g e

www.ijacsa.thesai.org

relationships between vertices of the graph, the enrichments
done by our approach presented a number of techniques to
transform graphs from the functions paradigm level to the level
of object oriented paradigm, so that code graph is ready for
object oriented analysis and design patterns detection.

In this work, C++ code is used, because Joern platform
currently supports C++, in our future work we will work on
supporting Java programming language, to be able to compare
our results with other approaches, as most design pattern
detection benchmarks are java based [4], [11], [36], [37]. Our
approach is not dependent on a specific language for
enrichment and design pattern detection, as it depends on
manipulating the code graph directly at run time before running
the detection algorithms, which depends on the code graph
also.

In future work, a catalogue of all relationships and
properties of design patterns will be created, to enrich the code
graph with these relationships and properties as a step before
pattern detection step, so a catalogue containing a one to one
mapping between a design pattern and it graph query will be
available.

Design pattern can have more than one variant [38], in our
future work, more than one graph definition to each design
pattern will be supported, and detection algorithm will search
for all different variants of design patterns to increase the true
positive rate of our detection approach. Constructing graphs
using design pattern concepts as relationships between vertices
will make adding new design patterns or new variants of the
design patterns more easily and user friendly.

REFERENCES

[1] Vlissides, John and Helm, Richard and Johnson, Ralph and Gamma,
Erich, Design Patterns: Elements of Reusable Object-Oriented Software,
Addison-Wesley Pub Co, 1995.

[2] Costagliola, Gennaro and De Lucia, Andrea and Deufemia, Vincenzo
and Gravino, Carmine and Risi, Michele, "Design pattern recovery by
visual language parsing," in Software Maintenance and Reengineering,
2005. CSMR 2005. Ninth European Conference on, 2005.

[3] Dong, Jing and Zhao, Yajing and Peng, Tu, "A review of design pattern
mining techniques," International Journal of Software Engineering and
Knowledge Engineering, vol. 19, no. 06, pp. 823--855, 2009.

[4] Fontana, Francesca Arcelli and Caracciolo, Andrea and Zanoni, Marco,
"DPB: A benchmark for design pattern detection tools," in Software
Maintenance and Reengineering (CSMR), 2012 16th European
Conference on, 2012.

[5] L. Wendehals, "Improving design pattern instance recognition by
dynamic analysis," in Proc. of the ICSE 2003 Workshop on Dynamic
Analysis (WODA), Portland, USA, 2003.

[6] De Lucia, Andrea and Deufemia, Vincenzo and Gravino, Carmine and
Risi, Michele, "Behavioral pattern identification through visual language
parsing and code instrumentation," in Software Maintenance and
Reengineering, 2009. CSMR'09. 13th European Conference on, IEEE,
2009.

[7] Dong, Jing and Zhao, Yajing and Sun, Yongtao, "A matrix-based
approach to recovering design patterns," IEEE Transactions on Systems,
Man, and Cybernetics-Part A: Systems and Humans, vol. 39, no. 6, pp.
1271--1282, 2009.

[8] Ng, Janice Ka-Yee and Guéhéneuc, Yann-Gaël and Antoniol, Giuliano,
"Identification of behavioural and creational design motifs through
dynamic analysis," Journal of Software: Evolution and Process, vol. 22,
no. 8, pp. 597--627, 2010.

[9] Fulop, Lajos Jeno and Ferenc, Rudolf and Gyimothy, Tibor, "Towards a
benchmark for evaluating design pattern miner tools," in Software

Maintenance and Reengineering, 2008. CSMR 2008. 12th European
Conference on, 2008.

[10] Guéhéneuc, Yann-Gaël and Antoniol, Giuliano, "Demima: A
multilayered approach for design pattern identification," IEEE
Transactions on Software Engineering, vol. 34, no. 5, pp. 667--684,
2008.

[11] Kniesel, Gunter and Binun, Alexander and Hegedus, Peter and Fulop,
Lajos Jeno and Chatzigeorgiou, Alexander and Gu{\'e}h{\'e}neuc,
Yann-Ga{\"e}l and Tsantalis, Nikolaos, "DPDX--Towards a Common
Result Exchange Format for Design Pattern Detection Tools," in
Software Maintenance and Reengineering (CSMR), 2010 14th European
Conference on, 2010.

[12] Kniesel, Gunter and Binun, Alexander, "Standing on the shoulders of
giants-a data fusion approach to design pattern detection," in Program
Comprehension, 2009. ICPC'09. IEEE 17th International Conference on,
2009.

[13] Rasool, Ghulam and Streitfdert, Detlef, "A survey on design pattern
recovery techniques," IJCSI International Journal of Computer Science
Issues, vol. 8, no. 2, pp. 251--260, 2011.

[14] De Lucia, Andrea and Deufemia, Vincenzo and Gravino, Carmine and
Risi, Michele, "An Eclipse plug-in for the detection of design pattern
instances through static and dynamic analysis," in Software Maintenance
(ICSM), 2010 IEEE International Conference on, 2010.

[15] Binun, Alexander and Kniesel, Günter, "Joining forces for higher
precision and recall of design pattern detection," CS Department III,
Uni. Bonn, Germany, Technical report IAI-TR-2012-01, 2012.

[16] Guéhéneuc, Yann-Gaël and Guyomarc’h, Jean-Yves and Sahraoui,
Houari, "Improving design-pattern identification: a new approach and an
exploratory study," Software Quality Journal, vol. 18, no. 1, pp. 145--
174, 2010.

[17] Antoniol, Giuliano and Fiutem, Roberto and Cristoforetti, Luca, "Design
pattern recovery in object-oriented software," in Program
Comprehension, 1998. IWPC'98. Proceedings., 6th International
Workshop on, 1998.

[18] von Detten, Markus and Becker, Steffen, "Combining clustering and
pattern detection for the reengineering of component-based software
systems," in Proceedings of the joint ACM SIGSOFT conference--
QoSA and ACM SIGSOFT symposium--ISARCS on Quality of
software architectures--QoSA and architecting critical systems--
ISARCS, 2011.

[19] Balanyi, Zsolt and Ferenc, Rudolf, "Mining design patterns from C++
source code," in Software Maintenance, 2003. ICSM 2003. Proceedings.
International Conference on, 2003.

[20] Christopoulou, Aikaterini and Giakoumakis, Emmanouel A and Zafeiris,
Vassilis E and Soukara, Vasiliki, "Automated refactoring to the Strategy
design pattern," Information and Software Technology, vol. 54, no. 11,
pp. 1202--1214, 2012.

[21] Tsantalis, Nikolaos and Chatzigeorgiou, Alexander, "Identification of
refactoring opportunities introducing polymorphism," Journal of
Systems and Software, vol. 83, no. 3, pp. 391--404, 2010.

[22] Von Detten, Markus and Platenius, Marie Christin, "Improving Dynamic
Design Pattern Detection in Reclipse with Set Objects," in In
Proceedings of the 7th International Fujaba Days, 2009.

[23] Hummel, Oliver and Burger, Stefan, "Analyzing source code for
automated design pattern recommendation," in Proceedings of the 3rd
ACM SIGSOFT International Workshop on Software Analytics, 2017.

[24] Uchiyama, Satoru and Kubo, Atsuto and Washizaki, Hironori and
Fukazawa, Yoshiaki, "Detecting design patterns in object-oriented
program source code by using metrics and machine learning," Journal of
Software Engineering and Applications, vol. 7, no. 12, p. 983, 2014.

[25] García-Ferreira, Iván and Laorden, Carlos and Santos, Igor and Bringas,
Pablo García, "A survey on static analysis and model checking," in
International Joint Conference SOCO’14-CISIS’14-ICEUTE’14, 2014.

[26] Grove, David and DeFouw, Greg and Dean, Jeffrey and Chambers,
Craig, "Call graph construction in object-oriented languages," ACM
SIGPLAN Notices, vol. 32, no. 10, p. 108–124, 1997.

[27] F. E. Allen, "Control flow analysis," ACM Sigplan Notices, vol. 5, pp.
1--19, 1970.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

576 | P a g e

www.ijacsa.thesai.org

[28] Shu, Gang and Sun, Boya and Henderson, Tim AD and Podgurski,
Andy, "JavaPDG: A new platform for program dependence analysis,"
Software Testing, Verification and Validation (ICST), 2013 IEEE Sixth
International Conference on. IEEE, 2013.

[29] Lengauer, Thomas and Tarjan, Robert Endre, "A fast algorithm for
finding dominators in a flowgraph," ACM Transactions on
Programming Languages and Systems (TOPLAS), vol. 1, no. 1, pp. 121-
-141, 1979.

[30] Ferrante, Jeanne and Ottenstein, Karl J and Warren, Joe D, "The
program dependence graph and its use in optimization," ACM
Transactions on Programming Languages and Systems (TOPLAS) 9.3,
pp. 319-349, 1987.

[31] Horwitz, Susan and Reps, Thomas and Binkley, David, "Interprocedural
Slicing Using Dependence Graphs," ACM Transactions on
Programming Languages and Systems, vol. 12, no. 1, p. 26–61, 1990.

[32] Yamaguchi, Fabian and Golde, Nico and Arp, Daniel and Rieck,
Konrad, "Modeling and discovering vulnerabilities with code property
graphs," Security and Privacy (SP), 2014 IEEE Symposium on, pp. 590-
604, May 2014.

[33] "Joern Website," [Online]. Available: http://www.mlsec.org/joern/.

[34] "The Gremlin Graph Traversal Machine and Language," [Online].
Available: https://tinkerpop.apache.org/gremlin.html. [Accessed 2017].

[35] G. a. S. G. a. C. J. Daniel, "Mogwaï: a framework to handle complex
queries on large models," in Research Challenges in Information
Science (RCIS), 2016 IEEE Tenth International Conference on, 2016.

[36] Tsantalis, Nikolaos and Chatzigeorgiou, Alexander and Stephanides,
George and Halkidis, Spyros T, "Design pattern detection using
similarity scoring," IEEE transactions on software engineering, vol. 32,
no. 11, 2006.

[37] Y.-G. Guéhenéuc, "P-mart: Pattern-like micro architecture repository,"
Proceedings of the 1st EuroPLoP Focus Group on Pattern Repositories,
2007.

[38] Bayley, Ian and Zhu, Hong, "Formal specification of the variants and
behavioural features of design patterns," Journal of Systems and
Software, vol. 83, no. 2, pp. 209--221, 2010.

