
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

577 | P a g e

www.ijacsa.thesai.org

OpenMP Implementation in the Characterization of

an Urban Growth Model Cellular Automaton

Alvaro Peraza Garzón

Instituto Tecnológico de Mazatlán

Universidad Autónoma de Sinaloa

Sinaloa, México

René Rodríguez Zamora

Universidad Autónoma de Sinaloa

Instituto Tecnológico de Mazatlán

Sinaloa, México

Wenseslao Plata Rocha

Facultad de Ciencias de la Tierra y el

Espacio

Universidad Autónoma de Sinaloa

Sinaloa, México

Abstract—This paper presents the implementation of a

parallelization strategy using the OpenMP library, while

developing a simulation tool based on a cellular automaton (CA)

to run urban growth simulations. The characterization of an

urban growth model CA is shown and it consists of a digitization

process of the land use in order to get all the necessary elements

for the CA to work. During the first simulation tests we noticed

high processing times due to large quantity of calculations

needed to perform one single simulation, in order to minimize

this we implemented a parallelization strategy using the fork-join

model in order to optimize the use of available hardware. The

results obtained show a significant improvement in execution

times in function of the number of available cores and map sizes,

as a future work, it is planned to implement artificial neural

networks in order to generate more complex urban growth

scenarios.

Keywords—Cellular automata; parallel programming;

simulation models; OpenMP; urban growth

I. INTRODUCTION

The evolution in the land use of the territory is a
fundamental element in our society, since it manifests different
variables that affect our daily life, for example, accessibility to
different points of interest within the city, slopes of the land,
etc. This evolution has gained interest mainly fueled by the
different environmental problems especially those in urban
areas [1]. Thanks to the advances in the computing field and
the development of important analytical tools such as
Geographic Information Systems (GIS) or simulation models,
the study of the changes taking place in metropolitan areas has
been promoted [2]. The analysis of the environmental
alterations that result from these changes and the development
of new planning instruments, has caused that different
disciplines, specifically the Artificial Intelligence (AI),
approaches from a computer and mathematical point of view to
give alternative solutions to this problem [3].

Numerous modeling tools have emerged in recent years. In
the case of urban growth, the models based on cellular
automata (CA) are the most widely used [4]. Regression
models, artificial neural networks (ANNs), multi-criteria
evaluation techniques (MCE), and still incipient, agent-based
models (ABM) can also be found.

The CA based models are oriented fundamentally towards
the representation of the attributes of a given geographic region

in a two-dimensional lattice, in which a neighborhood radius is
defined and a certain rule of evolution is applied in order to
define the behavior of the CA. With the use of these models it
has been possible to generate territorial scenarios prospectively
[5]. To generate these scenarios, a characterization of a CA is
needed, this has different components, such as the size of the
study area, maps of urban uses, map scales, neighborhood
radius, evolution rules, slopes, and others geographical
factors [6].

The developing of a CA based simulation tool to generate
territorial scenarios prospectively in order to implement future
simulation techniques, bring us to address some challenges.
One of them was, the huge amount of mathematical operations
needed in one single simulation, because the complexity of the
algorithm to do such operations results to be exponential.

One key calculus in the whole simulation process is, the
transition potentials (TPs) of each cell in the map, these TPs
show the probability of a cell to change from one state to
another. The amount of these TPs have a direct impact on the
computation cost needed to perform the mathematical
calculations.

To optimize these calculations, we enhanced sequential
algorithms with parallelization strategies in order to maximize
computational hardware. The library OpenMP (Open Multi-
Processing), widely used in parallel programming, helps to
implement a parallel strategy called fork-join. This allows to
take advantage of hardware resources for the execution of
processes in shared memory [7].

The present work aims to implement the fork-join strategy
to speed up the necessary TPs calculations and to compare the
results against the first sequential algorithm used in the
simulation.

The base maps for the experiments where generated from
the study area of Culiacan, México. Being the faster growing
city in the State of Sinaloa, we plan to use the simulation tool
to understand the dynamics of the urban changes and to
forecast for planning urban development as a future work.

The remainder of this paper is structured as follows. All
material and methods such as, the study area, digitation
process, CA model and OpenMP are defined in Section II.
Calculus of transition potentials for each pixel using the fork-
join model are explained in Section III. Also proposed

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

578 | P a g e

www.ijacsa.thesai.org

implementations and experiments are analyzed. Finally, the
study is concluded with future research directions.

II. MATERIAL AND METHODS

A. Study Area and its Digitization

The municipality of Culiacan is located in the central
region of the State of Sinaloa (Fig. 1), forming part of the
northwest of Mexico. The corresponding coordinates are: 24°
48'15 "N (north latitude) and 107° 25'52" O (longitude west),
with an altitude of 54 meters above sea level. The city of
Culiacan concentrates 81% of the population of the
municipality that in the last 20 years has registered a very
significant territorial and demographic growth, according to the
last census of the National Institute of Statistics and Geography
(INEGI), with population of around 800,000 inhabitants. In
1980 the city had an urban area of 5,163 hectares, by 1990 it
increased to 7,377 hectares and by 2001 there were 9,800
hectares. This growth occurred in a disorderly, that is, anarchic
way under the protection of political leadership resulting in the
city currently having more than 275 neighborhoods, most of
them formed in common lands, ecological reserved areas,
places without feasibility of utilities due to its topographic
composition [8].

Fig. 1. Culiacán Sinaloa, México.

Fig. 2. Urban area of Culiacán 1997 and the study polygon (in red).

Fig. 3. Urban area of Culiacán 2004 and the study polygon (in red).

The digitization of the study area consisted in the
generation of vector cartography over an orthophoto mosaic of
the study area (Fig. 2 and 3). We worked with orthophotos
(GeoTIFF) in the urban area of 1997 on a scale of 1: 20000,
and in 2004 on a scale of 1: 10000, projected in WGS 84 /
UTM 13N. The Geographic Information Systems (GIS) used
were ArcMap® for vector maps, and IDRISI Selva ® for raster
maps.

The digitization process (Fig. 4), urban land uses where
classified in order to generate vector maps for each of them.

Fig. 4. Process of digitization of the urban area on the orthophoto of 1997.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

579 | P a g e

www.ijacsa.thesai.org

Fig. 5. Raster map 1997 Culiacan city.

Fig. 6. Raster map 2004 Culiacan city.

TABLE I. URBAN USE CLASSES

Urban Land Use Value in Raster Map

Residential 1

Commerce 2

Industrial 3

All generated maps from the study area were converted
from vector to raster format, with the option “to raster image”
placed in the module IDRISI Database Workshop.

The resulting raster maps (Fig. 5 and 6) and the
classification of urban uses (Table I). Raster maps are the
input for the CA model.

To manage map files we used GDAL (Geospatial Data
Abstraction Library). This is a library of free use for the
reading and writing of geospatial data providing low-level
functions that allow the manipulation of raster files.

B. Celular Automaton Model and TP

The fundamental idea in CA Models is that the state of a
cell at any given time depends on the state of the cells within
its neighborhood in the previous time step, based on a set of
transition rules [9]. The CA model used in this investigation is
the one proposed by R. White (2), is a constrained cellular

automata for high-resolution modelling of urban land-use
dynamics [10].

As previously mentioned (Section I), the CA models are
oriented towards the representation of the attributes of a given
geographic region in a two-dimensional lattice, raster maps
provides these data format to the CA.

A raster map can be represented formally by an array of
real values. This matrix is represented as * + of order

 such that where each element
 , - .

A neighborhood filter matrix (1) is required to analyze each
element , -, this neighborhood is formally represented

 * + of order such that where each
element , - .

 [

]

 (1)

The neighborhood filter is used to calculate the transition
potential from state to for each element , - . The

calculation methodology is detailed below:

 (∑) (2)

Where,

 : Is the transition potential of state to state .

 : Stochastic perturbation term.
, ()- .

(), and allows you to adjust the size
of the disturbance

 : represents the suitability of the state of the cell.

 : Euclidean distance from the cell to the nearest road.

 : Calibration matrix, contains the weights of each cell
as a function of its state k and distance d.

 {

 is the index of the cell in the current neighborhood,

The transition potential of each cell is calculated

only if the suitability of the objective state . That is, for

each cell (pixel) in the map, its transition potential will be
calculated except for those in which its suitability is equal to
zero. For the neighborhood calculation, the calibration matrix

 gives each neighbor cell a weight based on its state

and distance (subscript formula 1) concerning the analyzed

cell . The nearby neighbor cells will generally have a higher

weight, positive values are taken for an attractive effect and
negative for repulsive effect, these values tend to decrease as
the distance increases between the analyzed cell and its
neighbor, this is called Distance Decay Effect. When analyzing

the neighbor cells, the component helps to filter
(multiplying by 1) cells with the same state.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

580 | P a g e

www.ijacsa.thesai.org

Fig. 7. Transition potential process.

Visually, in Fig. 7(a) we have the urban land use map, in
Fig. 7(b), the neighbor is set to 3x3 around the analyzed cell.
Fig. 7(c) calculates the transition potential of each cell

from its current state to a desired state , the higher is
selected. For this case we set as the higher to urban use.
Fig. 7(d) analyzed cell change its value to the higher urban use.
Fig. 7(e) shows observation window moves to the next cell.

An epoch has been completed when the last cell of the map
is calculated. A simulation may require one or more epochs. If
we take into account that this calculation must be done for each
pixel of the map, we find a problem of computational
complexity (), this means, larger size of the input maps
would increase the execution time of the simulation
exponentially.

To handle this complexity, it was necessary to define a
strategy to streamline the calculations, and this has been
achieved with the development of programming modules in
which parallel programming models are used by the OpenMP
library.

C. Openmp the Fork-Join Model

OpenMP is a shared memory application programming
interface, provides functions to facilitate shared memory
parallel programming, and it is intended to be suitable for
implementation on SMP architectures, OpenMP is based on the
fork-join model [11], [12].

Under fork-join model, a program starts with a single
execution thread, this is named as the initial thread. When a
parallel directive (#pragma omp parallel) is executed in a
current thread, it will create a group of threads (fork) called,
parallel region. In this region, every thread can collaborate with
the other threads. At the end of the directive, the parallel region
terminates (join), and the initial thread is the only which
continues. Fork-join model shown in Fig. 8 [11].

Fig. 8. Fork-join model.

Fig. 9. Fork-join model with nested parallel region.

In addition, if required, OpenMP has the ability to create a
parallel region inside another (nested), therefore, it is possible
to divide a task as much as necessary and as much as the
hardware allows it to, as shown in the Fig. 9.

III. PROPOSED ALGORITHM AND EXPERIMENTS

To create an OpenMP program from a sequential one, we
must first to identify sequence of instructions that may be
executed concurrently by more than one processor [11].

We identified the calculus of transition potentials , as

the portion of sequential code which can be parallelized in
order to do the mathematical operations using more than one
processors’ core.

Fig. 10 shows a schematic of the implementation of the
strategy to carry out the calculation of two urban uses. In the
raster map, an observation window is defined, that window is
analyzed in two cores, the transition potentials are calculated
(and), one per core, the higher is selected and assigned as
a new value to the cell.

For n urban uses, the basic idea is, for each cell we

must calculate their from the current state to objective

state where urban uses. Fig. 11 illustrates the process.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

581 | P a g e

www.ijacsa.thesai.org

Fig. 10. Calculation of the transition potential (one per core) of a cell to two

possible uses.

Fig. 11. Calculation of the transition potential for urban uses.

Fig. 12. Algorithm to calculate transition potentials.

The proposed algorithm (Fig. 12) to calculate the transition
potentials is: 1) The epochs are defined. 2) The loop is set from
the first cell to the last one. 3) The value of the current pixel is
obtained. 4) The number of processor cores to be used is
established (based on the number of dynamical uses). 5) The
directive omp_set_num_threads(nCores) is used to establish
the number of threads and the quantity of processor cores to
use. 6) The parallel region #pragma omp parallel is initialized.
7) The thread number j = omp_get_thread_num() is identified.
8) The result of the potential of the analyzed cell is assigned to
the potential vector, once the calculation has been completed in
all cores. 9) The highest calculated potential is assigned to the
analyzed cell.

The implementation was performed on an HP ProLiant
ML350 G6 server, 12 GB RAM, 2 Intel Xeon E5645
processors (2.40 GHz), Linux Centos 6.9 operating system.

A. Experiments

Three conditions were considered for the experiments:
1) resolutions of raster maps from the study area. 2) Number of
epochs for each resolution. 3) Times from sequential and
parallel algorithm.

Table II summarizes the maps used.

Times from these 3 sets of resolutions were measured using
the sequential algorithm and the one with the fork-join model.

TABLE II. RASTER maps RESOLUTION

resolution pixel size

cols rows (meters)

397 366 50

9,925 9,150 25

19,850 18,300 1

TABLE III. RUNNING TIMES FOR EACH RESOLUTION

pixel resolution pixel size Execution times (minutes)

cols rows (meters) Sequential OpenMP

397 366 50 0.08 0.02

9,925 9,150 25 53.24 13.01

19,850 18,300 1 214.1 54.69

Fig. 13. Simulation times with different resolutions, 1 Epoch each.

1: 0 to epoch;

2: (0,0) to mapSize (nxm);

 {

3: pixel = cell(nxm);

4: nCores = nDinamicUses;

5: omp_set_num_threads(nCores);

6: #pragma omp parallel

 {

7: j = omp_get_thread_num();

8: vectorP [j]=calculateP

(pixel,j);

 }

9: newMap(nxm) = hPotential (vectorP);

}

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 1, 2018

582 | P a g e

www.ijacsa.thesai.org

TABLE IV. RUNNING TIMES FOR EACH RESOLUTION

pixel resolution pixel size Execution times (minutes)

cols rows (meters) Sequential OpenMP

397 366 50 0.46 0.11

9,925 9,150 25 230.23 58.91

19,850 18,300 1 929.18 245.42

Fig. 14. Simulation times with different resolutions, 5 epochs each.

Table III shows the firs results for 1 epoch, times are shown
in minutes.

It is evident the correlation in the maps sizes and the
running times, as shown in Fig. 13 and 14, simulation times
grow as we incremented the map sizes.

Table IV shows the first results for 5 epoch, times are
shown in minutes.

B. Discussion

Execution times using sequential and parallel algorithms
increase along with the maps size, but no linearly. As we
expected, sequential method is the one that takes the most time
to complete the calculations. OpenMP helped to reduce in
almost 4 times the execution times.

At lower resolutions, there is no big difference due to the
minimum execution times. Resolutions around pixels
should not represent big challenge when working with small
number of urban uses, for our experiments we use 3.

Since most simulations require from 3 to 8 urban uses and
maps sizes from to pixels, it is necessary to
implement a strategies to enhance calculations in the
development of this kind of tools.

The number or epochs is critical in this, depending of the
kind and configuration, every simulation needs several epochs.
As shown in Table IV, for maps sizes lower than pixels,
we expect times under 59 minutes in our future simulations.

IV. CONCLUSION AND FUTURE WORK

OpenMP provides mechanisms that help to reduce
execution times when implemented in a simulation model
based on a cellular automaton obtaining improvements of up to
4 times.

Since numerous simulations must be performed in order to
achieve different tasks such as calibrating the simulation
model, perform sensitivity analysis or tests with different urban
uses, OpenMP must be considered as a very interesting option
when implementing algorithms for this area.

Future work: First, our CA based simulation tool became
faster after the implementation of the parallelization strategy to
calculate transition potentials, now we need to continue testing
more resolutions and urban uses. Second, we are considering
implementing CUDA along with artificial neural networks in
order to improve the forecast of urban growth.

REFERENCES

[1] W. Plata-Rocha, M. Gómez-Delgado, y J. Bosque-Sendra, “Simulating
urban growth scenarios using GIS and multicriteria analysis techniques:
A case study of the Madrid region, Spain”, Environ. Plan. B Plan. Des.,
vol. 38, pp. 1012–1031, 2011.

[2] C. G. Ralha, C. G. Abreu, C. G. C. Coelho, A. Zaghetto, B.
Macchiavello, y R. B. Machado, “A multi-agent model system for land-
use change simulation”, Environ. Model. Softw., vol. 42, pp. 30–46,
2013.

[3] E. F. Lambin, B. L. Turner, H. J. Geist, S. B. Agbola, A. Angelsen, J.
W. Bruce, O. T. Coomes, R. Dirzo, G. Fischer, C. Folke, P. S. George,
K. Homewood, J. Imbernon, R. Leemans, X. Li, E. F. Moran, M.
Mortimore, P. S. Ramakrishnan, J. F. Richards, H. Skånes, W. Steffen,
G. D. Stone, U. Svedin, T. a. Veldkamp, C. Vogel, y J. Xu, “The causes
of land-use and land-cover change: Moving beyond the myths”, Glob.
Environ. Chang., vol. 11, pp. 261–269, 2001.

[4] F. Aguilera Benavente, W. Plata Rocha, y J. Bosque Sendra, “Diseño y
simulación de escenarios de demanda de suelo urbano en ámbitos
metropolitanos”, Rev. Int. sostenibilidad, Tecnol. y humanismo, pp. 57–
80, 2009.

[5] F. Aguilera Benavente, L. M. Valenzuela Montes, J. A. Soria Lara, M.
Gómez Delgado, y W. Plata Rocha, “Escenarios Y Modelos De
Simulación Como Instrumento En La Planificación Territorial Y
Metropolitana”, Ser. Geográfica, vol. 17, pp. 11–28, 2011.

[6] R. White y G. Engelen, “High-resolution integrated modelling of the
spatial dynamics of urban and regional systems”, Comput. Environ.
Urban Syst., vol. 24, pp. 383–400, 2000.

[7] R. Chandra, Parallel Programming in OpenMP. 2001.

[8] J. A. Inzunza, “La Planeación Urbana en el Municipio Mexicano:
Culiacán, Un Caso de Estudio”, 2003.

[9] J. I. Barredo y M. Gómez Delgado, “TOWARDS A SET OF IPCC
SRES URBAN LAND-USE SCENARIOS : MODELLING URBAN
LAND-USE IN THE MADRID REGION European Commission – DG
Joint Research Centre Institute for Environment and Sustainability
Departament of Geography , University of Alcalá”, pp. 1–16, 2000.

[10] R. White, G. Engelen, y I. Uljee, “The use of constrained cellular
automata for high-resolution modelling of urban land-use dynamics”,
Environ. Plan. B Plan. Des., vol. 24, núm. 3, pp. 323–343, 1997.

[11] B. Chapman, G. Jost, y R. Van Der Pas, Using OpenMP. The MIT
Press, 2008.

[12] T. Mattson y L. Meadows, “Introduction to OpenMP”. [On Line].
Disponible en: http://www.openmp.org/wp-content/uploads/omp-hands-
on-SC08.pdf.

