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rules for deterministic matching, fewer are as familiar with the 

scoring rule configuration used to support probabilistic 

matching. This paper describes a method using deterministic 

matching to “bootstrap” probabilistic matching. It also examines 

the effectiveness of three commonly used strategies to mitigate 

the effect of missing values when using probabilistic matching. 

The results are based on the experiment using different sets of 

synthetically generated data processed using the OYSTER open 

source entity resolution system. 
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I. INTRODUCTION 

The OYSTER open source entity resolution system 
(https://bitbucket.org/oysterer/oyster/) was designed to 
support both deterministic and probabilistic matching. 
Probabilistic matching is performed using a scoring rule based 
on agreement and disagreement weights [18]. Generating the 
weights typically requires more effort and analysis than using 
Boolean rules to implement deterministic matching. The 
scoring rule is similar to the Boolean rule which specifies a 
similarity function and optional data preparation function for 
comparing the values of identity attributes between two entity 
references [2], [3], [30]-[34]. The linking and review decision 
for each pair of entity references is determined by setting up a 
score threshold. Pairs scoring at or above the threshold are 
linked, and those below are not linked. Moreover, pairs scoring 
below the threshold, but above a user defined “review score” 
are written to an exceptions report for clerical review and 
possible remediation. 

Each identity attribute has at least one agreement weight 
and at least one disagreement weight. In some cases, there can 
also be a third weight called a “missing weight” to be used 
instead of the agreement or disagreement weight in the case 
both values of the identified attribute are missing.  

Basically, the power of the probabilistic matching is the 
ability to assign weights to particular values of identity 
attributes. Typically, individual weights are only assigned 
when the identity attribute has an uneven distribution of value 
frequencies, and then, only to the values with the highest 
frequencies, e.g. the top 10% of frequencies. Value-frequency 
weights are less effective for identity attributes with an even 

distribution of value frequencies low frequencies such as dates-
of-birth or telephone numbers. 

For example, in the context of a school system, if many 
different students have the first name “Mary,” then the weight 
of agreement for “Mary” should be smaller than the agreement 
weight for a name used by only a few students, perhaps even 
one student. In general, the magnitude of the weight is 
proportionate to its ability to discriminate between references 
to different students. Weight calculations are discussed in 
detail in a later section of the paper.  

Another advantage of the scoring rule is its natural support 
for the “clerical review” or “link remediation” process. This is 
a process by which pairs of references with minimal support 
for linking are reported for manual review by domain experts. 
This is easily done when using the scoring rule by simply 
flagging any pair of references with a total score very close to 
the match threshold, i.e., “near matches” for review. Although 
very labor intensive, the clerical review is often implemented 
in high-risk applications where high-levels of linking accuracy 
are required, such as patient medical records. 

The organization of this paper is as follows:  

 Section II discusses prior work related to this study.  

 Section III describes the “bootstrap” method for 
creating a scoring rule.  

 Section IV describes the calculation of the weights and 
three missing value treatments approaches based on 
that database by applying run of OYSTER is 
configured invariants algorithm designed for feature 
extraction.  

 Section V gives the experimental results.  

 Section VI compares results from Boolean Rules and 
Scoring Rule 

 Section VII and VIII summarizes the conclusions of 
this work. 

II. E LITERATURE REVIEW 

Numerous systems have been used to solve some data 
quality issue can problems weaken the effectiveness of 
probabilistic matching [4], [5], [6]. One of the influential 
methods is OYSTER algorithms. While OYSTER does include 
the capability to implement probabilistic matching, many users 
are not familiar with its setup and operation. The purpose of 
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this paper is to provide a step-by-step guide for users interested 
in experimenting with probabilistic matching using OYSTER. 
Particularly, the matching outcome of the scoring rule is lower 
when the sources have a high level of inconsistent value 
representations, such as misspellings, aliases, especially 
missing values. It should be noted here, while probabilistic 
matching has the ability to significantly improve record linking 
accuracy, it is not absolute. Certain data quality problems in the 
reference data can impair the effectiveness of probabilistic 
matching [10], [11], [19], [20]-[24]. In particular, the problems 
of inconsistent representation of identity attribute values and 
missing values have the most impact. 

<ScoringRule Ident="Example1" MatchScore ="12" ReviewScore="11"> 

        <Term Item = "Fname" SIMILARITY="SoundexOrNickName" 

AgreeWgt="11.27" 
WgtTable="/Users/Alassad/Desktop/Oyster/LScoringIndex/Input/WgtTabl

eFirst.txt" DisagreeWgt="-8.30" /> 

        <Term Item ="Lname" SIMILARITY="Exact" DataPrep="Scan(LR, 
Letter, 0, ToUpper, SameOrder)" AgreeWgt="4.20" 

WgtTable="/Users/Alassad/Desktop/Oyster/LScoringIndex/Input/WgtTabl

eLast.txt" DisagreeWgt="-19.93"/> 
        <Term Item="Nbr" SIMILARITY="Exact" DataPrep="Scan(LR, 

DIGIT, 0, KeepCase, SameOrder)" AgreeWgt="10.42" DisagreeWgt="-

2.96"/> 
        <Term Item="DOB" SIMILARITY="Exact" DataPrep="Scan(LR, 

DIGIT, 0, KeepCase, SameOrder)" AgreeWgt="5.94" DisagreeWgt="-

1.31"/> 
</ScoringRule> 

Fig. 1. Example attributes script for scoring rule. 

Figure 1 shows an example Attributes Script defining three 
identity attributes “Fname” (student first name), “Lname” 
(student last name), DOB (Date of Birth), and “Nbr” (street 
number of student address). Each run of OYSTER is 
configured by three XML Scripts: Run Script, Source 
Descriptor, and Attributes Script. The Run Script sets the 
overall purpose of the run called the “Run Mode.” The Run 
Modes for OYSTER are 

 Merge-Purge 

 Identity Resolution 

 Identity Capture 

 Identity Update 

 Reference-to-Reference Assertion 

 Structure-to-Structure Assertion 

 Reference-to-Structure Assertion 

 Structure Split Assertion 

The two Run Mode configuration relevant to this paper are 
Merge-Purge and Identity Capture [3]. Both read a set of entity 
references and link the references together according to the 
match rule (either Boolean or Scoring) specified in the 
Attributes Script and transitive closure. The only difference is 
that Identity Capture also creates an Identity Knowledgebase 
whereas Merge-Purge does not. Identity Capture is the first 
step in using OYSTER for identity management applications 
such as MDM [5], [9], [13], [16].  

The Source Descriptor Script is used to define the source 
and layout of the entity references to be linked by the system. 
The Source Descriptor can describe several different file 
sources including comma separated value (CSV) and fixed-
width field formats. Because the focus of this paper is on the 
configuration of the Scoring in the Attributes Script, we will 
always assume the Run Mode is Identity Capture and the 
reference source is CSV. 

III. GENERATING WEIGHTS AND CONFIGURING THE 

SCORING RULE 

A. Scoring Rule Configuration 

The Attributes Script has two primary functions. The first is 
to designate the identity attributes in the entity references being 
processed. The second is to define how the identity attributes 
are to be matched. OYSTER currently supports two types of 
matching definitions, Boolean rules for deterministic matching 
and the scoring rule for probabilistic matching [7], [8]. The 
Scoring Rule configuration defines the Match Score to be 5 
and the Review Score to be 4. All three of the identity 
attributes are used in the scoring rule. The first <Term> of the 
rule defines the agreement (“Similarity”) as 
“SoundexOrNickName”. This means that two first names will 
be in agreement if they generate the same SOUNDEX code 
(e.g. “Philip” and “Phillip”) or if they are nicknames of each 
other (e.g. “Robert” and “Bob”).  

The first <Term> also defines a weight table for frequently 
occurring first name values named “WgtTableFirst.txt”. The 
weight table contains a set of key-value pairs. The key is the 
attribute value, e.g. “Mary”, and the value is the corresponding 
agreement weight, e.g. “4. In the weight table, the key and 
value must be separated from each other by a single tab 
character. When a weight table is given, the OYSTER logic is 
as follows. If the values agree, then the table is searched for 
both attribute values. Note: the lookup operation for attribute 
values in the table is not letter case sensitive. If both attribute 
values are found in the table, then it uses the larger of the two 
agreement weights. If only one value is found, it uses the one 
agreement weight found. If neither value is found, then it uses 
the default agreement weight given in the <Term> element. In 
this case, the default agreement weight is “9.08”. Of course, if 
the attribute values disagree, then in the <Term> element the 
disagreement weight of “2.45” is used. 

The second <Term> element for “Lname” operates in much 
the same way except that it uses a “DataPrep” function in 
addition to a Similarity function. The DataPrep function is a 
data transformation that is applied to the raw attribute value 
and the result of the DataPrep transformation is passed to the 
Similarity function. The DataPrep function used here is the 
“SCAN” function. The parameters of the SCAN direct it to 
search the characters of the attribute value from left-to-right 
(LR), extract only letters (Letter), extract all letters found (0), 
change all letters to upper case (ToUpper), and keep the letters 
in the same order asthey were found (SameOrder). For 
example, “O’Malley” and “OMalley” would both transform to 
“OMALLEY”. 

An important note about the use of weight tables: If a 
DataPrep function is used in the <Term>, then the lookup key 
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used for the weight table is the output of the DataPrep 
transformation function. If a DataPrep function is not used, 
then the lookup key is the raw, untransformed attribute value 
from the input file, but ignoring case. It is important to 
understand this logic to properly construct an agreement 
weight table. For example, if a <Term> were to define the 
DataPrep function as “SOUNDEX”, then the keys defined in 
the weight table for this <Term> should be SOUNDEX output 
hash codes, not the input names. So, if the input value is 
“John” and the DataPrep is SOUNDEX, then the system will 
try to lookup for “J500” the SOUNDEX hash of “John” in the 
table. On the other hand, if DataPrep is SCAN (Letters to 
uppercase), then the system would try to lookup “JOHN” in the 
weight table [12], [15], [29]. 

B. Selecting Identity Attributes 

The first step in selecting identity attributes is to profile the 
data. The primary candidates for identity attributes are those 
that have a high completeness and high uniqueness score. 
Attributes with low completeness or low uniqueness can be 
used as a secondary identity attribute to support the primary 
attributes. 

The accuracy of the scoring rule is lower when the sources 
have high levels of inconsistent value representations 
(misspellings, aliases, etc.) and missing values. Also be sure to 
watch for placeholder values. These can bias the weight 
calculations. 

The best candidates for value-level weights are identity 
attributes with an uneven distribution of the value frequencies, 
e.g. like names where several have high frequencies and many 
other have low frequencies. Attributes with evenly distributed 
values are best assigned only attribute-level weights 

C. Linking the Records using Another Process 

The calculation of the agreement and disagreement weights 
follows the method developed by Fellegi and Sunter (1969). In 
their method, the agreement weight is based on the ratio of two 
conditional probabilities. The probability equivalent references 
will agree on the attribute or attribute value divided by the 
probability non-equivalent references will agree on the 
attribute or attribute value. The problem is that we don’t know 
which references are equivalent, i.e. are referencing the same 
entity. In fact, if it were already known which references were 
equivalent and non-equivalent then there would be no purpose 
in setting up the matching rules. 

One solution to this problem it to manually determine the 
correct linking for some subset of the data, i.e. create a “truth 
set”. However, this can be exact costly in terms of time and 
effort. A second solution is to approximate the true linking 
with another ER process. For this paper, we follow the second 
solution by running OYSTER with a set of Boolean 
(deterministic) rules. The clusters created by this process are 
then assumed to be the equivalent references for the purpose of 
calculating the agreement and disagreement weights.  

D. Calculating Weights 

From cluster profile of the Boolean linking process (found 
in the OYSTER .log file), calculate the total number of 
equivalent pairs and total number of non-equivalent pairs. 

This is done by taking each line of the cluster profile and 
calculating the number of pairs based on the cluster size. For 
example, if the profile has 8 clusters of size 5, then each cluster 
of size 5 represents (5x (5-1)/2 = 10 equivalent pairs 

Next multiple is the number of pairs in each cluster by the 
number of clusters. For example, if there are 10 cluster of size 
5, then 8 x 10 = 80 equivalent pairs 

Sum these count for each line in the cluster profile to get 
the total number of equivalent pairs. Let E represent this 
number. 

Calculate the total number of possible pairs by taking the 
file size (total number of records) N and calculating N x (N-
1)/2. Let T represent this number. For example, if the file 
contains 100 records, the T = 100x99/2 = 4,950 pairs 

Calculate the total number of non-equivalent pairs by 
subtracting the total number of equivalent pairs found from the 
cluster profile from the total number of possible pairs. Let U 
represent this number, i.e.  

U = T – E. 

Next, join the Link File output from the OYSTER Boolean 
rule output (. link file) back to the source data by record 
identifier. This will create a new file called the weight analysis 
table. Each row of the weight analysis table should have a 
column for the 

 Record identifier 

 OYSTER identifier 

 Value of each identity attribute in the record 

Next, select the first identity attribute to process. Create a 
new column in the weight analysis table to hold the 
standardized value of the first attribute. Standardization is the 
process of removing variation from the values of the selected 
attribute. At a minimum you should convert all names to upper 
case letters so that "ANN" and "Ann" will come together.  

If you want to remove even more variation, you could 
replace the name with the SOUNDEX code, NYSIIS, or other 
phonetic hash code. If you are planning to use a weight table, 
please read the previous section on Weight Table Logic. The 
setup of your weight table depends upon whether you use 
SOUNDEX for DataPrep or for Similarity. For example, 
SOUNDEX would make "ANN" and "ANNE" group together. 
If you used SOUNDEX for the Similarity, then you still have 
to keep the original name value together with its standardized 
or hashed value to populate the weight table. In the current 
implementation of the Scoring rule, if you use DataPrep, it 
looks up the DataPrep value in the table, but if you don’t use 
DataPrep it looks up the source value while ignoring case. So if 
you are calculating value-level weights using SOUNDEX or 
some other hash, it will be simpler if you use the hash function 
as the DataPrep so that the keys in the weight table are also 
hash values. 

After creating the column of standardized values for the 
attribute in the weight analysis table, do a primary sort of the 
table by the standardized value of the attribute, and a secondary 
sort by the OYSTER identifier. This will give you groups of 
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consecutive rows with the same standardized value, and at least 
one subgroup with the same OYSTER identifier. If it only has 
one subgroup, then the group and subgroup are the same. 

For the first subgroup, count the number of records having 
the same standardized value and same OYSTER identifier. Call 
this number A1V1N1 for Column 1, Value 1, Number of rows 
in Subgroup 1.  

Now, calculate the number of equivalent pairs agreeing on 
standardized value V1 for this subgroup. Call this number 
C1V1E1 meaning Column 1, Value 1, Equivalent pairs in 
Subgroup 1. A1V1E1 is calculated by  

A1V1E1 = A1V1N1 x (A1V1N1-1)/2 

If there is more than one subgroup for standardized value 
V1, repeat this calculation for each subgroup of V1. If there is 
a second subgroup, then C1V1N2 would represent Value 1, 
Number of rows in Subgroup 2. The second subgroup would 
contribute another  

C1V1E2 = C1V1N2 x (C1V1N2-1)/2 

Equivalent pairs agreeing on V1. 

Calculate the total number of equivalent pairs agreeing on 
V1 (call this number C1V1E) by summing the equivalent pairs 
for all subgroups, i.e.  

C1V1E = C1V1E1 + C1V1E2 + …. 

Next calculate the total number of pairs agreeing on the 
first standardized value V1 in Column 1 by counting the 
number of rows having the same standardized value V1. Call 
this value C1V1N. Note V1N should be the same as the sum of 
count of each subgroup, i.e.  

C1V1N = C1V1N1 + C1V1N2 + … 

The total pairs agreeing on V1 (call this C1V1A) is 
calculated by  

C1V1A = C1V1N x (C1V1N-1)/2. 

Next calculate the number of non-equivalent pairs agreeing 
on value V1 (call this value C1V1U). This number is 
calculated by 

C1V1U = C1V1A – C1V1E. 

For example, suppose C1 is the first name attribute, and if 
C1V1 is the standardized value “JOHN” and there are 5 
records with this values that standardize to “JOHN” such as 
“John” or other variations. Suppose there are 2 subgroups of 
this value. The first attribute C1 has been selected for attribute-
level or value-level weights, we need to make some other 
calculations for the entire attribute.  

The first is the attribute’s overall disagreement weight D. 
This is done by repeating the previous steps for all of the 
values of the attributes. In particular, we need to Sum all pairs 
agreeing on the values of C1, as 

C1A = C1V1A + C1V2A + … 

Sum all equivalent pairs agreeing on the values of C1, as  

C1E = C1V1E + C1V2E + … 

Calculate the number of non-equivalent pairs agreeing on 
the values of C1, as  

C1U = C1A – C1E 

Then the  

Disagree Weight C1 

= log2{(1 – (C1E/E)) x (U/(1 - C1U))} 

The agreement weight for C1 will depend upon whether it 
will have value-level weights or only a single attribute-level 
agreement weights. If there is only one agreement weight for 
the entire attribute C1, then it is calculated as 

Agree Weight C1 = log2{(C1E/E) x (U/(C1U)} 

using the same numbers as described above.  

However, in the case of value-level weights, then formula 
is the same, but the values of C1E and C1U should only be the 
sum of the pair counts for the values not used for individual 
weight calculations. In other words,  

C1A = C1VxA + C1VyA + … 

where Vx is a value of C1 not given an individual weight, 
and Vy is a value of C1 not given an individual weight and so 
on. Another way to look at this is to think of removing the 
frequent values from the weight analysis table and calculating 
the overall agreement weight for the remaining values. 

The same process described above is repeated for every 
identity attribute. 

E. Constructing the OYSTER Scoring Rule 

Following the same example, as shown in Figure 1, each 
one of the attributes from the weight analysis table will be used 
to define a <Term> in the Scoring Rule. The attribute name 
will be the value for the Item in the <Term> 

For the <Term>, define a DataPrep and Similarity function 
in alignment with the DataPrep and Similarity functions used 
in the Boolean rules. Even though the scoring rule will allow 
you to use the same attribute in more than one scoring rule 
<Term>, we recommend only using each attribute once to 
define a <Term> in the Scoring Rule with one Similarity 
Function and one optional DataPrep function.  

If a scoring rule <Term> defines only attribute-level 
weights, then the agreement weight (AgreeWgt value) should 
be set to the overall agreement weight as calculated in the 
previous section. Similarly, the disagreement weight 
(DisagreeWgt value) should be set to the overall disagreement 
weight for the attribute. 

A <Term> can also define an optional Missing weight. The 
Missing weight is added to the overall score instead of the 
AgreeWgt or DisagreeWgt values whenever both of the values 
being compared are missing. Although the missing weight is 
often set to zero, it is possible to calculate a weight by treating 
“missing” as a value just as you would a normal name value.  

While more formal research is needed to determine the best 
strategy for scoring missing values, there is some preliminary 
evidence the best strategy is to not assign a special value for 
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missing value agreements. If no Missing weight value is given, 
then the DisagreeWgt value will be used if either or both 
values of the attribute are missing. 

If a scoring rule term uses value-level weights, then the 
AgreeWgt value should be set to the overall agreement weight 
for only the rows in weight analysis not used to calculate 
individual value weights. On the other hand, the disagreement 
weight is still calculated as the overall disagreement weight for 
all values of the attribute. In addition, a <Term> using value-
level weights must use the value of WgtTable to define a path 
to the text file containing the agreement weights to be used for 
the frequently occurring values. The weight table is simple. 
Each row should only have an attribute value followed by only 
ONE-tab character followed by the agreement weight. Any 
rows starting with two exclamation marks (!!) are ignored as 
comments. 

In addition to setting the parameters for each <Term> item, 
the match score (MatchScore value) must be set at the 
<ScoringRule> level. An optional review score (ReviewScore 
value) value can also be set. The review score is a value less 
than match score. When a pair of references generates a score 
less than the match score, but greater than or equal to the 
review score, the two references will be written to a Clerical 
Review report. The purpose of the clerical review is to allow 
the user to see the pairs of references scoring just below the 
match score and determine if they are true negative pairs or 
false negative pairs. 

If the review score is not given, then no clerical review 
report will be produced. If a review score is given, it should not 
be set too far below the match score. If too many pairs are 
written to the Clerical Review Report, it may significantly 
degrade the performance of the system. The goal is to only 
produce and review pairs of records scoring close to the value 
of the match score. 

On exception to this rule is when using the Clerical Report 
for analysis and quality assurance. By running the scoring rule 
with a small test file, setting the match threshold actual high, 
and the review score low, every pair of references will be 
written to Clerical Review Report. This allows the user to 
analyze and check the scores being generated for every pair of 
references in the test file. 

F. Setting the Optimal Match Score 

The final parameters needed to create a complete scoring 
rule are setting an optimal match score. The value assigned to 
the MatchScore attribute in the <ScoringRule> term 
determines the linking performance of the system. 

As the match score increases, the scoring rule will link 
fewer references resulting in higher precision and lower recall. 
Conversely, decreasing the match score will link more 
references resulting in lower precision and higher recall. At the 
extremes, if the match score is set so high that no pair of 
records can be linked, the precision will be 100% but the recall 
will be 0%. Conversely, if the match score is set so low that all 
records are linked, the precision will be 0% and the recall will 
be 100%. In both cases, the F-measure will be 0.0.  

The balance between the precision and recall is the F-
measure calculated as the harmonic mean of the precision and 
recall values. For some applications, the precision may be more 
important than recall, and the optimal threshold may not be the 
value producing the highest F-measure, but instead, the 
necessary level of precision. Other applications may favor 
recall over precision. For research described here, the threshold 
value producing the highest F-measure is considered optimal. 

The review score and Clerical Review Report can be 
important tools in adjusting the value of the match score. It 
allows the user to examine pairs of records scoring just below 
the match score and possibly provide evidence for decreasing 
or increasing the match score value. 

There is no formula for setting the Match Score. It is 
typically adjusted by trial and error. To start, review the output 
of the Boolean rule process and select a cluster containing 
several records, then extract these records from the source file 
to create a new test file containing only the records from one 
cluster. As described earlier, set the match score high and the 
review score low. Also, omit the Index so that every pair of 
records in the input will be compared, scored, and written to 
the Clerical Review Report.  

The scores from the report can be used as the starting point 
for setting the match score. The reasoning is as follows: If the 
Boolean rules linked these records into a single cluster, then 
the scoring rule should link these records as well. Estimate the 
starting match score as the average of all the scores generated 
by the cluster. To improve the starting estimate, repeat the 
same process for other clusters linked by the Boolean rules, 
and include these scores in the average. 

The reason for starting with the average score and not the 
minimum score is that not every pair of records in a cluster 
necessarily matches. Some records come into the cluster 
through transitive closure. So even if a cluster contains records 
A, B, and C. It may be because A matched with B, and B 
matched with C, while it may not be true that A matched with 
C. Setting the match score low enough for A and C match in 
the scoring rule may create a large number of false positive 
links. A better estimate is the average score. 

G. Indexing the Scoring Rule 

The scoring rule must have an index (inverted index 
blocking) when the reference source contains more than a few 
hundred records. Otherwise, the runtime will be unacceptable. 
The problem is that aligning the indices to a scoring rule is 
more complicated than aligning indices to a Boolean Rule. For 
Boolean rules, you can inspect each rule (AND clause), and as 
long as the rule uses at least one hash function comparator, 
then it is possible to design an index in alignment with the rule. 

In general, indices for Scoring Rules are less precise than 
for Boolean Rules. Rather than a single index on First-Name + 
Last-Name+ Street-Number, you might instead have three 
separate indices, one for First-Name, another index for Last-
Name, and another for Street-Number. The downside to the 
strategy of indexing each attribute separately is that the list of 
match candidates will be larger for each input reference, 
causing more comparisons, and slower performance. 
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Another method for designing the index is a more complex 
analysis. If the scoring rule uses N attributes, then generate all 
possible combinations of agreement and disagreement weights 
as N-dimensional vectors of ordered pairs. The ordered pair for 
each dimension would represent a combination of Agree or 
Disagree together with the corresponding weight. For example, 
if there are three attributes, the vectors would look like [(A, 
120), (D, -30), (A, 50)] where (A, 120) represents agreement 
on the first attribute with a score of 120, (D, -30) represents a 
disagreement on the second attribute with a score of -30, and 
(A, 50) agreement on the third attribute with a score of 50.  

As you can see, there can be a great many of these vectors 
when there are value-level weights. For example, if the first 
<Term> has a table of 20 value agreement weights, plus the 
default agreement, and default disagreement. This would be a 
total of 22 possible weights for the first attribute. If these 
second attribute has 32 weights, and the third attribute has 3 
weights, then there are 22 x 32 x 3 = 2,112 possible weight 
vectors. 

Next, compute the total score (sum of the weights) for each 
vector and classify the vectors into 2N categories according to 
agreement/disagreement patterns similar to those used by 
Fellegi and Sunter [1]. As in the previous example where N=3, 
then there would be 8 (23) pattern categories: “DDD”, “DDA”, 
“DAD”, “DAA”, “ADD”, “ADA”, “AAD”, and “AAA”. Next, 
create an analysis file by generating an ordered pair for each 
vector where the first element is the agreement pattern and the 
second element the total score. Using the previous example for 
the vector [(A, 120), (D, -30), (A, 50)] the total score is 140. 
This vector would produce the pair (ADA, 140).  

Finally, sort all of the ordered pairs according to their 
match scores. For any given choice of a match score, such as 
the starting estimate, you can now see all of the agreement 
patterns above and below that score. Suppose in this example 
that for a selected match score, all of the patterns above this 
score are “AAD”, “DAA”, or “AAA”. From this information 
you can design two indices to support the scoring rule for this 
match score. One index is a combination of the first and second 
attributes and the second index a combination of the second 
and third attributes. From an indexing standpoint, the pattern 
“AAA” is redundant to the first two patterns of “AAD” and 
“DAA”, i.e. any candidate returned by indexing on all three 
attributes would also be returned by indexing on two elements. 
However, the index solution just described will only provide 
alignment when all of the attributes a hash function for 
comparison, such as SOUNDEX or SCAN(), which can also be 
used for indexing. 

H. Assessing Performance and Adjusting Match Score 

You can use the Review Score setting to generate the 
Clerical Review Report. This will let you examine “near” 
matches and decide if you need to lower the Match Score. 
However, this approach does not show you possible false 
positive linking of pairs above the Match Score. 

IV. EXAMPLE 

The following example gives more detail on the calculation 
of the weights used for the Scoring rule given in Figure 1 as 
well as the performance of its linking with various MatchScore 

settings as shown in Figure 4. The weight calculations and 
performance measures are based on a test file of 141,745 
synthetic person references known as ListB. The ListB 
reference were created in previous research [24]-[28] in a way 
that the correct linking is known. This allows the precision and 
recall to be immediately calculated for any given ER process. 

Even though the true linking for ListB is known, it was not 
used to calculate the probabilistic weights for this example. 
The true linking was only used to evaluate the precision and 
recall of the linking results. The weights were calculated by 
bootstrapping the scoring rule from Boolean linking as 
described earlier. Given a set of entity references in the real 
world, exactly which pairs of references are equivalent is not 
known. The process starts by selecting the identity attributes 
and linking the references with a reasonable set of Boolean 
(deterministic) rules to serve as a “surrogate truth set” for 
generating probabilistic weights. The OYSTER Attributes 
script used to define the starting Boolean rules is shown in 
Figure 2. 

<OysterAttributes System = "IndexTestWith"> 
 <Attribute Algo="none" Item="Fname"/> 

 <Attribute Algo="none" Item="Lname"/> 

 <Attribute Algo="none" Item="Nbr"/> 
    <Attribute Algo="none" Item="DOB"/> 

<!-- --> 

<Indices> 
  <Index Ident="X1"> 

   <Segment Item="Lname" 

Hash="SCAN(LR,LETTER,0,ToUpper,SameOrder)"/> 
   <Segment Item="Nbr" 

Hash="SCAN(LR,DIGIT,0,ToUpper,SameOrder)"/> 
  </Index> 

        <Index Ident="X2"> 

            <Segment Item="Lname" 
Hash="SCAN(LR,LETTER,0,ToUpper,SameOrder)"/> 

            <Segment Item="DOB" 

Hash="SCAN(LR,DIGIT,0,KeepCase,SameOrder)"/> 
        </Index> 

</Indices>  

<IdentityRules> 
  <Rule Ident="1"> 

   <Term Item="Fname" 

SIMILARITY="SOUNDEXORNICKNAME"/> 
   <Term Item="Lname" 

SIMILARITY="SCAN(LR,LETTER,0,ToUpper,SameOrder)"/> 

   <Term Item="Nbr" 
SIMILARITY="SCAN(LR,DIGIT,0,ToUpper,SameOrder)"/> 

  </Rule> 

  <Rule Ident="2"> 
   <Term Item="Fname" 

SIMILARITY="SOUNDEXORNICKNAME"/> 

   <Term Item="Lname" 
SIMILARITY="SCAN(LR,LETTER,0,ToUpper,SameOrder)"/> 

                                <Term Item="DOB" 

SIMILARITY="SCAN(LR,DIGIT,0,ToUpper,SameOrder)"/> 

  </Rule> 

 </IdentityRules> 

</OysterAttributes 

Fig. 2. Boolean rule configuration for processing ListB. 

The Boolean rules shown in Figure 2 uses First Name, Last 
Name, Street Number, and Date-of-Birth. The rules as 
configured here produced a linking results with a Precision of 
0.9800, Recall of 0.5064, and F-Measure of 0.6677.  
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Figure 2 also shows the inverted index blocking used for 
this rule set. Note that the first index (X1) is in alignment with 
both Boolean rules (1 and 2). Any pair of references matching 
by either rule would also produce the same match key by this 
index. The two terms of the index correspond exactly to the 
second and third terms of both the rules. This is possible 
because hash functions such as SCAN () can be used as both a 
comparator (True if both hash values agree) and a match key 
generator (hashing one string into another string). On the other 
hand, the comparator function NICKNAME used in the second 
Boolean rule (Ident=2) is a true similarity function requiring 
two strings as input while producing a Boolean True or False 
output. Because similarity functions do not produce a hash 
output, they cannot be used for inverted indexing using hash 
keys.  

Following the weight calculation steps outlined in the 
previous section, ListB was profiled and individual agreement 
weights were calculated for the most frequently occurring 
Fname and Lname values. In this case, the top 10% of the high 
frequency names were selected. Figure 3 shows some of the 
entries in the weight table for Lname. Note that many of the 
names were only given as initials as illustrated by the first 
entry “A”, and the file also contained many typographical 
errors, e.g. “ADASM” a typing transpose of “ADAMS”. 

 
Fig. 3. Lname agreement weights. 

Figure 4 also shows the performance of its linking with 
various MatchScore settings. After removing the top 10% of 
the most frequent first name values, the agreement weight for 
the remaining names was calculated as 11.27. The 
disagreement weight for all first name values was -8.30. 
Similarly, after removing the top 10% of last name values, the 
agreement weight for the remaining last names was calculated 
as 4.20, and the disagreement for all Last Name values was -
19.93. Because the street number values and date-of-birth 
values were somewhat evenly distributed, only the overall 
agreement and disagreement weights were calculated these 
attributes. For street number the values were 10.42 and -2.96, 
respectively, and for date-of-birth the values were 5.94 and -
1.31, respectively. 

<OysterAttributes System="School"> 

    <Attribute Algo="none" Item="Fname"/> 

    <Attribute Algo="none" Item="Lname"/> 

    <Attribute Algo="none" Item="Nbr"/> 

    <Attribute Algo="none" Item="DOB"/> 

<!-- --> 

<ScoringRule Ident="Example1" MatchScore ="12" 

ReviewScore="11"> 

        <Term Item = "Fname" SIMILARITY="SoundexOrNickName" 

AgreeWgt="11.27" 

WgtTable="/Users/Alassad/Desktop/Oyster/LScoringIndex/Input/Wg

tTableFirst.txt" DisagreeWgt="-8.30" /> 

        <Term Item ="Lname" SIMILARITY="Exact" 

DataPrep="Scan(LR, Letter, 0, ToUpper, SameOrder)" 

AgreeWgt="4.20" 

WgtTable="/Users/Alassad/Desktop/Oyster/LScoringIndex/Input/Wg

tTableLast.txt" DisagreeWgt="-19.93"/> 

        <Term Item="Nbr" SIMILARITY="Exact" 

DataPrep="Scan(LR, DIGIT, 0, KeepCase, SameOrder)" 

AgreeWgt="10.42" DisagreeWgt="-2.96"/> 

        <Term Item="DOB" SIMILARITY="Exact" 

DataPrep="Scan(LR, DIGIT, 0, KeepCase, SameOrder)" 

AgreeWgt="5.94" DisagreeWgt="-1.31"/> 

</ScoringRule> <Indices> 

        <Index Ident="X1"> 

            <Segment Item="Fname" Hash="SOUNDEX"/> 

            <Segment Item="Lname" 

Hash="SCAN(LR,LETTER,0,ToUpper,SameOrder)"/> 

            <Segment Item="Nbr" 

Hash="SCAN(LR,DIGIT,0,KeepCase,SameOrder)"/> 

        </Index> 

        <Index Ident="X2"> 

            <Segment Item="Fname" Hash="SOUNDEX"/> 

            <Segment Item="Lname" 

Hash="SCAN(LR,LETTER,0,ToUpper,SameOrder)"/> 

            <Segment Item="DOB" 

Hash="SCAN(LR,DIGIT,0,KeepCase,SameOrder)"/> 

        </Index> 

        <Index Ident="X3"> 

            <Segment Item="Fname" Hash="SOUNDEX"/> 

            <Segment Item="Nbr" 

Hash="SCAN(LR,DIGIT,0,KeepCase,SameOrder)"/> 

            <Segment Item="DOB" 

Hash="SCAN(LR,DIGIT,0,KeepCase,SameOrder)"/> 

        </Index> 

        <Index Ident="X4"> 

            <Segment Item="Lname" 

Hash="SCAN(LR,LETTER,0,ToUpper,SameOrder)"/> 

            <Segment Item="Nbr" 

Hash="SCAN(LR,DIGIT,0,KeepCase,SameOrder)"/> 

            <Segment Item="DOB" 

Hash="SCAN(LR,DIGIT,0,KeepCase,SameOrder)"/> 

        </Index> 

    </Indices> 
</OysterAttributes> 

Fig. 4. Final scoring rule with blocking. 

V. TESTING AND RESULTS 

Table 1 shows the details of precision, recall and F-measure 
comparison between scoring rule results. Figure 5 is the line 
chart specifically compares the F-measure performance. 
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TABLE I.  COMPARE THRESHOLD SCORE RULE RESULTS 

 Score Rule 

Threshold Precision Recall F-Measure 

-20 0.79 0.72 0.75 

-15 0.9 0.72 0.8 

-10 0.91 0.72 0.8 

-5 0.91 0.72 0.8 

0 0.93 0.71 0.81 

5 0.93 0.64 0.76 

10 0.95 0.59 0.73 

15 0.98 0.56 0.71 

20 0.98 0.48 0.65 

VI. COMPARISON OF RESULTS 

Table 2 shows the scoring rule using weights computing 
from Boolean rule linking can outperform the initial set of 
Boolean rules. In this example, a 20% improvement in F-
measure with significantly higher precision 

TABLE II.  SUMMARY OF RESULTS 

 Rule- Generation 

 
Precision Recall F-Measure 

Boolean 

Rule 
0.6677 0.5064 0.6677 

Scoring Rule 0.93 0.71 0.8014 

 
Fig. 5. Scoring rule performance for different thresholds. 

VII. CONCLUSION AND FUTURE WORK 

The bootstrap process described in this paper allows 
researchers to configure a probabilistic entity resolution engine 
using OYSTER by taking advantage of its ability execute both 
Boolean rules and the scoring rule with frequency-base 
weights. It also shows the amount of tuning required to get 
good results from probabilistic matching due to the large 
number of variable including the 

 Choice of identity attributes 

 Comparators used for the identity attributes 

 Choice of identity attributes for frequency-based value 
weights 

 Number of values selected for individual weights 

 Match score selection 

 Impact and treatment of missing values 

 Impact and treatment of inconsistent values 

At the same time, these variables create the opportunity for 
additional research including the use of both, agreement and 
disagreement weights at the value level, analysis tools for 
setting optimal match scores, the treatments to mitigate the 
effect of missing values, and the optimal frequency cutoff for 
frequency-based value weights.  

Another avenue of research is based on repeating the 
bootstrapping process. Just as the Boolean linking results can 
be used as a proxy for equivalence to generate weights for a 
scoring rule, the linking of the scoring rule itself can be used to 
generate a second set of weights, and so on. Will the weight 
generated from on-scoring rules output allow the construction 
of another scoring rule that will always outperform its 
predecessor? [14], [17], [18]. 
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