
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

7 | P a g e

www.ijacsa.thesai.org

A Method for Implementing Probabilistic Entity

Resolution

Awaad Alsarkhi, John R. Talburt

Department of Information Science

University of Arkansas at Little Rock

Little Rock Arkansas, 72204, USA

Abstract—Deterministic and probabilistic are two approaches

to matching, commonly used in Entity Resolution (ER) systems.

While many users are familiar with writing and using Boolean

rules for deterministic matching, fewer are as familiar with the

scoring rule configuration used to support probabilistic

matching. This paper describes a method using deterministic

matching to “bootstrap” probabilistic matching. It also examines

the effectiveness of three commonly used strategies to mitigate

the effect of missing values when using probabilistic matching.

The results are based on the experiment using different sets of

synthetically generated data processed using the OYSTER open

source entity resolution system.

Keywords—Entity resolution; probabilistic matching;

deterministic matching; Boolean rules; scoring rule; missing

values

I. INTRODUCTION

The OYSTER open source entity resolution system
(https://bitbucket.org/oysterer/oyster/) was designed to
support both deterministic and probabilistic matching.
Probabilistic matching is performed using a scoring rule based
on agreement and disagreement weights [18]. Generating the
weights typically requires more effort and analysis than using
Boolean rules to implement deterministic matching. The
scoring rule is similar to the Boolean rule which specifies a
similarity function and optional data preparation function for
comparing the values of identity attributes between two entity
references [2], [3], [30]-[34]. The linking and review decision
for each pair of entity references is determined by setting up a
score threshold. Pairs scoring at or above the threshold are
linked, and those below are not linked. Moreover, pairs scoring
below the threshold, but above a user defined “review score”
are written to an exceptions report for clerical review and
possible remediation.

Each identity attribute has at least one agreement weight
and at least one disagreement weight. In some cases, there can
also be a third weight called a “missing weight” to be used
instead of the agreement or disagreement weight in the case
both values of the identified attribute are missing.

Basically, the power of the probabilistic matching is the
ability to assign weights to particular values of identity
attributes. Typically, individual weights are only assigned
when the identity attribute has an uneven distribution of value
frequencies, and then, only to the values with the highest
frequencies, e.g. the top 10% of frequencies. Value-frequency
weights are less effective for identity attributes with an even

distribution of value frequencies low frequencies such as dates-
of-birth or telephone numbers.

For example, in the context of a school system, if many
different students have the first name “Mary,” then the weight
of agreement for “Mary” should be smaller than the agreement
weight for a name used by only a few students, perhaps even
one student. In general, the magnitude of the weight is
proportionate to its ability to discriminate between references
to different students. Weight calculations are discussed in
detail in a later section of the paper.

Another advantage of the scoring rule is its natural support
for the “clerical review” or “link remediation” process. This is
a process by which pairs of references with minimal support
for linking are reported for manual review by domain experts.
This is easily done when using the scoring rule by simply
flagging any pair of references with a total score very close to
the match threshold, i.e., “near matches” for review. Although
very labor intensive, the clerical review is often implemented
in high-risk applications where high-levels of linking accuracy
are required, such as patient medical records.

The organization of this paper is as follows:

 Section II discusses prior work related to this study.

 Section III describes the “bootstrap” method for
creating a scoring rule.

 Section IV describes the calculation of the weights and
three missing value treatments approaches based on
that database by applying run of OYSTER is
configured invariants algorithm designed for feature
extraction.

 Section V gives the experimental results.

 Section VI compares results from Boolean Rules and
Scoring Rule

 Section VII and VIII summarizes the conclusions of
this work.

II. E LITERATURE REVIEW

Numerous systems have been used to solve some data
quality issue can problems weaken the effectiveness of
probabilistic matching [4], [5], [6]. One of the influential
methods is OYSTER algorithms. While OYSTER does include
the capability to implement probabilistic matching, many users
are not familiar with its setup and operation. The purpose of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

8 | P a g e

www.ijacsa.thesai.org

this paper is to provide a step-by-step guide for users interested
in experimenting with probabilistic matching using OYSTER.
Particularly, the matching outcome of the scoring rule is lower
when the sources have a high level of inconsistent value
representations, such as misspellings, aliases, especially
missing values. It should be noted here, while probabilistic
matching has the ability to significantly improve record linking
accuracy, it is not absolute. Certain data quality problems in the
reference data can impair the effectiveness of probabilistic
matching [10], [11], [19], [20]-[24]. In particular, the problems
of inconsistent representation of identity attribute values and
missing values have the most impact.

<ScoringRule Ident="Example1" MatchScore ="12" ReviewScore="11">

 <Term Item = "Fname" SIMILARITY="SoundexOrNickName"

AgreeWgt="11.27"
WgtTable="/Users/Alassad/Desktop/Oyster/LScoringIndex/Input/WgtTabl

eFirst.txt" DisagreeWgt="-8.30" />

 <Term Item ="Lname" SIMILARITY="Exact" DataPrep="Scan(LR,
Letter, 0, ToUpper, SameOrder)" AgreeWgt="4.20"

WgtTable="/Users/Alassad/Desktop/Oyster/LScoringIndex/Input/WgtTabl

eLast.txt" DisagreeWgt="-19.93"/>
 <Term Item="Nbr" SIMILARITY="Exact" DataPrep="Scan(LR,

DIGIT, 0, KeepCase, SameOrder)" AgreeWgt="10.42" DisagreeWgt="-

2.96"/>
 <Term Item="DOB" SIMILARITY="Exact" DataPrep="Scan(LR,

DIGIT, 0, KeepCase, SameOrder)" AgreeWgt="5.94" DisagreeWgt="-

1.31"/>
</ScoringRule>

Fig. 1. Example attributes script for scoring rule.

Figure 1 shows an example Attributes Script defining three
identity attributes “Fname” (student first name), “Lname”
(student last name), DOB (Date of Birth), and “Nbr” (street
number of student address). Each run of OYSTER is
configured by three XML Scripts: Run Script, Source
Descriptor, and Attributes Script. The Run Script sets the
overall purpose of the run called the “Run Mode.” The Run
Modes for OYSTER are

 Merge-Purge

 Identity Resolution

 Identity Capture

 Identity Update

 Reference-to-Reference Assertion

 Structure-to-Structure Assertion

 Reference-to-Structure Assertion

 Structure Split Assertion

The two Run Mode configuration relevant to this paper are
Merge-Purge and Identity Capture [3]. Both read a set of entity
references and link the references together according to the
match rule (either Boolean or Scoring) specified in the
Attributes Script and transitive closure. The only difference is
that Identity Capture also creates an Identity Knowledgebase
whereas Merge-Purge does not. Identity Capture is the first
step in using OYSTER for identity management applications
such as MDM [5], [9], [13], [16].

The Source Descriptor Script is used to define the source
and layout of the entity references to be linked by the system.
The Source Descriptor can describe several different file
sources including comma separated value (CSV) and fixed-
width field formats. Because the focus of this paper is on the
configuration of the Scoring in the Attributes Script, we will
always assume the Run Mode is Identity Capture and the
reference source is CSV.

III. GENERATING WEIGHTS AND CONFIGURING THE

SCORING RULE

A. Scoring Rule Configuration

The Attributes Script has two primary functions. The first is
to designate the identity attributes in the entity references being
processed. The second is to define how the identity attributes
are to be matched. OYSTER currently supports two types of
matching definitions, Boolean rules for deterministic matching
and the scoring rule for probabilistic matching [7], [8]. The
Scoring Rule configuration defines the Match Score to be 5
and the Review Score to be 4. All three of the identity
attributes are used in the scoring rule. The first <Term> of the
rule defines the agreement (“Similarity”) as
“SoundexOrNickName”. This means that two first names will
be in agreement if they generate the same SOUNDEX code
(e.g. “Philip” and “Phillip”) or if they are nicknames of each
other (e.g. “Robert” and “Bob”).

The first <Term> also defines a weight table for frequently
occurring first name values named “WgtTableFirst.txt”. The
weight table contains a set of key-value pairs. The key is the
attribute value, e.g. “Mary”, and the value is the corresponding
agreement weight, e.g. “4. In the weight table, the key and
value must be separated from each other by a single tab
character. When a weight table is given, the OYSTER logic is
as follows. If the values agree, then the table is searched for
both attribute values. Note: the lookup operation for attribute
values in the table is not letter case sensitive. If both attribute
values are found in the table, then it uses the larger of the two
agreement weights. If only one value is found, it uses the one
agreement weight found. If neither value is found, then it uses
the default agreement weight given in the <Term> element. In
this case, the default agreement weight is “9.08”. Of course, if
the attribute values disagree, then in the <Term> element the
disagreement weight of “2.45” is used.

The second <Term> element for “Lname” operates in much
the same way except that it uses a “DataPrep” function in
addition to a Similarity function. The DataPrep function is a
data transformation that is applied to the raw attribute value
and the result of the DataPrep transformation is passed to the
Similarity function. The DataPrep function used here is the
“SCAN” function. The parameters of the SCAN direct it to
search the characters of the attribute value from left-to-right
(LR), extract only letters (Letter), extract all letters found (0),
change all letters to upper case (ToUpper), and keep the letters
in the same order asthey were found (SameOrder). For
example, “O’Malley” and “OMalley” would both transform to
“OMALLEY”.

An important note about the use of weight tables: If a
DataPrep function is used in the <Term>, then the lookup key

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

9 | P a g e

www.ijacsa.thesai.org

used for the weight table is the output of the DataPrep
transformation function. If a DataPrep function is not used,
then the lookup key is the raw, untransformed attribute value
from the input file, but ignoring case. It is important to
understand this logic to properly construct an agreement
weight table. For example, if a <Term> were to define the
DataPrep function as “SOUNDEX”, then the keys defined in
the weight table for this <Term> should be SOUNDEX output
hash codes, not the input names. So, if the input value is
“John” and the DataPrep is SOUNDEX, then the system will
try to lookup for “J500” the SOUNDEX hash of “John” in the
table. On the other hand, if DataPrep is SCAN (Letters to
uppercase), then the system would try to lookup “JOHN” in the
weight table [12], [15], [29].

B. Selecting Identity Attributes

The first step in selecting identity attributes is to profile the
data. The primary candidates for identity attributes are those
that have a high completeness and high uniqueness score.
Attributes with low completeness or low uniqueness can be
used as a secondary identity attribute to support the primary
attributes.

The accuracy of the scoring rule is lower when the sources
have high levels of inconsistent value representations
(misspellings, aliases, etc.) and missing values. Also be sure to
watch for placeholder values. These can bias the weight
calculations.

The best candidates for value-level weights are identity
attributes with an uneven distribution of the value frequencies,
e.g. like names where several have high frequencies and many
other have low frequencies. Attributes with evenly distributed
values are best assigned only attribute-level weights

C. Linking the Records using Another Process

The calculation of the agreement and disagreement weights
follows the method developed by Fellegi and Sunter (1969). In
their method, the agreement weight is based on the ratio of two
conditional probabilities. The probability equivalent references
will agree on the attribute or attribute value divided by the
probability non-equivalent references will agree on the
attribute or attribute value. The problem is that we don’t know
which references are equivalent, i.e. are referencing the same
entity. In fact, if it were already known which references were
equivalent and non-equivalent then there would be no purpose
in setting up the matching rules.

One solution to this problem it to manually determine the
correct linking for some subset of the data, i.e. create a “truth
set”. However, this can be exact costly in terms of time and
effort. A second solution is to approximate the true linking
with another ER process. For this paper, we follow the second
solution by running OYSTER with a set of Boolean
(deterministic) rules. The clusters created by this process are
then assumed to be the equivalent references for the purpose of
calculating the agreement and disagreement weights.

D. Calculating Weights

From cluster profile of the Boolean linking process (found
in the OYSTER .log file), calculate the total number of
equivalent pairs and total number of non-equivalent pairs.

This is done by taking each line of the cluster profile and
calculating the number of pairs based on the cluster size. For
example, if the profile has 8 clusters of size 5, then each cluster
of size 5 represents (5x (5-1)/2 = 10 equivalent pairs

Next multiple is the number of pairs in each cluster by the
number of clusters. For example, if there are 10 cluster of size
5, then 8 x 10 = 80 equivalent pairs

Sum these count for each line in the cluster profile to get
the total number of equivalent pairs. Let E represent this
number.

Calculate the total number of possible pairs by taking the
file size (total number of records) N and calculating N x (N-
1)/2. Let T represent this number. For example, if the file
contains 100 records, the T = 100x99/2 = 4,950 pairs

Calculate the total number of non-equivalent pairs by
subtracting the total number of equivalent pairs found from the
cluster profile from the total number of possible pairs. Let U
represent this number, i.e.

U = T – E.

Next, join the Link File output from the OYSTER Boolean
rule output (. link file) back to the source data by record
identifier. This will create a new file called the weight analysis
table. Each row of the weight analysis table should have a
column for the

 Record identifier

 OYSTER identifier

 Value of each identity attribute in the record

Next, select the first identity attribute to process. Create a
new column in the weight analysis table to hold the
standardized value of the first attribute. Standardization is the
process of removing variation from the values of the selected
attribute. At a minimum you should convert all names to upper
case letters so that "ANN" and "Ann" will come together.

If you want to remove even more variation, you could
replace the name with the SOUNDEX code, NYSIIS, or other
phonetic hash code. If you are planning to use a weight table,
please read the previous section on Weight Table Logic. The
setup of your weight table depends upon whether you use
SOUNDEX for DataPrep or for Similarity. For example,
SOUNDEX would make "ANN" and "ANNE" group together.
If you used SOUNDEX for the Similarity, then you still have
to keep the original name value together with its standardized
or hashed value to populate the weight table. In the current
implementation of the Scoring rule, if you use DataPrep, it
looks up the DataPrep value in the table, but if you don’t use
DataPrep it looks up the source value while ignoring case. So if
you are calculating value-level weights using SOUNDEX or
some other hash, it will be simpler if you use the hash function
as the DataPrep so that the keys in the weight table are also
hash values.

After creating the column of standardized values for the
attribute in the weight analysis table, do a primary sort of the
table by the standardized value of the attribute, and a secondary
sort by the OYSTER identifier. This will give you groups of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

10 | P a g e

www.ijacsa.thesai.org

consecutive rows with the same standardized value, and at least
one subgroup with the same OYSTER identifier. If it only has
one subgroup, then the group and subgroup are the same.

For the first subgroup, count the number of records having
the same standardized value and same OYSTER identifier. Call
this number A1V1N1 for Column 1, Value 1, Number of rows
in Subgroup 1.

Now, calculate the number of equivalent pairs agreeing on
standardized value V1 for this subgroup. Call this number
C1V1E1 meaning Column 1, Value 1, Equivalent pairs in
Subgroup 1. A1V1E1 is calculated by

A1V1E1 = A1V1N1 x (A1V1N1-1)/2

If there is more than one subgroup for standardized value
V1, repeat this calculation for each subgroup of V1. If there is
a second subgroup, then C1V1N2 would represent Value 1,
Number of rows in Subgroup 2. The second subgroup would
contribute another

C1V1E2 = C1V1N2 x (C1V1N2-1)/2

Equivalent pairs agreeing on V1.

Calculate the total number of equivalent pairs agreeing on
V1 (call this number C1V1E) by summing the equivalent pairs
for all subgroups, i.e.

C1V1E = C1V1E1 + C1V1E2 + ….

Next calculate the total number of pairs agreeing on the
first standardized value V1 in Column 1 by counting the
number of rows having the same standardized value V1. Call
this value C1V1N. Note V1N should be the same as the sum of
count of each subgroup, i.e.

C1V1N = C1V1N1 + C1V1N2 + …

The total pairs agreeing on V1 (call this C1V1A) is
calculated by

C1V1A = C1V1N x (C1V1N-1)/2.

Next calculate the number of non-equivalent pairs agreeing
on value V1 (call this value C1V1U). This number is
calculated by

C1V1U = C1V1A – C1V1E.

For example, suppose C1 is the first name attribute, and if
C1V1 is the standardized value “JOHN” and there are 5
records with this values that standardize to “JOHN” such as
“John” or other variations. Suppose there are 2 subgroups of
this value. The first attribute C1 has been selected for attribute-
level or value-level weights, we need to make some other
calculations for the entire attribute.

The first is the attribute’s overall disagreement weight D.
This is done by repeating the previous steps for all of the
values of the attributes. In particular, we need to Sum all pairs
agreeing on the values of C1, as

C1A = C1V1A + C1V2A + …

Sum all equivalent pairs agreeing on the values of C1, as

C1E = C1V1E + C1V2E + …

Calculate the number of non-equivalent pairs agreeing on
the values of C1, as

C1U = C1A – C1E

Then the

Disagree Weight C1

= log2{(1 – (C1E/E)) x (U/(1 - C1U))}

The agreement weight for C1 will depend upon whether it
will have value-level weights or only a single attribute-level
agreement weights. If there is only one agreement weight for
the entire attribute C1, then it is calculated as

Agree Weight C1 = log2{(C1E/E) x (U/(C1U)}

using the same numbers as described above.

However, in the case of value-level weights, then formula
is the same, but the values of C1E and C1U should only be the
sum of the pair counts for the values not used for individual
weight calculations. In other words,

C1A = C1VxA + C1VyA + …

where Vx is a value of C1 not given an individual weight,
and Vy is a value of C1 not given an individual weight and so
on. Another way to look at this is to think of removing the
frequent values from the weight analysis table and calculating
the overall agreement weight for the remaining values.

The same process described above is repeated for every
identity attribute.

E. Constructing the OYSTER Scoring Rule

Following the same example, as shown in Figure 1, each
one of the attributes from the weight analysis table will be used
to define a <Term> in the Scoring Rule. The attribute name
will be the value for the Item in the <Term>

For the <Term>, define a DataPrep and Similarity function
in alignment with the DataPrep and Similarity functions used
in the Boolean rules. Even though the scoring rule will allow
you to use the same attribute in more than one scoring rule
<Term>, we recommend only using each attribute once to
define a <Term> in the Scoring Rule with one Similarity
Function and one optional DataPrep function.

If a scoring rule <Term> defines only attribute-level
weights, then the agreement weight (AgreeWgt value) should
be set to the overall agreement weight as calculated in the
previous section. Similarly, the disagreement weight
(DisagreeWgt value) should be set to the overall disagreement
weight for the attribute.

A <Term> can also define an optional Missing weight. The
Missing weight is added to the overall score instead of the
AgreeWgt or DisagreeWgt values whenever both of the values
being compared are missing. Although the missing weight is
often set to zero, it is possible to calculate a weight by treating
“missing” as a value just as you would a normal name value.

While more formal research is needed to determine the best
strategy for scoring missing values, there is some preliminary
evidence the best strategy is to not assign a special value for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

11 | P a g e

www.ijacsa.thesai.org

missing value agreements. If no Missing weight value is given,
then the DisagreeWgt value will be used if either or both
values of the attribute are missing.

If a scoring rule term uses value-level weights, then the
AgreeWgt value should be set to the overall agreement weight
for only the rows in weight analysis not used to calculate
individual value weights. On the other hand, the disagreement
weight is still calculated as the overall disagreement weight for
all values of the attribute. In addition, a <Term> using value-
level weights must use the value of WgtTable to define a path
to the text file containing the agreement weights to be used for
the frequently occurring values. The weight table is simple.
Each row should only have an attribute value followed by only
ONE-tab character followed by the agreement weight. Any
rows starting with two exclamation marks (!!) are ignored as
comments.

In addition to setting the parameters for each <Term> item,
the match score (MatchScore value) must be set at the
<ScoringRule> level. An optional review score (ReviewScore
value) value can also be set. The review score is a value less
than match score. When a pair of references generates a score
less than the match score, but greater than or equal to the
review score, the two references will be written to a Clerical
Review report. The purpose of the clerical review is to allow
the user to see the pairs of references scoring just below the
match score and determine if they are true negative pairs or
false negative pairs.

If the review score is not given, then no clerical review
report will be produced. If a review score is given, it should not
be set too far below the match score. If too many pairs are
written to the Clerical Review Report, it may significantly
degrade the performance of the system. The goal is to only
produce and review pairs of records scoring close to the value
of the match score.

On exception to this rule is when using the Clerical Report
for analysis and quality assurance. By running the scoring rule
with a small test file, setting the match threshold actual high,
and the review score low, every pair of references will be
written to Clerical Review Report. This allows the user to
analyze and check the scores being generated for every pair of
references in the test file.

F. Setting the Optimal Match Score

The final parameters needed to create a complete scoring
rule are setting an optimal match score. The value assigned to
the MatchScore attribute in the <ScoringRule> term
determines the linking performance of the system.

As the match score increases, the scoring rule will link
fewer references resulting in higher precision and lower recall.
Conversely, decreasing the match score will link more
references resulting in lower precision and higher recall. At the
extremes, if the match score is set so high that no pair of
records can be linked, the precision will be 100% but the recall
will be 0%. Conversely, if the match score is set so low that all
records are linked, the precision will be 0% and the recall will
be 100%. In both cases, the F-measure will be 0.0.

The balance between the precision and recall is the F-
measure calculated as the harmonic mean of the precision and
recall values. For some applications, the precision may be more
important than recall, and the optimal threshold may not be the
value producing the highest F-measure, but instead, the
necessary level of precision. Other applications may favor
recall over precision. For research described here, the threshold
value producing the highest F-measure is considered optimal.

The review score and Clerical Review Report can be
important tools in adjusting the value of the match score. It
allows the user to examine pairs of records scoring just below
the match score and possibly provide evidence for decreasing
or increasing the match score value.

There is no formula for setting the Match Score. It is
typically adjusted by trial and error. To start, review the output
of the Boolean rule process and select a cluster containing
several records, then extract these records from the source file
to create a new test file containing only the records from one
cluster. As described earlier, set the match score high and the
review score low. Also, omit the Index so that every pair of
records in the input will be compared, scored, and written to
the Clerical Review Report.

The scores from the report can be used as the starting point
for setting the match score. The reasoning is as follows: If the
Boolean rules linked these records into a single cluster, then
the scoring rule should link these records as well. Estimate the
starting match score as the average of all the scores generated
by the cluster. To improve the starting estimate, repeat the
same process for other clusters linked by the Boolean rules,
and include these scores in the average.

The reason for starting with the average score and not the
minimum score is that not every pair of records in a cluster
necessarily matches. Some records come into the cluster
through transitive closure. So even if a cluster contains records
A, B, and C. It may be because A matched with B, and B
matched with C, while it may not be true that A matched with
C. Setting the match score low enough for A and C match in
the scoring rule may create a large number of false positive
links. A better estimate is the average score.

G. Indexing the Scoring Rule

The scoring rule must have an index (inverted index
blocking) when the reference source contains more than a few
hundred records. Otherwise, the runtime will be unacceptable.
The problem is that aligning the indices to a scoring rule is
more complicated than aligning indices to a Boolean Rule. For
Boolean rules, you can inspect each rule (AND clause), and as
long as the rule uses at least one hash function comparator,
then it is possible to design an index in alignment with the rule.

In general, indices for Scoring Rules are less precise than
for Boolean Rules. Rather than a single index on First-Name +
Last-Name+ Street-Number, you might instead have three
separate indices, one for First-Name, another index for Last-
Name, and another for Street-Number. The downside to the
strategy of indexing each attribute separately is that the list of
match candidates will be larger for each input reference,
causing more comparisons, and slower performance.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

12 | P a g e

www.ijacsa.thesai.org

Another method for designing the index is a more complex
analysis. If the scoring rule uses N attributes, then generate all
possible combinations of agreement and disagreement weights
as N-dimensional vectors of ordered pairs. The ordered pair for
each dimension would represent a combination of Agree or
Disagree together with the corresponding weight. For example,
if there are three attributes, the vectors would look like [(A,
120), (D, -30), (A, 50)] where (A, 120) represents agreement
on the first attribute with a score of 120, (D, -30) represents a
disagreement on the second attribute with a score of -30, and
(A, 50) agreement on the third attribute with a score of 50.

As you can see, there can be a great many of these vectors
when there are value-level weights. For example, if the first
<Term> has a table of 20 value agreement weights, plus the
default agreement, and default disagreement. This would be a
total of 22 possible weights for the first attribute. If these
second attribute has 32 weights, and the third attribute has 3
weights, then there are 22 x 32 x 3 = 2,112 possible weight
vectors.

Next, compute the total score (sum of the weights) for each
vector and classify the vectors into 2N categories according to
agreement/disagreement patterns similar to those used by
Fellegi and Sunter [1]. As in the previous example where N=3,
then there would be 8 (23) pattern categories: “DDD”, “DDA”,
“DAD”, “DAA”, “ADD”, “ADA”, “AAD”, and “AAA”. Next,
create an analysis file by generating an ordered pair for each
vector where the first element is the agreement pattern and the
second element the total score. Using the previous example for
the vector [(A, 120), (D, -30), (A, 50)] the total score is 140.
This vector would produce the pair (ADA, 140).

Finally, sort all of the ordered pairs according to their
match scores. For any given choice of a match score, such as
the starting estimate, you can now see all of the agreement
patterns above and below that score. Suppose in this example
that for a selected match score, all of the patterns above this
score are “AAD”, “DAA”, or “AAA”. From this information
you can design two indices to support the scoring rule for this
match score. One index is a combination of the first and second
attributes and the second index a combination of the second
and third attributes. From an indexing standpoint, the pattern
“AAA” is redundant to the first two patterns of “AAD” and
“DAA”, i.e. any candidate returned by indexing on all three
attributes would also be returned by indexing on two elements.
However, the index solution just described will only provide
alignment when all of the attributes a hash function for
comparison, such as SOUNDEX or SCAN(), which can also be
used for indexing.

H. Assessing Performance and Adjusting Match Score

You can use the Review Score setting to generate the
Clerical Review Report. This will let you examine “near”
matches and decide if you need to lower the Match Score.
However, this approach does not show you possible false
positive linking of pairs above the Match Score.

IV. EXAMPLE

The following example gives more detail on the calculation
of the weights used for the Scoring rule given in Figure 1 as
well as the performance of its linking with various MatchScore

settings as shown in Figure 4. The weight calculations and
performance measures are based on a test file of 141,745
synthetic person references known as ListB. The ListB
reference were created in previous research [24]-[28] in a way
that the correct linking is known. This allows the precision and
recall to be immediately calculated for any given ER process.

Even though the true linking for ListB is known, it was not
used to calculate the probabilistic weights for this example.
The true linking was only used to evaluate the precision and
recall of the linking results. The weights were calculated by
bootstrapping the scoring rule from Boolean linking as
described earlier. Given a set of entity references in the real
world, exactly which pairs of references are equivalent is not
known. The process starts by selecting the identity attributes
and linking the references with a reasonable set of Boolean
(deterministic) rules to serve as a “surrogate truth set” for
generating probabilistic weights. The OYSTER Attributes
script used to define the starting Boolean rules is shown in
Figure 2.

<OysterAttributes System = "IndexTestWith">
 <Attribute Algo="none" Item="Fname"/>

 <Attribute Algo="none" Item="Lname"/>

 <Attribute Algo="none" Item="Nbr"/>
 <Attribute Algo="none" Item="DOB"/>

<!-- -->

<Indices>
 <Index Ident="X1">

 <Segment Item="Lname"

Hash="SCAN(LR,LETTER,0,ToUpper,SameOrder)"/>
 <Segment Item="Nbr"

Hash="SCAN(LR,DIGIT,0,ToUpper,SameOrder)"/>
 </Index>

 <Index Ident="X2">

 <Segment Item="Lname"
Hash="SCAN(LR,LETTER,0,ToUpper,SameOrder)"/>

 <Segment Item="DOB"

Hash="SCAN(LR,DIGIT,0,KeepCase,SameOrder)"/>
 </Index>

</Indices>

<IdentityRules>
 <Rule Ident="1">

 <Term Item="Fname"

SIMILARITY="SOUNDEXORNICKNAME"/>
 <Term Item="Lname"

SIMILARITY="SCAN(LR,LETTER,0,ToUpper,SameOrder)"/>

 <Term Item="Nbr"
SIMILARITY="SCAN(LR,DIGIT,0,ToUpper,SameOrder)"/>

 </Rule>

 <Rule Ident="2">
 <Term Item="Fname"

SIMILARITY="SOUNDEXORNICKNAME"/>

 <Term Item="Lname"
SIMILARITY="SCAN(LR,LETTER,0,ToUpper,SameOrder)"/>

 <Term Item="DOB"

SIMILARITY="SCAN(LR,DIGIT,0,ToUpper,SameOrder)"/>

 </Rule>

 </IdentityRules>

</OysterAttributes

Fig. 2. Boolean rule configuration for processing ListB.

The Boolean rules shown in Figure 2 uses First Name, Last
Name, Street Number, and Date-of-Birth. The rules as
configured here produced a linking results with a Precision of
0.9800, Recall of 0.5064, and F-Measure of 0.6677.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

13 | P a g e

www.ijacsa.thesai.org

Figure 2 also shows the inverted index blocking used for
this rule set. Note that the first index (X1) is in alignment with
both Boolean rules (1 and 2). Any pair of references matching
by either rule would also produce the same match key by this
index. The two terms of the index correspond exactly to the
second and third terms of both the rules. This is possible
because hash functions such as SCAN () can be used as both a
comparator (True if both hash values agree) and a match key
generator (hashing one string into another string). On the other
hand, the comparator function NICKNAME used in the second
Boolean rule (Ident=2) is a true similarity function requiring
two strings as input while producing a Boolean True or False
output. Because similarity functions do not produce a hash
output, they cannot be used for inverted indexing using hash
keys.

Following the weight calculation steps outlined in the
previous section, ListB was profiled and individual agreement
weights were calculated for the most frequently occurring
Fname and Lname values. In this case, the top 10% of the high
frequency names were selected. Figure 3 shows some of the
entries in the weight table for Lname. Note that many of the
names were only given as initials as illustrated by the first
entry “A”, and the file also contained many typographical
errors, e.g. “ADASM” a typing transpose of “ADAMS”.

Fig. 3. Lname agreement weights.

Figure 4 also shows the performance of its linking with
various MatchScore settings. After removing the top 10% of
the most frequent first name values, the agreement weight for
the remaining names was calculated as 11.27. The
disagreement weight for all first name values was -8.30.
Similarly, after removing the top 10% of last name values, the
agreement weight for the remaining last names was calculated
as 4.20, and the disagreement for all Last Name values was -
19.93. Because the street number values and date-of-birth
values were somewhat evenly distributed, only the overall
agreement and disagreement weights were calculated these
attributes. For street number the values were 10.42 and -2.96,
respectively, and for date-of-birth the values were 5.94 and -
1.31, respectively.

<OysterAttributes System="School">

 <Attribute Algo="none" Item="Fname"/>

 <Attribute Algo="none" Item="Lname"/>

 <Attribute Algo="none" Item="Nbr"/>

 <Attribute Algo="none" Item="DOB"/>

<!-- -->

<ScoringRule Ident="Example1" MatchScore ="12"

ReviewScore="11">

 <Term Item = "Fname" SIMILARITY="SoundexOrNickName"

AgreeWgt="11.27"

WgtTable="/Users/Alassad/Desktop/Oyster/LScoringIndex/Input/Wg

tTableFirst.txt" DisagreeWgt="-8.30" />

 <Term Item ="Lname" SIMILARITY="Exact"

DataPrep="Scan(LR, Letter, 0, ToUpper, SameOrder)"

AgreeWgt="4.20"

WgtTable="/Users/Alassad/Desktop/Oyster/LScoringIndex/Input/Wg

tTableLast.txt" DisagreeWgt="-19.93"/>

 <Term Item="Nbr" SIMILARITY="Exact"

DataPrep="Scan(LR, DIGIT, 0, KeepCase, SameOrder)"

AgreeWgt="10.42" DisagreeWgt="-2.96"/>

 <Term Item="DOB" SIMILARITY="Exact"

DataPrep="Scan(LR, DIGIT, 0, KeepCase, SameOrder)"

AgreeWgt="5.94" DisagreeWgt="-1.31"/>

</ScoringRule> <Indices>

 <Index Ident="X1">

 <Segment Item="Fname" Hash="SOUNDEX"/>

 <Segment Item="Lname"

Hash="SCAN(LR,LETTER,0,ToUpper,SameOrder)"/>

 <Segment Item="Nbr"

Hash="SCAN(LR,DIGIT,0,KeepCase,SameOrder)"/>

 </Index>

 <Index Ident="X2">

 <Segment Item="Fname" Hash="SOUNDEX"/>

 <Segment Item="Lname"

Hash="SCAN(LR,LETTER,0,ToUpper,SameOrder)"/>

 <Segment Item="DOB"

Hash="SCAN(LR,DIGIT,0,KeepCase,SameOrder)"/>

 </Index>

 <Index Ident="X3">

 <Segment Item="Fname" Hash="SOUNDEX"/>

 <Segment Item="Nbr"

Hash="SCAN(LR,DIGIT,0,KeepCase,SameOrder)"/>

 <Segment Item="DOB"

Hash="SCAN(LR,DIGIT,0,KeepCase,SameOrder)"/>

 </Index>

 <Index Ident="X4">

 <Segment Item="Lname"

Hash="SCAN(LR,LETTER,0,ToUpper,SameOrder)"/>

 <Segment Item="Nbr"

Hash="SCAN(LR,DIGIT,0,KeepCase,SameOrder)"/>

 <Segment Item="DOB"

Hash="SCAN(LR,DIGIT,0,KeepCase,SameOrder)"/>

 </Index>

 </Indices>
</OysterAttributes>

Fig. 4. Final scoring rule with blocking.

V. TESTING AND RESULTS

Table 1 shows the details of precision, recall and F-measure
comparison between scoring rule results. Figure 5 is the line
chart specifically compares the F-measure performance.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

14 | P a g e

www.ijacsa.thesai.org

TABLE I. COMPARE THRESHOLD SCORE RULE RESULTS

 Score Rule

Threshold Precision Recall F-Measure

-20 0.79 0.72 0.75

-15 0.9 0.72 0.8

-10 0.91 0.72 0.8

-5 0.91 0.72 0.8

0 0.93 0.71 0.81

5 0.93 0.64 0.76

10 0.95 0.59 0.73

15 0.98 0.56 0.71

20 0.98 0.48 0.65

VI. COMPARISON OF RESULTS

Table 2 shows the scoring rule using weights computing
from Boolean rule linking can outperform the initial set of
Boolean rules. In this example, a 20% improvement in F-
measure with significantly higher precision

TABLE II. SUMMARY OF RESULTS

 Rule- Generation

Precision Recall F-Measure

Boolean

Rule
0.6677 0.5064 0.6677

Scoring Rule 0.93 0.71 0.8014

Fig. 5. Scoring rule performance for different thresholds.

VII. CONCLUSION AND FUTURE WORK

The bootstrap process described in this paper allows
researchers to configure a probabilistic entity resolution engine
using OYSTER by taking advantage of its ability execute both
Boolean rules and the scoring rule with frequency-base
weights. It also shows the amount of tuning required to get
good results from probabilistic matching due to the large
number of variable including the

 Choice of identity attributes

 Comparators used for the identity attributes

 Choice of identity attributes for frequency-based value
weights

 Number of values selected for individual weights

 Match score selection

 Impact and treatment of missing values

 Impact and treatment of inconsistent values

At the same time, these variables create the opportunity for
additional research including the use of both, agreement and
disagreement weights at the value level, analysis tools for
setting optimal match scores, the treatments to mitigate the
effect of missing values, and the optimal frequency cutoff for
frequency-based value weights.

Another avenue of research is based on repeating the
bootstrapping process. Just as the Boolean linking results can
be used as a proxy for equivalence to generate weights for a
scoring rule, the linking of the scoring rule itself can be used to
generate a second set of weights, and so on. Will the weight
generated from on-scoring rules output allow the construction
of another scoring rule that will always outperform its
predecessor? [14], [17], [18].

REFERENCES

[1] Fellegi, I. P., & Sunter, A. B. (1969). A theory for record linkage.
Journal of the American Statistical Association, 64(328), 1183-1210.

[2] Zhou, Y., Talburt, J.R., Kobayashi F., and Nelson E. (2012).
Implementing Boolean matching rules in an entity resolution system
using XML scripts. The 2012 International Conference on Information
and Knowledge Engineering (IKE’12), Las Vegas, Nevada, July 16-29,
2012 (pp. 332-337).

[3] Agichtein, E., & Ganti, V. (2004). Mining reference tables for automatic
text segmentation. Proceedings of the Tenth ACM SIGKDD
international conference on Knowledge discovery and data mining (pp.
20-29). ACM.

[4] Christen, P. (2012). Data matching: concepts and techniques for record
linkage, entity resolution, and duplicate detection. Springer Science &
Business Media.

[5] Benjelloun, O., Garcia-Molina, H., Kawai, H., Larson, T. E.,
Menestrina, D., Su, Q., ... & Widom, J. (2006). Generic entity resolution
in the serf project. Stanford InfoLab.

[6] Kobayashi, F., Eram, A., & Talburt, J. (2018). Entity resolution using
logistic regression as an extension to the rule-based oyster system.
Proceedings 2018 IEEE Conference on Multimedia Information
Processing and Retrieval (MIPR) (pp. 146-151).

[7] Wang, P., Pullen, D., Talburt, J. R., & Wu, N. (2014). Probabilistic
Matching Compared to Deterministic Matching for Student Enrollment
Records. Proceedings Information Technology: New Generations
(ITNG), (pp. 355-359).

[8] Kobayashi, F. & Talburt, J.R. (2013) Probabilistic Scoring Methods to
Assist Entity Resolution Systems Using Boolean Rules, The 2013
International Conference on Information and Knowledge Engineering
(IKE’13), Las Vegas, Nevada, July 22-25, 2013, CSREA Press (pp. 101-
107).

[9] Whang, S. E., & Garcia-Molina, H. (2010). Entity resolution with
evolving rules. Proceedings of the VLDB Endowment, 3(1-2), 1326-
1337.

[10] Bilenko, M., Kamath, B., & Mooney, R. J. (2006). Adaptive blocking:
Learning to scale up record linkage. In Data Mining, 2006. Proceedings
Sixth International Conference on Data Mining ICDM'06. (pp. 87-96).

[11] Elmagarmid, A. K., Ipeirotis, P. G., & Verykios, V. S. (2007). Duplicate
record detection: A survey. IEEE Transactions on Knowledge and Data
Engineering, 19(1), 1-16.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

15 | P a g e

www.ijacsa.thesai.org

[12] Koybayashi, F. & Talburt, J.R., Oyster Version 3.6 Reference Guide,
https://bitbucket.org/oysterer/oyster/downloads/

[13] Talburt, J. R., Zhou, Y., & Shivaiah, S. Y. (2009). SOG: A Synthetic
Occupancy Generator to Support Entity Resolution Instruction and
Research. Proceedings International Conference on Data Quality
(ICIQ-09), pp. 91-105.

[14] Wang, P., Pullen, D., Talburt, J., & Wu, N. (2014) Iterative approach to
weight calculation in probabilistic entity resolution. 19th MIT
International Conference of Information Quality, August 1-3, 2014,
Xi’an, China, (pp. 244-258).

[15] Zhou, Y. & Talburt, J. (2011) The role of asserted resolution in entity
identity information management, Proceedings: 2011 Information and
Knowledge Engineering Conference (IKE 2011), Las Vegas, NV, July
18-20, 2011 (pp. 291-296).

[16] Hashemi, R., Ford, C., Vanprooyan, T., & Talburt, J. (2002). Extraction
of features with unstructured representation from HTML documents. In
P. Isaias (Ed.), International Association for Development of
Information Society (IADIS) International Conference on WWW/Internet
2002 (pp. 47- 53). Lisbon, Portugal.

[17] Herzog, T. N., Scheuren, F. J., & Winkler, W. E. (2007). Data quality
and record linkage techniques. Springer Science & Business Media.

[18] Hernández, M. A., & Stolfo, S. J. (1995). The merge/purge problem for
large databases. ACM Sigmod Record (Vol. 24, No. 2, pp. 127-138).

[19] Pushkarev, V., Neumann, H., Varol, C., & Talburt, J. R. (2010). An
Overview of Open Source Data Quality Tools. Proceedings of the
International Conference on Information and Knowledge Engineering
IKE (pp. 370-376).

[20] Talburt, J., Wang, R., Hess, K., & Kuo, E. (2007). An algebraic
approach to data quality metrics for entity resolution over large datasets.
In Information quality management: Theory and applications (pp. 1-22).
IGI Global.

[21] Dong, X., Halevy, A., & Madhavan, J. (2005). Reference reconciliation
in complex information spaces. Proceedings of the 2005 ACM SIGMOD
international conference on Management of data (pp. 85-96).

[22] J. Talburt, "Oyster v3.3 Reference Guide 2013 03 18:
http://downloads.sourceforge.net/project/oysterer/OYSTER_3.3/.
[Accessed 16 July 2015].

[23] Talburt, J. R. (2011). Entity resolution and information quality. Morgan
Kaufmann.

[24] F. Kobayashi and J. R. Talburt, Decoupling Identity Resolution from
the Maintenance of Identity Information. Proceedings: International
Conference on Information Technology (ITNG), Las Vegas, NV, 2014.
(pp. 349-354).

[25] Newcombe, H. B., Kennedy, J. M., Axford, S. J., & James, A. P.
(1959). Automatic linkage of vital records. Science, 130(3381), 954-959.

[26] Zhou, Y. (2012). Modeling and design of entity identity information in
entity resolution systems. Doctral Dissertation. University of Arkansas
at Little Rock.

[27] Syed, H., Talburt, J., Liu, F., Pullen, D., & Wu, N. (2012, January).
Developing and refining matching rules for entity resolution.
Proceedings of the International Conference on Information and
Knowledge Engineering (IKE) (p. 1).

[28] Talburt, J. R., & Zhou, Y. (2015). Entity information life cycle for big
data: Master data management and information integration. Morgan
Kaufmann.

[29] Pullen, D., Wang, P., Talburt, J. & Wu, N. (2014) Mitigating data
quality impairment on entity resolution errors in student enrollment data.
11th International Conference on Information and Knowledge
Engineering, July 21-24, 2014, Las Vegas, NV, (pp. 96-100).

[30] Wang, R. Y., & Strong, D. M. (1996). Beyond accuracy: What data
quality means to data consumers. Journal of management information
systems, 12(4), 5-33.

[31] Talburt, J., Wu, N., Pierce, E., & Hashemi, R. (2007). Entity
identification using indexed entity catalogs. In H.R. Arabnia & R.R.
Hashemi (Eds.), The 2007 International Conference on Information and
Knowledge Engineering (pp. 338-342). Las Vegas, NV: CSREA Press.

[32] Benjelloun, O., Garcia-Molina, H., Menestrina, D., Su, Q., Whang, S.
E., & Widom, J. (2009). Swoosh: a generic approach to entity
resolution. The VLDB Journal—The International Journal on Very
Large Data Bases, 18(1), 255-276.

[33] Zhou, Y., Talburt, J. R., Su, Y., & Yin, L. (2010). OYSTER: A tool for
entity resolution in health information exchange. Proceedings of the 5th
International Conference on Cooperation and Promotion of Information
Resources in Science and Technology (pp. 358-364).

[34] Wang, R.Y., 1998. A product perspective on total data quality
management. Communications of the ACM 41 (2), 58-65.

