
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

141 | P a g e

www.ijacsa.thesai.org

Implicit Thinking Knowledge Injection Framework

for Agile Requirements Engineering

Kaiss Elghariani
1
, Nazri Kama

2
, Nurulhuda Firdaus Mohd Azmi

3
, Nur Azaliah Abu bakar

4

Razak Faculty of Technology and Informatics

Universiti Teknologi Malaysia

Kuala Lumpur, Malaysia

Abstract—Agile has become commonly used as a software

development methodology and its success depends on face-to-face

communication of software developers and the faster software

product delivery. Implicit thinking knowledge has considered as

a very significant for organization self-learning. The main goal of

paying attention to managing the implicit thinking knowledge is

to retrieve valuable information of how the software is developed.

However, requirements documentation is a challenging task for

Agile software engineers. The current Agile requirements

documentation does not incorporate the implicit thinking

knowledge with the values it intends to achieve in the software

project. This research addresses this issue and introduce a

framework assists to inject the implicit thinking knowledge in

Agile requirements engineering. An experiment used a survey

questionnaire and case study of real project implemented for the

framework evaluation. The results show that the framework

enables software engineers to share and document their implicit

thinking knowledge during Agile requirements documentation.

Keywords—Software development methodology; agile

methodology; requirements engineering; requirements

documentation; and implicit thinking documentation

I. INTRODUCTION

The implicit thinking knowledge has become very
significant issue for researchers. The number of researches
have been increased since that the implicit thinking knowledge
considered as a primary key of success through the ability of
team members to create and share their implicit thinking
knowledge in software product. This consideration has
attracted researchers in investigating the ways in which implicit
thinking knowledge can be successfully captured, identified,
categorized, shared, and documented. The topic of
documenting the implicit thinking knowledge has arisen to
address this need. Thus, a few knowledge frameworks
designed to define practices related to knowledge.
Consequently, in Agile methodology, software requirements
are defined and documented in the form of user story cards.
Besides, as one of Agile features that a clear discussing about
user requirements is conducting by having a regular meeting
[14], for example, in Scrum approach every day meeting is
conducted to have to check the requirements implementation
for maintaining the iterations. Traditional software
development methodologies are focus more on documenting
all software development phases while Agile methodology
does not provide comprehensive documentation. Knowledge is
easily and explicitly captured in traditional software
development methodologies while the Agile methodology

deals with implicit thinking knowledge. The implicit thinking
knowledge is kept in the software developers‘ minds [17]. The
most critical part of capturing the implicit thinking knowledge
is to retrieve the implicit thinking knowledge from their minds,
so as to incorporate the right knowledge at the right
requirement when needed and to encourage innovation.

Agile methodology has few inherent practices that assist
sharing experiences software developers‘ knowledge during
developing the software, for instance, some of Agile practices
helps the process to overcome the challenges of capturing
implicit thinking knowledge such as pair programming, face-
to-face communication and [12]. The frequent interaction
among Agile software developers provides an environment that
supports the implicit thinking knowledge sharing and
cooperative knowledge detection. In addition, implicit thinking
knowledge might be feast more efficiently by documenting the
face-to-face communication than and stored in databases to be
retrieved by knowledge workers [3].

The mentioned practices help to manage knowledge. Also,
other approaches for capturing implicit thinking knowledge
requires more consideration. This paper proposes a framework
injects the implicit thinking knowledge of software engineers
in Agile requirements documentation (IITKARD).

A quantitative method such as survey questionnaire has
been used in a case study of a real software project for a
purpose of the framework evaluation. During the experiment,
software requirements used in a real software project converted
into user Agile user story cards as a form of Agile requirements
engineering. In order to improve the efficiency and usability of
findings, a survey questionnaire has been conducted to collect
data from focus group of Agile software engineering experts.
Therefore the results of the survey have to evaluate the
efficiency and the usability of the proposed framework and its
usefulness in Agile software methodology.

The proposed implicit thinking knowledge injection
provides a systematic process for Agile software engineering
during the requirements engineering phase to inject their
implicit thinking knowledge in Agile requirements
documentation. The framework will provide a systematic
process to successfully address the issue of neglecting of
implicit thinking knowledge in Agile requirements
engineering. This paper divided into five sections, firstly
section 2, which discusses the implicit thinking knowledge and
Agile requirements engineering, followed by section 3, which
describes the proposed IITKARD framework. Then section 4

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

142 | P a g e

www.ijacsa.thesai.org

discusses the results of the evaluation experiment and finally
the conclusion.

II. IMPLICIT THINKING KNOWLEDGE AND AGILE

REQUIREMENTS ENGINEERING

The implicit thinking knowledge management includes a
set of processes that control the creation, interaction, and
sharing of knowledge [14]. It is a few steps used during
developing the software to extract and share developers‘
knowledge to assist them understand how the software is built.
The retrieved knowledge needs to be organized so that they are
clear and searchable [5]. Moreover, managing the implicit
thinking knowledge also includes strategies to create an
environment of sharing knowledge and supportive tools that
assist the process of injection of software developers‘ thinking
knowledge, in turn, to learn from each other.

Implicit thinking knowledge management is not only a
technical issue [1]. Since it relies on people expertise, the
success of managing the implicit thinking knowledge is highly
influenced by human. However, these factors named a non-
technical factors, which are related to the characterization of
human implicit thinking knowledge, and the promoting the
knowledge workers to contribute to share their implicit
thinking knowledge in order to build shared knowledge
repository [3].

Unfortunately, knowledge workers are unenthusiastic to
share their own implicit thinking knowledge with other people
[5]. Some workers consider their knowledge as a private
professional knowledge and they are not often intending to
share it [15]. The workers reluctance of sharing knowledge
might also be contributed by other organizational practices.
The staff, who are rewarded due to their expertise might lead to
that knowledge might be kept in their minds [5]. Moreover,
psychological issues might also effect the participation of the
knowledge workers [16]. For example, in the organizations
meetings some workers try to avoid to share their knowledge
and this would adversely affect the meetings process as a result
[11]. According to Hissen [1] some members are hardly to
speak, due to their low status, shyness or controversial ideas.
Therefore, the externalization of implicit thinking knowledge
should be part of a defined knowledge and it should not be left
an optional. For example, in software engineering field,
software engineers have deliberations includes different views
of software projects lifecycle reviews should be captured.
Thus, more attention need to paid regarding to the importance
of the integration between software development
methodologies and knowledge management.

Obviously, that implicit and explicit are different in terms
due to implicit thinking is hard to document. Sandra et al. [20]
highlighted that implicit thinking knowledge documentation is
not something for discussion sense [11]. Though, the
significance of capturing implicit thinking knowledge during
requirements engineering led the researchers to pay more
attention on topics related implicit thinking knowledge
documentation [11]. However, tacit and implicit knowledge are
slightly different [11]. Researches stated that implicit thinking
knowledge is not organized knowledge but it can be structured
and documented. On the other hand, organizing the implicit
thinking knowledge is not easy. Moreover, implicit thinking

knowledge categorized as an expression, assumptions,
developers thought that, might be translated to principle.
According to Correia and Aguiar [1] there is insufficient
information of implicit knowledge, while [1] argues that
implicit thinking knowledge is ―how‖ to do things, but some
issues to be explicitly described.

Additionally, the technical issues contribute in the
difficulties of capturing the implicit thinking knowledge, the
implicit thinking knowledge is not well structures and there is
not any standard format to be followed. Therefore, using
traditional data models could hardly capture he implicit
thinking knowledge. Few models in the software engineering
aimed to codify the implicit thinking knowledge such as DRL
[3], QOC [11] and IBIS [13]. Even though, these models
support the implicit thinking knowledge capturing, but it is
hardly to cover all implicit thinking knowledge. Sometimes the
tacit knowledge is differently expressed; it might be a body
language expression. Thus, these all variations of implicit
thinking knowledge expression is hardly to be accommodated.

Elghariani and Kama [7] stated that Agile requirements
engineering practices assist to resolve the traditional
requirements engineering challenges and highlighting
appropriate capability of teams‘ cross-functional development
[1]. In addition, in software industry, some challenges have
been faced during practicing Agile requirements engineering
such as less documentation and ignoring non-functional
requirements documentation e.g. usability and security [7].
Neglecting of implicit thinking knowledge documentation is
considered as a major issue for both Agile and traditional
software methodologies [10]. One of Agile requirements
engineering practices is creating user story cards, which
includes few attributes related to the user software requirement,
for example, story card number, story date, story priority, story
description, etc. [5]. Therefore, Shim and Lee [14] addressed
that ignoring implicit thinking knowledge documentation in
Agile methodology cause some major issues as following:

 Time waste of asking the same questions by software
developers.

 Software issues might be frequently faced by
developers but they forget how were solved.

 Losing information once particular developer left the
project.

 Lack of recording developer‘s communication.

 Software usability issue

 Neglecting of unstructured knowledge contribution.

The major challenges of documenting the implicit thinking
knowledge in Agile requirements engineering is how implicit
information software engineers can be converted into explicit
information, as well as how to convert explicit information
from individual software engineer to groups in the organization
[11]. The retrieved knowledge needs to be recorder and stored
in a repository. Additionally, the process of sharing software
engineer‘s implicit knowledge needs to be followed by all
software developers [15]. Also, this includes understanding the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

143 | P a g e

www.ijacsa.thesai.org

purpose of storing and documenting the implicit thinking
knowledge [12].

Chau and Maurer [12] stated that there are serious issues to
capture team members‘ implicit thinking. Most of the members
are not able to exactly define their thinking. So Ahmed [13]
suggested that software developers need to have more face-to-
face discussion on software requirements. Another suggestion
is using electronic databases will solve the issue, if the face-to
face communication is not possible then some alternatives can
be used such as e-mail, social media, audio and video
conferencing [11].

III. RELATED WORK

Based on the previous studies, few frameworks were
proposed to manage the knowledge using traditional software
development methodologies. A framework for supporting
knowledge management (KMS) recommends two significant
considerations, which are, the existence and structure of the
knowledge [12].

The proposed framework KMS layered into seven layers
known as interface, access, collaborative, application,
transport, integration and repositories [22]. In addition, Hahn
and Subramani [12] proposed an approach for knowledge
management system known as Soft-System Knowledge
Management. This approach was proposed to confirm the
suitability between the organizational requirements on new
product development (NPD) and knowledge management
creativities. There are three main components are included in
this framework, which are Knowledge sharing methods,
Organizational level and Key Enablers.

A Knowledge Management System in Open Source
Software Development Environment (KMSOS2oD)
framework is particularly designed to support Open Source
Systems development life cycle and it includes five core
components, which are layers, components, process,
knowledge, and Communities of Practice (CoP) [15].

Several tools have been proposed by researchers to support
distributed Agile software development, and those tools are
especially developed to support sharing applications. The
proposed tools adopted the concept of collaboration and
communication among team members. Therefore, the tools
used are messengers, e-mails and newsgroups. Tools like
videos/audios conferencing are also used as a real-time
collaboration tools [8]. Moreover, tools providing a Plug-in
like JSPWiki and MASE are used to support environment
tailored for Agile development teams [17].

Kavitha and Irfan [17] have proposed a framework to
capture knowledge retrieved from the Agile team members,
which may either be distributed or collocated. The framework
helps to increase the organizational learning process to capture
and maintain the knowledge on the required information. The
framework included a set of integrated tools that support
capturing and storing knowledge. The tacit knowledge sharing
was through a real-time collaboration tools such as news
groups, NetMeeting and e-mails.

Shim and Lee [25] suggested an approach to capture and
manage knowledge. This approach was built by using the main
characteristics of the social software and expands them to
merge the knowledge and its structure then manage them
probably by using online tools. The authors used web
technologies to extract the implicit thinking knowledge and
injected to the knowledge base; the injecting was used with the
platform as provider to enable the users to retrieve a
documented knowledge related to the certain software practice,
which also affect the user interaction.

Based on literature related to knowledge sharing within
software development, there are many approaches aimed at this
objective. Most of the proposed frameworks aimed for
managing software knowledge designed for traditional
methodologies [17]. Some approaches are realized practically,
while others are simply theoretical such as Rayan and
O‘Connor [22] that propose a theoretical model for defining,
acquiring and sharing tacit knowledge surfaced through social
interaction. KMSOS framework is another approach, which is
introduced by Lakulu [15], but it is mainly targeting capturing
software knowledge within the Open source software process.
However, it does not cater for documenting any sort of implicit
thinking knowledge. In terms of approaches targeting the Agile
software methodology, though [17] and [25] are most related to
our work as they both targeting software knowledge
management for Agile software methodology. Nonetheless,
both are aimed to tackle the knowledge sharing in all phases of
the Agile lifecycle. We on the hand, only focusing on the
requirement elicitation phase. We believe that the requirements
for capturing implicit thinking knowledge vary in different
Agile phases. Hence, a generic knowledge-capturing model
would not cater for the capturing richness of the requirements
engineering phase. Because it is well known that the
requirements engineering phase accommodates most of the
deliberations made by the Agile team. However, though both
[17] and [25], are targeting the capturing of implicit thinking
knowledge within the Agile software process, but they ignored
the importance of the User Story Cards, which as at the core of
implicit thinking knowledge generation. The same approaches
([17], [25]), also lacks the formal representation of the implicit
knowledge, they instead adopting a social media tools as
repository to store the implicit thinking knowledge.

IV. THE PROPOSED KNOWLEDGE FRAMEWORK

The framework is proposed to be part of reality [1]. It is
meant to summarize the conceptual framework of the reality
being demonstrated. Essentially, our proposed framework is
built to inject the implicit thinking knowledge created while
practicing Agile software requirements documentation. The
proposed framework facilitates sharing implicit knowledge [5].

The Internet or local network usually connects Agile
software team members. The framework supported by a tool
that assists in collecting the knowledge. Experiences
generated in the form of arguments categorized as issue,
assumption, suggestion, question and opinion are entered by
the software engineer and stored in the knowledge repository.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

144 | P a g e

www.ijacsa.thesai.org

Fig. 1. Conceptual View of IITKARD Framework.

Fig 1 shows a conceptual view of the proposed framework.
It shows the stages of the processes of sharing software
engineering implicit thinking knowledge in Agile requirements
engineering. Based on the proposed IITKAD framework, the
knowledge generation loop starts from creating the user story
card, which will be the root of the experience knowledge.

The IITKARD framework helps to share informal
knowledge. The implicit thinking knowledge generated
through the IITKARD framework helps to maintain the up-
datedness of the captured knowledge. Moreover, this
framework provides Agile software engineers with a
supportive tool that helps in injecting the implicit thinking
knowledge. The user story card created by the admin (team
leader) and adding the first argument of the retrieved
knowledge related to requirements engineering practices are
entered via an interface by the admin (team leader) and stored
in the knowledge database. The implicit knowledge extracted
during developing the software requirements is accessible to all
team members and easy to find. Agile team members will be
able to retrieve the information related to certain user story
card from database as structured information. Efficient query
mechanisms also provided, which can be helpful to retrieve the
required data.

The proposed IIKARD framework, which has four main
activities, which are: (1) cerate the user stories; (2) set team
leader first arguments; (3) inject the implicit thinking
knowledge of software engineers; (4) document the implicit
thinking knowledge. Therefore, to evaluate the framework
efficiency, a tool was developed to systematize the processes
of developing the framework as shown in Fig 2. The tool of
the proposed framework has four main steps, which are:

Step 1 Create User Story: The first practice of Agile
requirements engineering is to create the user story of each
requirement and the proposed framework tool requires the
team leader to key in the user story information for example:
Story Title, Task Engineer and describe the story
(requirement).

Step 2 Set Team Leader first Argument of the user
story: The second step of the proposed framework tool is
setting the first argument by the team leader (Admin).

Step 3 Inject the implicit thinking knowledge of
software engineers: The Third step of the proposed
framework tool is to let the team members to key in arguments
such as Issues, Assumptions, Suggestions, Questions and
Opinions.

Step 4: Document the implicit thinking knowledge: The
final step of the proposed framework tool is to document the
arguments of each user story by displaying the arguments in
sort of storyline. It contains the title and its arguments
member‘s photo, name, text and icon of the argument type
whether it is an issue, assumption or suggestion. Hence, this,
IITKARD framework was successfully designed and
developed to achieve this research objective in order to provide
a framework to inject the implicit thinking of software
engineers in Agile RE.

Therefore, IITKARD framework controls the deliberation
among team members and supports their arguments by
detecting the type of the arguments and simplifies the
communication about certain issue. The tool which implements
IITKARD framework steps shall be applied and helpful for
areal data from a real software project adopting Agile
methodology as a software development methodology.

Agile Requirements

Engineering Practices

Start Create user stories

and task cards

Create Arguments

and Assumptions

Store and document

implicit thinking

Implicit thinking

documentation

End

Create User Story and

first argument by

admin

User story card‘s

arguments

Software

Requirements

Question

Suggestion

Assumption

Issue

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

145 | P a g e

www.ijacsa.thesai.org

Fig. 2. An Implementation of the Proposed Framework.

V. RESULTS

After performing, the first experiment, evaluation survey
questionnaire has been distributed to focus group of experts.
The 13 completed questionnaires have been received from 10
Agile software engineering experts. The experts came from
different organizations with the experience of Agile software
methodology and requirements engineering. The participants
started performing the experiment by using traditional Agile
requirements documentation. However, the experiment shows
that the documentation does not include any implicit thinking
knowledge in the user story cards. The experiment shows that
the overall results obtained a high level of experts‘ satisfaction
in terms of IITKARD efficiency evaluation. In general, the
overall results shows that the participants performed as an
experts‘ in Agile requirements engineering and improves that
IITKARD is more efficient in Agile methodology since Agile
lean on a strong communication among the team members.

The traditional requirements documentation used for the
experiment does not include any implicit thinking knowledge
shared by software engineers during developing software
system which been adopted as a real project data for this
experiment. The experts‘ participants in the experiment shows
their satisfaction on the efficiency of IITKARD due to the
improvement of ITKARD framework that can assist software
engineers who are newly involved in the software project to
understand how the requirement was developed. Also, the
experiment proved that the IITKARD improves the usability of
injecting the implicit thinking knowledge in Agile
requirements documentation. It is noted that the improvement
rate of the IITKARD usability is high in Agile methodology.

The proposed models of knowledge‘s management in both
traditional and Agile methodology [8][17][18][19][25], use a
social media tools to support sharing and recording the
knowledge, but it is well known that social media knowledge is
not structured enough, and any searching through this
knowledge would not be efficient in terms of retrievability.
IITKARD on the other hand, proposed a custom knowledge
model, which strikes a balance between ease of use and

retrievability, as shown through the tool developed to
demonstrate the process of injecting the implicit thinking
knowledge among the team members. This is achieved by
managing the requirements (User Story Cards) and the implicit
knowledge. Therefore, the experts‘ perceptions of the outcome
show that the overall results of the experiment are at
satisfactory level in terms of the usability of the framework.

VI. CONCLUSION

Software engineering is a domain consists a very
knowledge thorough and realized in implicit form in many
software companies. Knowledge management systems were
designed more for structured knowledge while implicit
thinking knowledge is ignored. The implicit thinking
knowledge is usually held in professionals‘ minds that might
be lost at any time. Therefore, there is significant need to
exploit implicit thinking knowledge as well. This paper
proposes a framework that injects implicit thinking knowledge
in Agile requirements engineering. The framework integrates
both explicit knowledge in the form of user story cards and
implicit thinking knowledge in the form of arguments that
compose the context of the creation criteria of the knowledge
captured. In order to inject the implicit thinking knowledge in
Agile requirements engineering the captured knowledge
documented in the form of user story arguments.

VII. LIMITATION AND FUTURE WORK

Even though the research contributions, a few limitations in
this research are considered. The designed IITKARD
framework has suggested that the shared implicit thinking
knowledge should be modified and deleted. The injecting
process suggestion was made to the software requirements
engineering practices. There are two elements exist in the
software requirements engineering process that are dependent
to one and another. The requirements engineering elements are
Requirements analysis, Requirements Documentation. This
research study applied only for requirements engineering as the
input and output of IITKARD framework and this is one of the
limitations of this study. Therefore, it is important to apply

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

146 | P a g e

www.ijacsa.thesai.org

IITKARD framework to all Agile methodology phases since
all the shared knowledge will cover all the phases, which could
affect the overall software development process.

Based on the limitations described above, the following
areas may constitute possible future work:

 Extending the research study by covering a bigger and
more complex Agile software projects as samples of the
case selections. Big and complex Agile software
projects may involve a longer software requirements
implementation and more team members who can
interact with proposed IITKARD framework.

 The software requirements engineering elements consist
of analysis, documentation in each of the software
requirement. These two main Agile requirements
engineering elements are correspond to one and
another. For example, if one requirement is deleted or
changed in the software engineer should consider the
implicit thinking knowledge related to that particular
requirement to be modified or deleted as well. In this
study, the proposed IITKARD framework concentrated
only on the Agile requirements documentation. The
suggested future work could extend this study by
implementing the IITKARD framework all Agile
methodology phases.

 Since this study has used academic context to run the
experimentation, a future work can replicate the
experiment design in the industry context to examine
the practitioners‘ perceptions in using the IITKARD
framework. In addition, it can be extended whereby the
evaluation does not only measure the practitioners‘
perceptions but it can also measure the software
engineering experts satisfaction of the end product that
is developed using the framework of injecting the
implicit thinking knowledge in Agile requirements
engineering.

ACKNOWLEDGMENT

The author would like to express the acknowledgment
to Razak Faculty of Technology & Informatics for the support
given in conducting this research study.

REFERENCES

[1] Abdulmajid Hissen, ―Capturing Software-Engineering Tacit
Knowledge‖, Departement of Computer Science, Sebha University,
2008 2nd Eroupean Computing Conference.

[2] Aneesa Rida Asghar, Shahid Nazir Bhatti, Atika Tabassum and S Asim
Ali Shah, ―The Impact of Analytical Assessment of Requirements
Prioritization Models: An Empirical Study‖. International Journal of
Advanced Computer Science and Applications, Vol. 8, No. 2, 2017

[3] Bjarnason, E., Wnuk, K., & Regnell, B. (2011b). Requirements are
slipping through the gaps—A case study on causes & effects of
communication gaps in large-scale software development. In 2011 IEEE
19th international requirements engineering conference (pp. 37–46).

[4] Claudia Müller, Julian Bahrs, Norbert Gronau, ―Considering the
Knowledge Factor in Agile Software Development‖, Journal of
Universal Knowledge Management, vol. 0, no. 2 (2005), pp.128-147

[5] David Walsh Palmieri, ―Knowledge Management through Pair
Programming‖, Thesis

[6] Deki Satria, Dana Indra Sensuse and Handrie Noprisson, 2017
―A systematic literature review of the improved Agile software
development‖, in 2017 International Conference on Information
Technology Systems and Innovation (ICITSI). Bandung, Indonesia, PP
94 – 99

[7] Elghariani, K., and Kama, 2016. Review on Agile requirements
engineering challenges,in 3rd International Conference on Computer and
Information Siences, Kuala Lumpur, Malaysia, pp. 507-512.

[8] Filipe Figueiredo Correia, Ademar Aguiar, ―. Software Knowledge
Capture and Acquisition: Tool Support for Agile Settings‖, IEEE
Computer, 2009

[9] Meira Levy, Orit Hazzan, ―Knowledge Management in Practice:The
Case of Agile Software Development‖, IEEE software, 2009, pp. 60-65

[10] Ghani I., Azham Z., and Jeong SR. ―Integrating Software Security into
Agile-Scrum Method‖. KSII Transactions on Internet an Information
Systems (TIIS) 8 (2), 646-663. 2014.

[11] Gerardo Canfora, Aniello Cimitile, Corrado Aaron Visaggio, ―Lessons
learned about distributed pair programming: what are the knowledge
needs to address?‖ IEEE Software, 2003

[12] Hahn, J., & Subramani, M. ‗‗A Framework of Knowledge Management
System: Issues and Challenges For Theory and Practice‘‘, Proceedings
of the twenty first international conference on Information systems,
ACM, Brisbane, 2000

[13] Harald Holz and Frank Maurer, ―Knowledge Management Support for
Distributed Agile Software Processes‖, 2003

[14] Inayat et al., (2014). A systematic literature review on Agile
requirements engineering practices and challenges. Computers in
Human Behavior. (2014).

[15] Modi Lakulu, ―A Framework of Collaborative Knowledge Management
System in Open Source Software Development Environment‖ Journal of
computer and Information Science, Vol.3, No.1, Feb 2010, pp.81-90

[16] Mustafa Ally, Fiona Darroch, and Mark Toleman, ―A Framework for
Understanding the Factors Influencing Pair Programming Success‖, XP
2005, Sheffield, UK, pp.18–23

[17] R. K. Kavitha and M. S. Irfan Ahmed, 2011.
―A Knowledge Management Framework for Agile Software Developme
nt Teams‖, in 2011 International Conference on Process Automation,
Control and Computing. Coimbatore, India, PP 1-5

[18] Saeed S. and Alsamdi I., 2013. ―A software development process for
open source and open competition projects‖, International Journal of
Business Information Systems, 12(1), 110-122

[19] Sandra L., Buitrun Francisco J., Pino, Brenda L., Flores-Rios, Jorge E.,
Ibarra-Esquer, Marua Angulica Astorga-Vargas, 2017. ―A Model for
Enhancing Tacit Knowledge Flow in Non-functional Requirements
Elicitatio‖, in 2017 5th International Conference in Software
Engineering Research and Innovation (CONISOFT). Mérida, Mexico

[20] Shankar, R., Acharia, S., & Baveja, A. ‗‗Soft-system Knowledge
Management Framework for New Product Development‘‘, Journal of
Knowledge Management, 2009, 13(1) , pp.135-153.

[21] Sufian Fannoun ; John Kerins, 2017. ―Evaluating current practice and
proposing a system to enhance knowledge assets within a small software
development unit‖, 2018 4th International Conference on Information

[22] Ryan, S. and O'Connor, R., Acquiring and Sharing Tacit Knowledge in
Software Development Teams: An Empirical Study, Information and
Software Technology, Vol. 55, No. 9, pp. 1614 - 1624, 2013.

[23] Thomas Chau, Frank Maurer, ―Integrated Process Support and
Lightweight Knowledge Sharing for Agile Software Organizations‖,
2005

[24] Usman Ahmed, 2018. ―A review on knowledge management in
requirements engineering‖, in 2018 International Conference on
Engineering and Emerging Technologies (ICEET), Lahore, Pakistan, PP
1-5.

[25] Woogon Shim and Seok-Won Lee, 2017. ―An Agile Approach for
Managing Requirements to Improve Learning and Adaptability‖, in
2017 IEEE 25th International Requirements Engineering Conference
Workshops (REW). Lisbon, Portuga, PP 435-438

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6065244
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6065244
https://www.sciencedirect.com/science/journal/07475632
https://www.sciencedirect.com/science/journal/07475632
https://www.researchgate.net/profile/Saqib_Saeed?_sg=AhMCUA72vs88D152eoGcKzYNGHBQjWGvgMIOb-VljhnO_WxGuGfP8kd-jbi8xLm1NBsptE4.tZzpls-nb3kMAes2wuK9FlgO670favqBneG25YmGjiKJyddvPXjNTUZ9OUwClzAhPrjRmtF33EMc5pTUG0nVDg
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8053951
https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=8053951

