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Abstract—The random forest technique, a tree-based study 

model, predicts the results by using random decision trees based 

on the bootstrap technique. Therefore, it has a high prediction 

power and fewer errors, which are advantages of this method. 

This study aimed to provide baseline data regarding the language 

therapy after cochlear implantation by identifying the factors 

associated with the speech intelligibility of children with cochlear 

implantation. This study evaluates the factors associated with the 

articulation accuracy of children with cochlear implantation. 

This study targeted 82 hearing-impaired children, who lived in 

Seoul, Incheon, and Suwon areas, were between 4 and 8 years old, 

and had been worn cochlear implant at least one year and less 

than five years. Explanatory variables used in this study included 

gender, age, household income, the wear time of a cochlear 

implant, vocabulary index, and corrected hearing. Speech 

intelligibility was analyzed using the 'speech intelligibility test 

tool' composed of nine sentences. The predictive model for speech 

intelligibility of children with cochlear implants was developed 

using random forest. The major predictors of the articulation 

accuracy of children with cochlear implantation were the wear 

time of a cochlear implant, the time since cochlear implantation, 

vocabulary, household income, age, and gender, in the order of 

the magnitude. The final error rate of the random forest model 

developed by generating 500 bootstrap samples was 0.22, and the 

prediction rate was 78.8%. The results of this study on a 

prediction model suggested that it would be necessary to 

implement cochlear implantation and to develop a customized 

aural rehabilitation program considering the linguistic ability of 

a subject for enhancing the speech intelligibility of a child with 

cochlear implantation. 
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I. INTRODUCTION  

The number of patients with hearing loss in South Korea is 
continuously increasing. Health Insurance Review & 
Assessment Service (2017)[1] reported that the number of 
patients who visited a doctor’s office due to hearing loss 
increased by 18.7% in five years (from 746,499 in 2012 to 
886,091 in 2016). Considering that a large number of people 
with hearing problems do not visit a doctor’s office, the 
number of potential patients with hearing loss is expected to be 
higher than the estimate. National Survey of Ministry of Health 
and Welfare (2016)[2] reported that one out of two people with 
hearing loss did not visit a doctor until it prohibits them from 

living normal lives and only 12.6% of people who were 
diagnosed with hearing loss wore a hearing aid. It is expected 
that the number of patients with hearing loss will increase 
steadily because the noise environment is expanding to the 
advancing industrialization.  The more population with hearing 
loss is a problem affecting various domains of a community 
and a nation, such as the loss of workforce and the support of 
special education. 

As the effectiveness of cochlear implantation has been 
proven, a wider range of patients has become a target of this 
surgery. Since the Food and Drug Administration (FDA) 
approved cochlear implantation in 1990, the number of 
cochlear implant recipients has been increasing worldwide [3]. 
The cochlear implantation has been covered by the national 
insurance system in Korea since 2005, so patients are only 
responsible for 20% of testing and surgical cost. Consequently, 
the size of the market is growing rapidly.  

 Many studies have proven the effectiveness of cochlear 
implant. The cochlear implant is expected to increase the 
speech perceptivity  through biaural gain, noise signal 
discrimination under a noise environment, sound localization  
identification, head shadow effect, biaural squelch, and biaural 
summation [4-7]. The cochlear implantation has been 
introduced worldwide more and more as more advantages (e.g., 
the increase of speech discrimination in noise, improvement of 
sound quality, improvement of signal-to-noise ration, 
enhancement of equilibrium sensation, suppression of tinnitus, 
and cost-effectiveness of cochlear implants) of it are known 
[8,9].  Generally, the target patients of cochlear implantation 
are when patients are from 12 months to 17 years old, 
sensorineural hearing loss for both ears above 90dBHL and, 
when patients are equal to or older than 18 years, hearings loss 
for both years above 70dB, who do not show advancement in 
hearing ability and linguistic ability even after wearing a 
hearing aid long than 3 months [9].  

 Numerous studies have already reported that hearing-
impaired children with cochlear implantation had better voice 
perceptivity than hearing-impaired children with hearing aids 
[10,11]. These studies suggested that children with cochlear 
implantation had better speech perceptivity than those with 
hearing aids because the cochlear implant is connected directly 
to the cochlear hair cell in the labyrinth to compensate the 
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severe hearing loss effectively, unlike the hearing aid that only 
amplifies sound [12]. 

 Numerous studies have already reported that hearing-
impaired children with cochlear implantation had better voice 
perceptivity than hearing-impaired children with hearing aids 
[10,11]. These studies suggested that children with cochlear 
implantation had better speech perceptivity than those with 
hearing aids because the cochlear implant is connected directly 
to the cochlear hair cell in the labyrinth to compensate the 
severe hearing loss effectively, unlike the hearing aid that only 
amplifies sound [12]. 

The speech intelligibility of hearing-impairment children 
can be effectively improved if auditory compensation is made 
in the early stage [13]. However, many children with hearing 
impairment receive distorted auditory feedback due to the 
acoustic limitations of hearing aids, which cannot amplify 
sounds above 4000 Hz, resulting in the production of 
misarticulation [14]. On the other hand, the cochlear implant 
can deliver a wide frequency band from 100 Hz to 8000 Hz 
without distortion, unlike the hearing aid, so it is more 
beneficial in recognizing consonants belonging to the high-
frequency band.  

 It has been reported that the onset of hearing loss, the level 
of language comprehension, the wear time of a cochlear 
implant, the time of cochlear implant operation, and the 
number of cochlear implant electrodes affect the voice 
perceptivity of children with cochlear implantation [7,9,13,15]. 
It has been also reported that the time of cochlear implantation, 
speech perceptivity, speech production ability, hearing ability, 
and language ability are related to the speech intelligibility 
[16]. Although it is expected that the factors influencing voice 
perceptivity are also associated with speech intelligibility, there 
are not enough studies evaluating the factors related to the 
speech intelligibility of children with cochlear implantation in 
South Korea. Furthermore, the previous studies evaluating the 
predictive variables of the speech intelligibility of children with 
cochlear implantation were conducted using linear regression 
models [17-19]. The linear regression model is a statistical 
technique that estimates the effects of independent variables on 
a dependent variable. Since this technique assumes the linear 
relationship between independent variables and a dependent 
variable, it does not have a good predictive power when the 
data have non-linear attributes. 

 Recently, the data mining technology has been advanced 
greatly and it is very useful to extract information from big 
data. Owing to the advancement, this technique has been used 
in various fields such as marketing, education, and healthcare 
[20, 21, 22, 23]. Among them, the random forest technique, a 
tree-based study model, predicts the results by using random 
decision trees based on the bootstrap technique. Therefore, it 
has a high prediction power and fewer errors, which are 
advantages of this method. This study aimed to provide 
baseline data regarding the language therapy after cochlear 
implantation by identifying the factors associated with the 
speech intelligibility of children with cochlear implantation. 

II. MATERIALS AND METHODS 

A. Subjects 

It is a descriptive study evaluating the factors associated 
with the articulation accuracy of children with cochlear 
implantation. This study targeted 82 hearing-impaired children, 
who lived in Seoul, Incheon, and Suwon areas, were between 4 
and 8 years old, and had been worn cochlear implant at least 
one year and less than five years. The subject selection criteria 
were as follows. The subjects of this study were hearing-
impaired children (1) who had been wearing cochlear implant 
at least one year, (2) who had received aural rehabilitation 
regularly after receiving the surgery, and (3) who used oral 
speech in conversation. Children accompanying other disorders 
such as visual impairment, cognitive impairment, emotional 
impairment, and intellectual impairment were excluded from 
the study. The appropriate sample size was estimated as 80 
people by using G-Power 3.1 program when there are seven 
predictive variables at alpha=0.05, power (1-B) = 0.8, and 
effect size (f2) of 0.2. Therefore, the sample size of this study 
met the appropriate sample size for conducting statistical tests 
(Figure 1) (Figure 2).  

 

Fig. 1. Power and sample size calculations 

B. Explanatory Variable 

Explanatory variables used in this study included gender, 
age, household income, the wear time of a cochlear implant, 
vocabulary index, and corrected hearing. The corrected hearing 
was defined as the mean threshold decibel (dB) of hearing tests 
measured at 250 Hz, 500 Hz, 1 kHz, 2 kHz, and 4 kHz ranges 
after wearing a cochlear implant. When both ears had cochlear 
implants, a mean threshold value was used. On the other hand, 
when only one ear wore a cochlear implant and the other ear 
used a hearing aid, only the hearing of the cochlear implant 
side was used. 

C. Speech Intelligibility 

Speech intelligibility was analyzed using the 'speech 
intelligibility test tool' composed of nine sentences and 
developed by Yoon et al. (2005) [24]. This tool includes eight 
consonant oriented sentences (i.e., a nasal sound, a liquid 
consonant, a bilabial plosive, an alveolar plosive, a velar 
plosive, an alveolar fricative, a glottal fricative, a palatal 
affricate) and one vowel oriented sentence and all sentences are 
composed of two phrases. The test items are shown in Table 1. 

The number of collected words and the number of correctly 
pronounced words were scored as a percentage (%). All test 
words produced by subjects were recorded with ESONIC MQ-
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94 (4GB) voice recorder. In order to evaluate the consistency 
between examiners, two graduate students majoring in speech 
pathology evaluated the speech intelligibility after listening to 
all recordings of the speech intelligibility tests. The consistency 
between the two examiners was 91%. The estimated speech 
intelligibility was transformed into quartiles: the 1

st
, 2

nd
, and 3

rd
 

quartiles were defined as low-rank groups of speech 
intelligibility and the 4

th
 quartile was defined as a high-rank 

group. 

F tests - Linear multiple regression: Fixed model, R² deviation 

from zero 

Analysis: A priori: Compute required sample size  

Input: Effect size f² = 0.2 

 α err prob = 0.05 

 Power (1-β err prob) = 0.8 

 Number of predictors = 7 

Output: Noncentrality parameter ë = 16.0000000 

 Critical F = 2.1396555 

 Numerator df = 7 

 Denominator df = 72 

 Total sample size = 80 

 Actual power = 0.8061255 

Fig. 2. Estimation of Appropriate Sample Size 

D. Vocabulary Index 

Receptive vocabulary and expressive vocabulary were 
measured using the receptive and expressive vocabulary test 
(REVT)[25]. The age equivalent-month of receptive 
vocabulary capability and expressive vocabulary capability 
was calculated from the test results and then it was converted 
to the vocabulary index. Equation (1) is the vocabulary index 
formula.  

Vocabulary Index = Receptive Vocabulary Age Equivalent-
Month + Expressive Vocabulary Age Equivalent-Month / 2     
(1) 

TABLE I.  THE TEST ITEMS OF SPEECH INTELLIGIBILITY TEST TOOL 

No Target phoneme Test sentence 

1 Nasal noran ɲyaŋmarine. 

2 Liquids norɛrɯl pullʌyo.  

3 Bilabial plosive pʰirirɯl punda.  

4 Alveolar plosive tʰadzoga taʎʎinda.  

5 Velar plosive   ʰo  irinɯn  ʰɯda.  

6 Palatal affricate tsadoŋtsʰa undzʌnhɛyo.  

7 Alveolar fricative sʰasʰɯmi sʰumʌyo.  

8 Glottal fricative  horaŋiga ʌhɯŋhɛyo.  

9 Vowel  agiga urʌyo. 

III. ANALYSIS METHODS 

A. Bagging Algorithm 

When the variability of the classifier is large while the data 
is changed even a little, a classifier can be acquired by using a 
bootstrap method to reduce the variability of a predictor. This 
method is called a bagging (Bootstrap Aggregating), which is 
an ensemble algorithm using the bootstrap method [26]. 

 
Fig. 3. Bootstrap Aggregating algorithm 

 

Fig. 4. Random Forest algorithm 
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The bagging algorithm process generates the bootstrap 
dataset by sampling with replacement from the training dataset, 
which is extracted from the population (Figure 3). N bootstrap 
datasets are generated by repeating this step N times and N 
classifier groups were obtained after forming each single 
decision tree by applying an appropriate classification 
algorithm (e.g., decision tree) to each bootstrap dataset [26]. 
There are several ways to combine these single classifiers: the 
mean is used when the response variable is continuous, while a 
vote is used when it is categorical [27-29]. 

If a training dataset is unstable, the classification 
performance is improved by combining bagging classifiers [30, 
31]. However, if a training dataset is stable, the bagging-based 
decision tree obtained from the bagging process is similar to 
the single decision tree obtained from the training dataset [32, 
33]. The bagging is effective in increasing the classification 
accuracy and improving the stability. Moreover, it has the 
advantages of reducing the variance and preventing the over 
fitting [34]. 

B. Random Forest Model 

The core of the bagging method is to predict the 
classification algorithm results of the bootstrap dataset by 
averaging or voting the bootstrap dataset. The random forest is 
an algorithm that adds a random additional layer to this 
bagging algorithm [32].  

Unlike the decision tree expressing each node as a partition 
providing the most optimal results by using all variables, the 
random forest uses a method providing the most optimal results 
among the selected explanatory variable groups by randomly 
selecting explanatory variables for expressing each node (Fig. 
4).  

The random forest algorithm process generates bootstrap 
datasets by sampling with replacement from the training 
dataset extracted from the population. N bootstrap datasets 
were generated by repeating this process N times. Moreover, 
when applying the decision tree algorithm, m explanatory 
variables are randomly selected from each node. By using 
these selected variables, this study obtained a group composed 
of N single classifiers after identifying the most optimal split 
combination. If a response variable is continuous, a single 
classifier is combined using a mean. If a response variable is 
categorical, a single classifier is combined using a vote, just the 
same as the bagging algorithm. 

One of the advantages of the random forest method is that it 
has less variance than the bagging algorithm because it reduces 
the correlation between trees. Moreover, it provides more 
accurate results than other algorithms and is useful to identify 
an important variable from a large data because it can utilize 
thousands of independent variables without removing a 
variable. Especially, it is known that it provides a similar or 
better predictive power than bagging or boosting when there 
are many input variables [35]. The analysis is performed by 
using R version 3.4.3. Figure 5 presents the Random Forest 
algorithm source of R program. 

IV. RESULTS 

A. General Characteristics of Subjects 

The general characteristics of the whole subjects showed 
that the mean age was 6.3 years (standard deviation (SD)=3.1), 
and 32% of them were females (n=26) and 68% of them were 
males (n=56). The mean vocabulary index was 41.2 
(SD=23.6). The mean wear time of cochlear implant was 38 
months (SD=8.7) and the mean corrected hearing was 33.8 dB 
(SD=4.9). 

Usage 

## S3 method for class 'formula' 

randomForest(formula, data=NULL, ..., subset, na.action=na.fail) 

 

## Default S3 method: 

randomForest(x, y=NULL, xtest=NULL, ytest=NULL, ntree=500, 

mtry=if (!is.null(y) && !is.factor(y)) 

max(floor(ncol(x)/3), 1) else floor(sqrt(ncol(x))), 

replace=TRUE, classwt=NULL, cutoff, strata, 

sampsize = if (replace) nrow(x) else ceiling(.632*nrow(x)), 

nodesize = if (!is.null(y) && !is.factor(y)) 5 else 1, 

maxnodes = NULL, 

importance=FALSE, localImp=FALSE, nPerm=1, 

proximity, oob.prox=proximity, 

norm.votes=TRUE, do.trace=FALSE, 

keep.forest=!is.null(y) && is.null(xtest), corr.bias=FALSE, 

keep.inbag=FALSE, ...) 

 

## S3 method for class 'randomForest' 

print(x, ...) 

Fig. 5. Random Forest algorithm source of R program 

B. The Potential Factors related to the Articulation Accuracy 

of Children with Cochlear Implantation 

The general characteristics and potential factors of the 
subjects according to the articulation accuracy are shown in 
Table 1. The articulation accuracy of the top group was 19 
people out of 82 people (23.1%). The results of the chi-square 
test showed that the high-rank group and the low-rank group 
were significantly different in gender, age, the wear time of a 
cochlear implant, and vocabulary index (p<0.05). 

C. Major Predictors in the Random Forest Model 

Table 3 shows the 'significance of variables' for the 
articulation accuracy of the children with cochlear implantation 
based on the random forest. The major predictors of the 
articulation accuracy of children with cochlear implantation 
were the wear time of a cochlear implant, the time since 
cochlear implantation, vocabulary index, household income, 
age, and gender, in the order of the magnitude. In other words, 
the wear time of a cochlear implant was the most important 
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predictor of the articulation accuracy. The final error rate of the 
random forest model developed by generating 500 bootstrap 
samples was 0.22, and the prediction rate was 78.8%. 

TABLE II.  POTENTIAL FACTORS RELATED TO THE ARTICULATION 

ACCURACY OF CHILDREN WITH COCHLEAR IMPLANTATION, % 

Characteristics 

Articulation accuracy 

p High-rank 

group (n=19) 

Low-rank 

groups (n=63) 

Sex, n (%) 
   

Male 11 (19.6) 45 (80.4) <0.001 

Female 8 (30.7) 18 (69.3) 
 

Household income 

(1000 KRW), mean±SD 
3,850±1,230 3,370±1,750 <0.001 

Age, mean±SD 5.7±2.8 4.6±1.3 0.002 

Wear time of a cochlear 

implant (month), 

mean±SD 

42.5±9.3 33.8±8.6 <0.001 

Time since cochlear 
implantation 

45.1±10.1 35.3±9.2 <0.001 

Vocabulary index, 

mean±SD 
47.8±28.3 36.1±20.7 <0.001 

Corrected hearing (dB), 

mean±SD 
33.2±5.2 34.5±4.8 0.850 

TABLE III.  THE SIGNIFICANCE OF VARIABLES' FOR THE ARTICULATION 

ACCURACY OF THE CHILDREN WITH COCHLEAR IMPLANTATION BASED ON 

THE RANDOM FOREST 

Wear time of a cochlear implant 44.580 

Time since cochlear implantation 39.905 

Vocabulary index 35.734 

Household income 23.108 

Age 15.605 

Sex 15.334 

V. DISCUSSION 

Recently, the healthcare field tries to provide the 
foundation necessary for preventing the spread of a disease by 
identifying the source of it, providing a personalized treatment, 
predicting the future, and identifying a risk factor by applying 
the big data technology. This study developed a prediction 
model for predicting the articulation of school children with 
cochlear implantation by using a random forest, which is an 
ensemble based machine learning algorithm. This study 
established a model for predicting articulation production with 
considering multiple explanatory variables. It was found that 
the most important factor was the wear time of a cochlear 
implant, followed by the time since a cochlear implant 
operation and receptive vocabulary.  

The age at the time of cochlear implantation is known to be 
an important factor affecting language development of hearing-
impaired children. Numerous studies have shown that hearing-
impaired children improved their speech production ability 
after they received cochlear implantation [36-38]. Moreover, 
the age at the time of implantation, the wear time of a cochlear 
implant, the remaining hearing before cochlear implantation 
were reported as factors affecting the ability to produce speech 

after cochlear implantation [12]. These studies revealed that 
children who received cochlear implantation before age 5 had 
better speech intelligibility than those after 5 years old [36]. 
Moreover, the age at the time of cochlear implantation had the 
highest effects on speech intelligibility than other factors and 
the longer wear time of a cochlear implant showed better 
speech intelligibility [37]. Additionally, even for a study 
targeting children under 5 years old, subjects had faster 
language acquisition when they received the implantation 
earlier [38]. On the other hand, subjects who received the 
implantation after adolescence had poorer auditory 
performance than those who received it in childhood [12]. 

Vocabulary index is another major factor for predicting the 
improvement in communication ability after cochlear 
implantation. The linguistic ability has been reported as a 
significant variable for predicting the speech intelligibility 
along with the degree of hearing loss and age [38]. Particularly, 
the naming test and the vocabulary test were significantly 
correlated with the speech intelligibility of hearing-impaired 
children [39].  

 In summary, the results of this study suggested that the 
time of cochlear implantation and the wear time of a cochlear 
implant were more important factors than gender, household 
income, and age for predicting the speech intelligibility of 
children with cochlear implantation. Furthermore, the speech 
intelligibility after cochlear implant implies that linguistic 
ability such as receptive vocabulary is important in addition to 
the wear time of a cochlear implant. 

The model, based on the random forest technique and 
developed for predicting the speech intelligibility of children 
with cochlear implantation, had better prediction power than 
the existing prediction models based on a regression model 
[24]. Moreover, it was reported that it provided more stable 
results because it is based on an ensemble algorithm, in 
addition to a good prediction performance [27, 40]. Therefore, 
it is believed that to use a random forest model would be more 
effective for estimating the importance of a variable among 
many variables than to use a regression model. 

VI. CONCLUSION 

The results of this study on a prediction model suggested 
that it would be necessary to implement cochlear implantation 
and to develop a customized aural rehabilitation program 
considering the linguistic ability of a subject for enhancing the 
speech intelligibility of a child with cochlear implantation. 
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