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Abstract—This paper introduces a compression-based method
adapted for the automatic cryptanalysis of Arabic transposition
ciphers. More specifically, this paper presents how a Prediction
by Partial Matching (‘PPM’) compression scheme, a method
that shows a high level of performance when applied to the
different natural language processing tasks, can also be used
for the automatic decryption of transposition ciphers for the
Arabic language. Another well known compression scheme, Gzip,
is also investigated in this paper with less efficient performance
demonstrated by this method. In order to achieve readability,
two further compression based approaches for space insertion are
evaluated as well in this paper. The results of our experiments
with 125 Arabic cryptograms of different lengths show that 97%
of the cryptograms are successfully decrypted without any errors
using PPM compression models. As well in a post-processing step,
we can effectively segment the output that is produced by the
automatic insertion of spaces resulting with only a few errors
overall. As far as we know, this is the first work to demonstrate
an effective automatic cryptanalysis for transposition ciphers in
Arabic.
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I. Iඇඍඋඈൽඎർඍංඈඇ

The Arabic language is one of the most widely spoken
languages around the world, with as many as 300 million
people in Asia and North Africa speaking Arabic. It is the
fifth most spoken language [1]. The old manuscripts that have
been recently discovered show that the origin of cryptology
is much older than first thought, and Arab contributions to
it are much more extensive than previously reported. These
important findings are largely based on 8th century and later
manuscripts written by the prominent Arab cryptologists such
us al-Kindi. The newly discovered manuscripts push back the
frontiers of the known history of cryptology by more than 500
years. The Arab scientist al-Kindi, the father of cryptology, is
the author of the oldest book on cryptology [2].

Despite the large number of Arabic speakers and with
Arabs being the first to use encryption systems as well as
having success in breaking them, unfortunately encryption
systems and cryptanalysis methods for Arabic are very few in
comparison to other languages such as English. The purpose
of this paper is to generate an Arabic transposition cipher
and explore the use of compression models for the automatic
cryptanalysis of Arabic text.

Text compression can be defined as a method of eliminat-
ing redundant information in a text aiming to minimize space
that is required to store it, thereby reducing the time required

to transfer this information without losing any information
from the original text. There are two main approaches of
constructing text compression models, which are dictionary
and statistical approaches [3]. A well-known statistical based
approach is Prediction by Partial Matching (PPM) while a
well-known dictionary based approach is Gzip [4], which uses
the Lempel-Ziv algorithm. PPM models can be applied to tasks
with performance that emulates that of humans [5].

There are many different approaches used for cryptanalysis
especially for the English language. However, using compres-
sion schemes adapted for the Arabic language as one way to
tackle the Arabic plaintext recognition problem as we do in our
paper is a novel approach and not tried before in the literature.
The PPM compression system uses a modelling method that
performs well at different language processing tasks and
can be successfully applied to the automatic cryptanalysis
of transposition ciphers when using the English language
with a 100% success rate [6]. In this paper, a compression-
based approach for the automatic cryptanalysis of transposition
ciphers adapted for the Arabic language without any need
for human intervention is proposed. In addition, a further
algorithm is also introduced to automatically insert spaces into
the decrypted texts in order to achieve readability.

Our paper is arranged as follows. Related work is presented
in the next section followed by background to transposition
ciphers. A description of compression based cryptanalysis and
specific details of our method are provided in sections 4 and
5. The experimental results are reviewed in section 6 and the
conclusions are provided in the last section.

II. Rൾඅൺඍൾൽ Wඈඋ

Many different cryptanalysis methods have been invented
to break transposition ciphers for the English language, such
as anagramming [7], using genetic algorithms [8], simulated
annealing and Tabu search [9]. Alkazaz et al. [6] presented
a new universal automatic cryptanalysis approach of trans-
position ciphers for the English language. A compression-
based approach was used as a basis for breaking the cipher
using the PPM and Gzip compression schemes. Ciphertexts
with different sizes (from 12 to 600 letters) were tested. They
managed to achieve a 100% decryption success rate by using
PPM compression models, in addition to the high quality
performance achieved in segmenting the decrypted texts.

Despite the fact that the science of cryptology was born
among Arabs who also managed to break the mono-alphabetic
substitution cipher after many years of its successful use [10],
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unfortunately only a few publications have investigated the
use of the Arabic language for various encryption/decryption
systems [11]–[14] and none for the problem of solving trans-
position ciphers.

In this paper, we further investigate the English-based
work of Al-kazaz et al. [6] to examine if it is applicable to
other languages and ascertain whether the Arabic language
provides a greater challenge for decryption. We also choose
this language specifically because it has characteristics that
differentiate it from other languages and because Arabic is
non-related to English. Specifically, it is written and read from
right to left rather than vice versa. It consists of 28 consonant
letters and the vowels are represented by marks below and
above the letters. It also has distinctive variations to represent
singular, dual and plural forms and to represent male and
female forms. Written Arabic also often exhibits triglossia with
classical, modern and mixed forms often appearing together.
Each letter in the Arabic script denotes a unit of the language.
Unlike the English language, there is no upper case or lower
case in Arabic and each word comprising of more than one
letter are written joined together (cursive writing), with an
exception for some letters which are د“ ذ ر ,”ز and ”ا“ if they
come at the beginning. These characteristics, as well as its
rich morphology [15], presents challenges for natural language
processing and cryptographic systems.

In our approach, Arabic transposition ciphers are gener-
ated and then a modified compression based approach for
the automatic cryptanalysis of Arabic transposition ciphers is
proposed in this paper. Various 125 Arabic ciphertexts with
different lengths, from very short ciphers (17 Arabic letters) to
ciphers of length 800 letters, are then tested in our experiments
described below.

III. Tඋൺඇඌඉඈඌංඍංඈඇ Cංඉඁൾඋඌ
This section will now review transposition ciphers specif-

ically. In a transposition cipher, the content of a message is
obscured by rearranging groups of symbols; a transposition
is thus a permutation. The concept of transposition is an
essential one and has been used in the design of modern
ciphersystems [16]. Originally, the message was written into
a matrix in row-major order and then read out in column
major order. Encoding ,”انٔظمةالتشفير“ which means “encryption
systems”, using a 3×4 matrix is shown in Figure 1. This figure
gives ”اةٔشنافظليمتر“ if the columns are read off in order.

¢ u ¦ ��
B � � ´
" 7 ~ f

Figure 1: Example of a matrix transposition cipher.

By reading the columns in a different order, say 3–2–1–4,
different ciphertexts can be obtained, such as .”ظلينافاةٔشمتر“ The
order to read the columns and the size of the matrix constitute
the key. The technique can be extended to d dimensions. In
transposition ciphers, a plaintext block is encrypted into a
ciphertext block using a fixed permutation [17].

Transposition ciphers are a class of ciphers that in con-
junction with substitution ciphers form the basis of all modern

symmetric algorithms [17]. These algorithms, such as block
and stream ciphers also use in conjunction to the above
forms more complex transformations, notably for providing
diffusion. Although the field of cryptology has undergone a
revolution after the introduction of the asymmetric crypto-
graphic cipher in 1976, symmetric ciphers still form the basis
for secure data transmission today, because of their superior
speed and efficiency [18]. Hence in this paper, we focus
on a very basic building block that is inherently present in
most symmetric cryptographic systems, namely transposition
ciphers.

Transposition ciphers are generally considered as much
more difficult to decrypt than the other basic ciphers such as
simple substitution ciphers. A number of statistical tools have
been developed aiding automated breaking of substitution ci-
phers while the automatic decrypting of transposition ciphers is
notoriously difficult. In general, cryptanalysis of transpositions
is highly interventionist and demands some knowledge of the
probable contents of the ciphertext to give an insight into the
order of rearrangement performed [6], [19].

IV. Cඈආඉඋൾඌඌංඈඇ ൺඌ ൺ Cඋඒඉඍൺඇൺඅඒඌංඌ Mൾඍඁඈൽ

The ciphertext only cryptanalysis of simple cipher systems
heavily depends on the statistical features of the source lan-
guage, and it is not a trivial issue to get computers performing
this analysis. Although computers have been routinely used
for a variety of tasks in cryptanalysis since their invention,
the automatic recognition of valid decryptions has been ac-
knowledged as a taxing problem [20]. Several previously
published cryptanalysis methods can not run without human
intervention or they assume at least known plaintext because
of the difficulty of quickly recognizing a valid decrypt in a
ciphertext only attack [21], [22].

Having a computer model that is able to predict and
model natural language as well as a human is critical for
cryptology [5]. The idea of using text compression to break
Arabic transposition ciphers stems from the observation that
the best PPM models can predict language about as well as
expert human subjects [5]. The main idea of our approach
depends on using the PPM model as a method for computing
the compression ‘codelength’, which is a measure of the
information, for each possible permutation [20]. The smaller
the codelength, the more closely the cryptogram resembles the
model. In this paper, we have shown how to use this to quickly
and automatically recognise the valid decrypt in a ciphertext
only attack against transposition ciphers for the Arabic lan-
guage. We have also examined the use of another well-known
compression scheme, which is Gzip. In our experiments, we
have determined that the PPM compression method is the most
effective to use for the automatic cryptanalysis, with Gzip
having significantly less success.

A. PPM Compression Codelength Metric for Arabic

In this section, we describe the PPM method that we
devised for our cryptanalysis solution in order to encode
Arabic text efficiently and how the codelength metric is
calculated. In the PPM compression scheme, the previously
transmitted symbols are used to condition the probability of
the next symbol using a Markov-based approach. There are
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many variants of the basic approach depending on how many
symbols are used to predict the next one, whether or not
multiple predictions are used, and how shorter context models
are used when necessary. The predictions are based on simple
frequency counts of the transmission so far. The primary
decision to be made is the context length modelled. This
technique was first described by Cleary and Witten [23].

The order of a model is the maximum context length used
to predict the next symbol. In practice, an order-o model will
sometimes base its prediction on less than o symbols. This
occurs when the model “escapes” down to the next lower
order context if the higher order context has not seen the
upcoming symbol that is being predicted. By convention the
order(-1) model predicts each symbol with equal probability
and the order-0 model predicts each symbol with probability
proportional to the number of times it has occurred previously.
An order 1 model predicts each symbol based on just the
previous symbol, an order 2 model based on the two previous
symbols and so on.

In 1990, Moffat [24] devised a simple mechanism that
improved compression results further called “update exclu-
sion”. This mechanism is based on how the symbol counts for
each context model are updated. When encoding with update
exclusions, the predicted symbol count is incremented only if
it is not already predicted by any higher order context. This
means that the counts are updated only for the higher order
contexts that are actually used to predict it. Thus, the counts
reflect better which symbols are likely to be excluded by the
higher-order contexts. This mechanism typically improves the
compression rate by 1 or 2% [5]. On the other hand, when
encoding without update exclusions, all the counts for all
orders of the model are updated. The counts are incremented
even if they are already predicted by a higher order context.
The use of both of these mechanisms are investigated in our
paper: PPM without update exclusions; and PPM with update
exclusions (standard PPM).

Several PPM variations have been invented such as PPMA,
PPMB, PPMC and PPMD. These variants differ in the way
the escape probabilities are assigned. For example, PPMC
uses escape method C, and PPMD uses escape method D.
When a novel symbol is seen, the escape probability is sent,
followed by the prediction using the next shorter context.
Several escapes may be made before a context is reached
which predicts the symbol. In the worst case the order(-1)
model makes the prediction. Also, the maximum order of the
context models may be included when the variant is described
in the literature; for example, PPMD4 refers to a fixed order
4 PPM model using escape method D.

The PPMC variant was developed by Moffat [24] and has
become the benchmark version. The probability estimates for
this method (method C) is based on using the number of
symbols that have occurred before, called the number of types:

e =
t

n+ t
and p(s) =

c(s)

n+ t

where e represents the probability of the escape symbol,
p(s) denotes the probability for symbol s, c(s) is the number
of times the context was followed by the symbol s, n is the

total number of times that the current context has occurred and
t denotes the total number of types.

The PPMD variant was first developed by Howard in
1993 [25]. In most cases, experiments show that the PPMD
performs better than the other variants. This variant is similar
to the PPMC variant with the exception that each count is
incremented by a 1/2:

e =
t

2n
and p(s) =

2c(s)− 1

2n
.

An adaptive PPM compression model for Arabic language
has been presented by Alhawiti [26]. This method is called
Character Substitution of Arabic for PPM (“CSA-PPM”).
It not only showed a considerable improvement in Arabic
text compression but also for other texts that use Arabic
script such as Persian and Kurdish. There are two main
operations in this method, which are the pre-processing and
post-processing. Each two-byte Arabic character is substituted
with an equivalent number of the UTF-8 encoding scheme
in the first operation, and as a result one output file is
generated. Contrastingly in the post-processing operation, a
reverse operation is performed by replacing the numbers with
the original equivalent characters.

The fundamental idea of our approach depends on using
a PPM compression method to compute codelength values of
each possible permutation. The ‘codelength’ of a permutation
for a cryptogram is the length of the compressed cryptogram,
in bits, when it has been compressed using the PPM language
model. The smaller the codelength, the more closely the
cryptogram resembles the model. By using this metric, it can
easily find the valid solutions automatically [6].

The most important step in our implementation is the
training step. During the training phase, a large set of training
texts is used to prime the models. Training text is chosen
that is hopefully representative of the text being compressed
and consequently better able to predict it. Experiments with
English text show that training can improve performance
dramatically as when skipping the training phase, there is
not enough and sufficient data at the beginning to effectively
compress the texts. In our experiments described below, we
use a corpus of many different Arabic books and novels from
different topics converted to 36 and 37 character Arabic to
train our models (by case-collapsing non-alphabetic sequences
to a single space). Classical and modern Arabic texts are
used to produce this large corpus (which we have called the
‘Mixed Arabic corpus’ with details shown in Table I). With the
training step, we in essence use static models, unlike standard
PPM—that is, once the models have been primed using the
training texts, they are not further updated when processing
the ciphertexts.

Concerning the Mixed Arabic corpus, it is a large corpus
of mixed classical and modern Arabic text. The corpus is
a combination of the Bangor Arabic Compression corpus
(BACC) [26], Corpus A [27] and a selection of files from the
King Saud University Corpus of Classical Arabic (KSUCCA)
[28]. The BACC is a 31-million words corpus collected from
different sources such as magazines, books and websites. This
corpus contains texts from a wide range of genres containing
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Table I: Details of Corpora used to Construct the Mixed Arabic
Corpus used to Train the PPM Models

Corpus Bytes List of topics
BACC 256,867,247 sports, culture, economics, educa-

tion, art and music, political litera-
ture and heritage, history, religion

Corpus A 252,338,294 business, cinema, opinions, confer-
ences, economics, politics

KSUCCA 4,086,066 religion, linguistics, literature, sci-
ence, sociology, biography

both modern and classical Arabic. Corpus A is a modern
corpus recently published with different genres which covers
several current modern standard Arabic areas. This corpus
is collected from the bilingual newspaper Al-Hayat website,
and from the open-source online corpus, OPUS. It consists of
27-million Arabic words. KSUCCA is a corpus made up of
classical Arabic texts with the purpose of studying the lexical
semantics of the Holy Qu’ran. It is a 50-million word corpus
covering several genres. The overall file size of our Mixed
Arabic corpus is 513,291,607 bytes encoded using a UTF-8
scheme and consists of 58,068,493 words.

B. Calculating Codelengths Using the Gzip Compression
Method

Gzip or GNU zip [4] is one of the most common lossless
compression schemes used on the Unix operating system and
on the Internet. It uses a dictionary based approach (using
the Lempel-Ziv algorithm) whereas PPM is a statistical based
approach.

The reason for experimenting with other compression
schemes in our paper is to find out which is the most
efficient scheme that can be applied to the problem of plaintext
recognition using a compression based technique. In our paper,
the calculation of the Gzip codelength metric will be based on
using a relative entropy calculation which allows us to use
‘off-the-shelf’ software without the need to re-implement the
method itself (as we have done with our PPM models). The
codelength metric can be calculated using the relative entropy
technique by the following formula [6]: ht = hT+t − hT ,
where T denotes the training text (which will usually be
large in size), t denotes the testing text, and hT refers to the
size of the compressed file T . Essentially, the codelength for
a particular compression scheme is calculated as being the
difference between the compressed size of some large training
text with testing text concatenated after it compared to the
compressed size of just the training text by itself.

We have also investigated using another well-known loss-
less compression scheme, Bzip2, using our relative entropy
method. However, due to the block-sorting nature of the
Burrows-Wheeler algorithm, the calculation of some of the
relative entropy codelengths ended up being negative and
therefore could not be used.

V. Oඎඋ Mൾඍඁඈൽ

A full description of our new method for the automated
decryption of Arabic transposition ciphertext will be presented
in this section. As stated, the fundamental idea of our method

is based on using a compression scheme to calculate the
codelength value to use as a metric for ranking the quality
of each possible permutation [6]. PPMC, PPMD and Gzip are
the compression schemes used for the codelength calculations.

First, we generate an Arabic transposition cipher in Uni-
code. Then, we perform our new cryptanalysis approach. Our
new cryptanalysis method consists of two main phases. The
first phase (Phase I) is based on trying to automatically decrypt
an Arabic ciphertext using a transposition of specified size
by exhaustively computing all possible transpositions, while
the second phase (Phase II) is based on achieving readabil-
ity (word segmentation). Achieving readability is gained by
automatically adding spaces to the decrypted message that is
produced from phase I, as the spaces are omitted from the
ciphertext traditionally.

The pseudo code for the first part of our approach is
presented in Algorithm 1. The first step in this algorithm
focuses on removing all the non-alphabetical Arabic characters
(including spaces) from the ciphertext (see line 1). At this
stage, the text comprises just 36 Arabic letters. In order to
calculate the codelength value for each Arabic permutation, a
pre-processing operation is performed using an Arabic-specific
encoding method using UTF-8 numbers (see line 4) where each
Arabic character is substituted with an equivalent number in
the UTF-8 encoding scheme. The algorithm then starts to try
all possible key sizes and for each key size a permutation
is performed over each cryptogram block trying to get a
permutation with a smaller codelength value which represents
the correct solution (lines 5 to 14). Each cryptogram is divided
into blocks according to the key size (see lines 6 and 7). Then,
a permutation is performed over each cryptogram (line 8). For
each possible permutation, a codelength value is calculated
(line 9 to 12). Two main compression-based models, PPM
and Gzip, are used for calculating the codelengths (line 10).
Permutations with smaller codelengths are kept in the priority
queue as shown in line 11. We have found that the smaller
the codelength, the more closely the cryptogram resembles the
model.

Algorithm 1: Pseudo code of the main decryption
phase ‘Phase I’.
Input : ciphertext
Output: decrypted text

1 remove all non-Arabic alphabet characters and spaces from the
ciphertext;

2 maximum size of Q (priority queue) ← 3;
3 maximum key-size of transposition ← 12;
4 perform pre-processing operation by using Arabic-specific

encoding method on the ciphertext;
5 foreach key-size do
6 if ciphertext-length mod Key-size = 0 then
7 divide the ciphertext into blocks according to key-size;
8 perform a permutation over each ciphertext blocks;
9 foreach possible permutation do
10 calculate codelength value using the CSA-PPM or

Gzip compression model;
11 store a permutation with smaller codelength value in

Q;
12 end
13 end
14 end
15 return the priority queue ‘Q’ (the ‘decrypted text’);

The pseudo code for the second phase of our approach
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is presented in Algorithm 2. As stated, this phase focuses on
achieving readability. The second assessment step is performed
in this phase through adding spaces automatically to the
decrypted messages that was produced from Phase I, and
then assessing the quality of the solutions by computing the
codelength values for each possible message. Our solution for
Phase II uses the Viterbi algorithm to find the best possible
segmentation (see Algorithm 2). For each of the text produced
as output from Algorithm 1, the Viterbi algorithm is used to
search for the best segmentation sequence and this then is
stored in a priority queue (lines 2 to 5) which is used to return
the result (line 7). A post-processing operation is performed
afterwards, by using the Arabic-specific decoding using UTF-
8 numbers. PPM and Gzip compression models are also used
again as the method for calculating the codelength values.

Algorithm 2: Pseudo code for Phase II
Input : the priority queue ‘Q’ from Phase I
Output: segmented decrypted text

1 maximum size of Q1 (priority queue) ← 1;
2 foreach text in Q do
3 use the Viterbi algorithm to search for the best segmentation

sequences;
4 store the text that have the best segmentation which present in

Q1;
5 end
6 perform post-processing operation by using the

Arabic-specific encoding method on the text in Q1;
7 return the best Arabic segmented decrypted text from Q1;

Two modified variants of the PPM modelling system,
PPMD and PPMC, have been investigated in our method.
Also two forms of these schemes are examined, one with
update exclusions (i.e the standard PPMD and PPMC) [5]
and one without update exclusions. The use of the Gzip
compression scheme is examined as well, in order to explore
the most effective method that can be applied to the problem
of automatically recognizing the valid decryption.

Experiments with a full range of variations have been con-
ducted (PPMC, or PPMD, with and without update exclusions;
Gzip). However, for the purposes of this paper, only the results
for three variants are shown in order to illustrate either the
best performing schemes or to illustrate interesting results for
comparison. In the first variant, called Variant I, order 5 CSA-
PPM without update exclusions is used for Phase I and Phase II
(using the Viterbi algorithm). For the second variant, Variant
II, order 5 CSA-PPM with update exclusions (the standard
PPM) have been used for Phase I and Phase II. The Gzip
compression scheme is used in the last variant, Variant III.

VI. Eඑඉൾඋංආൾඇඍൺඅ Rൾඌඎඅඍඌ
The experimental results are discussed in this section. In

our experiments, the order-5 CSA-PPM models have been
trained on a corpus of many different Arabic books and novels
from different topics using 36 and 37 Arabic character (when
space is included). As explained above, classical and modern
Arabic texts are used to produce this large Mixed Arabic
corpus. After this training operation and during cryptanalysis,
these different models remain static. Regarding the cryp-
tograms test corpus, 125 different cryptograms were chosen
at random from different resources to be used as testing texts.
Cryptogram lengths ranged from 17 to almost 800 letters.

A sample of decryption is shown in Table II for the Arabic
cryptogram اارٔغخمنك‘ دكعوكهاو .’ميكقنصدن Compression code-
lengths are listed in bits with the lowest three results presented
for Phase I.

Table II: Output Produced for the Sample Cryptogram
اارٔغخمنك‘ دكعوكهاو .’ميكقنصدن

Phase I Phase II
Variant I
108.64 صديقكمننهاكوعدوكمناغٔراك اغٔراك من وعدوك نهاك من صديقك
110.62 نكمنصديقكعدوهاكوراكمناغٔ منغ وارٔاك عدوكها نصدقك من يك
111.37 يكمننصدقكعدوكهاوارٔاكمنغ كمن كورا عدوها صديقك من نك

اغٔ
Variant II
108.15 منكنصديقدوعكهاكواكرمناغٔ اغٔراك من وعدوك نهاك من صديقك
110.76 قكمنصدينوعدوهاككغراكمنأ ككغراكمنأ وعدوها صدين من قك
110.85 صديقكمننهاكوعدوكمناغٔراك اغٔ من واكر هاك دوعك صديق منكن

We have created a transposition cipher for Arabic language
that depends on using the Unicode encoding. For each run,
a random key is generated to encrypt the original message
(plaintext). Then, we have applied our cryptanalysis method
to automatically break this message (ciphertext). Different
permutation key sizes (from 2 to 12) and different cryptograms
with different lengths have been examined in our experiments.

The experimental results of Phase I showed that for the
first variant I, when the CSA-PPM methods without update
exclusions is used, 97% of the cryptograms are successfully
decrypted without any errors. For variant II, when the standard
CSA-PPM method is used, the results showed that 95% of
the ciphertext are solved with no errors. For the last variant,
Variant III, using the Gzip scheme, a success rate of only 90%
was achieved.

The main idea of the second phase is based on inserting
spaces automatically into the cracked messages produced from
Phase I. The codelength compression metric is also used in
this phase to automatically rank the quality of the solutions to
find the correct message. In order to measure the differences
between the original texts and the decrypted texts that resulted
from our decryption method, the Levenshtein distance metric
is used. It is a string metric that is commonly used to calculate
the differences (either deletions, insertions or substitution) be-
tween any two messages [29]. The results show that for variant
I, 97% of the cryptograms are successfully decrypted and
segmented. For variant II, which resulted in a 95% decryption
success rate from Phase I, now 97% of the ciphertexts are
effectively decrypted and segmented as a result of Phase II.

It is important to note that the second phase of our approach
has the ability to find better solutions not found by the first
phase. For example, referring to Table II, the best two solutions
as output from using Variant II shown in column one are not
correct (the third solution is the correct one). However, after
the second phase has been applied, the best segmentation of the
third solution in column one now appears as the best solution
in column two which is correct.

Arabic word segmentation is considered a difficult prob-
lem [30]. As Arabic language is a rich morphological language,
this characteristic represents a real challenge for identifying the

www.ijacsa.thesai.org 742 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 11, 2018

 0

 5

 10

 15

 20

 25

 0  100  200  300  400  500  600  700  800

N
um

be
r 

of
 e

rr
or

s

String length

Figure 2: Segmentation errors produced from Variant I.

correct segmentation among many possible corrected alterna-
tives. For example, the word “ ”ورده could be segmented into
“ ورده ” and “ رده ,”و which means “rose” and “and his reply”.
Both of these segmented forms are correct, but with completely
different meanings and contexts. However, according to our
approach and results, in almost all cases the proper readable
solutions were obtained for variants I and II, but not for Variant
III (using gzip).

Output examples (with spaces) produced from different
variants are exhibited in Table III. For example, this table
shows how الٕىقلوبكمواعٔمالكم‘ الٕىصوركموامٔوالكمولكنينظر ,’انٕاللهՏՄينظر
which is the best result produced from Phase I for a sample
cryptogram, is effectively segmented with no errors using both
variants I and II, while Variant III shows poor performance
with nine segmentation errors.

Table III: Example of Solved Ciphertexts with Spaces by the
Three Different Variants

Variants Number
of errors Decrypted message (with spaces)

Variant I 0 الٕى ينظر ولكن وامٔوالكم صوركم الٕى ينظر ԽԲ الله انٕ
واعٔمالكم قلوبكم

Variant II 0 الٕى ينظر ولكن وامٔوالكم صوركم الٕى ينظر ԽԲ الله انٕ
واعٔمالكم قلوبكم

Variant III 9 الٕىقلوب- الٕىصوركموامٔوالكمولكنينظر اللهՏՄينظر انٕ
كمواعٔمالكم

Figures 2, 3 and 4 present scatter-plots for the number of
errors (on the y axis) versus the string lengths of cryptograms
(on the x axis) for the different variants. For example, Figure
2 presents the number of word segmentation errors for each
decrypted message that was output from Variant I (when
PPMD is used). This figure shows that Variant I offered better
performance than the other variants. More than 63% of the
testing texts have been correctly segmented with no errors
and a quarter of them with three errors or less. Just four
cryptograms ended up with seven, eight or nine errors. These
errors can be attributed to the rich morphological characteristic
of the Arabic language with unusual words being used for
various topics such as names of places and people, that were
not included in the training text.
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Figure 3: Segmentation errors produced from Variant II.
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Figure 4: Segmentation errors produced from Variant III.

Variant II showed a slightly worse result than Variant
I. Fifty three percent of the cryptograms were effectively
segmented with no errors and 40 percent were segmented
with four errors or less. Only one cryptogram consisting of
353 letters ended with ten errors. Figure 3 outlines Variant II
results. The PPMD model is used in this variant. The number
of errors produced from Variant III is shown in Figure 4. It is
clear that the number of errors for each decrypted ciphertext in
this case is much higher, with most of the errors being greater
than 20. Also none of the cryptograms finished with no errors,
and just eight of the solved cryptograms were segmented with
the number of errors being less than ten.

The average number of space addition errors for the 125
testing texts for each variant using both main models, PPMD
and PPMC, is presented in Table IV. The results show that
PPMD produces slightly better results than PPMC and that
the number of errors for the variants, except Variant III, is
quite low with Variant I performing best.

Table IV: Average Number of Errors for the Phase-II Variants.
(The PPMD and PPMC Models are used for the First Two
Variants)

Variants I II III
PPMD 1.10 1.23 30.43
PPMC 1.18 1.27 30.43
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To investigate more about the accuracy of the compression
methods that we used in segmenting the 125 Arabic decrypted
texts, three main metrics are used: recall rate, precision rate and
error rate. The first metric, recall rate, is calculated by dividing
the number of successfully segmented words over the number
of words in the original testing texts. The second metric, error
rate, is calculated by dividing the number of unsuccessfully
segmented words by the number of words in the original
testing texts. The last metric, precision rate, is calculated
by dividing the number of successfully segmented words by
the number of words which are correctly and incorrectly
segmented [6].

Table V: Three Different Accuracy Rates for Evaluating the
Quality of the Word Segmentation

Variants Recall
rate%

Precision
rate%

Error
rate%

Variant I 96.35 95.94 3.65
Variant II 95.50 95.67 4.50
Variant III 1.53 10.02 98.47

The results presented in Table V indicate that the variants
which depend on the CSA-PPMD compression methods were
able to achieve very high recall and precision rates, reflecting
the quality of the Arabic word segmentation. The error rates
resulted from unusual words not included in the training text.

The average time that is needed to recognize the correct so-
lutions for the different Arabic transposition cryptograms with
different block sizes is shown in Table VI. This table presents
the average elapsed time for the automatic cryptanalysis of
three different length cryptograms, for both Phase I and Phase
II. For each cryptogram, the average elapsed time in seconds is
shown after running the approach ten times. The results show
that the average time increases as the key size increases but
overall the method is reasonably efficient.

Table VI: Average Time Required (Across 10 runs) to Au-
tomatically Break Cryptograms with Different Lengths and
Different Keys Size

Ciphertext
length
(Letter)

Key size
Time (in seconds)

5 6 7 8 9 10
40 0.85 0.87 0.90 1.08 2.60 12.30
150 1.23 1.27 1.42 1.90 13.93 48.20
300 3.54 3.77 3.89 4.94 23.13 95.50

VII. Cඈඇർඅඎඌංඈඇඌ

The Arabic language is one of the most used languages
in the world, but unfortunately the techniques used to encrypt
and decrypt information in Arabic language are rare with few
publications. In particular, we have not been able to find any
cryptographic system for transposition ciphers in Arabic. In
this paper, an Arabic transposition cipher is investigated and
an automatic cryptanalysis of this cipher is also introduced. A
success rate of 97% was achieved by using different Arabic
compression models. PPM compression schemes were used as
a basis for computing the codelength value (which we have
found is an accurate way of measuring information in the
text). Various Arabic ciphertexts with different lengths have

been successfully decrypted and effectively segmented. This
efficient method eliminates any need for human intervention.

The PPM compression variants showed better performance
than Gzip in both decryption and segmentation processing.
According to the main decryption phase, PPM models with
no update exclusions, performed better than the standard PPM
models with a 97% success decryption rate comparing to 95%.
Concerning the second decryption phase, a success rate of 97%
was achieved for the different PPM models with a high level
of performance in segmenting words.

By using our method for automatically breaking Arabic
transposition ciphers, various Arabic ciphertexts with distinct
lengths (from 17 to almost 800 Arabic letter) have been
examined. Different block lengths were also experimented with
(from 2 to 12) and 97% of these ciphers were successfully
decrypted with no error. This compares with 100% for the
automatic cryptanalysis of transposition ciphers for the English
language [6]. Although the success rate for Arabic is slightly
worse than English, it still leaves open the question whether
Arabic is a more challenging language for cryptanalysis or not.
Further investigation needs to be performed regarding other
Arabic ciphers and the automatic decryption of these ciphers
to ascertain whether this language really provides a greater
challenge for cryptanalysis.
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