
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

192 | P a g e

www.ijacsa.thesai.org

Performance Comparison between Merge and Quick

Sort Algorithms in Data Structure

Irfan Ali
1
, Haque Nawaz

2
, Imran Khan

3
, M. Ameen

Chhajro5, M. Malook Rind6

Department of Computer Science

Sindh Madressatul Islam University (SMIU)

Karachi, Sindh, Pakistan

Abdullah Maitlo
4

Department of Computer Science

Shah Abdul Latif University (SALU)

Khairpur, Sindh, Pakistan

Abstract—In computer science field, one of the basic

operation is sorting. Many sorting operations use intermediate

steps. Sorting is the procedure of ordering list of elements in

ascending or descending with the help of key value in specific

order. Many sorting algorithms have been designed and are

being used. This paper presents performance comparisons

among the two sorting algorithms, one of them merge sort

another one is quick sort and produces evaluation based on the

performances relating to time and space complexity. Both

algorithms are vital and are being focused for long period but the

query is still, which of them to use and when. Therefore this

research study carried out. Each algorithm resolves the problem

of sorting of data with a unique method. This study offers a

complete learning that how both of the algorithms perform

operation and then distinguish them based on various constraints

to come with outcome.

Keywords—Performance; analysis of algorithm; merge sort;

quick sort; complexity; time and space

I. INTRODUCTION

An algorithm is any well- defined computational or step by
step process for resolving a problem. It takes some values as
input and produces some values as output; it will terminate
finite number of steps. In mathematics and computer science,
an algorithm usually means a logical depiction of the
commands which must be performed significant activity [1].
The main factor of analysis of algorithm is to study about time
and space and their relationship between the algorithms
necessities and number of elements or items being executed or
processed. Generally sorting is the method of reorganizing a
given set of data and objects within a particular arrangement
and that's why, to understand the purpose of the most valuable
sorting algorithms have considered as more significant research
area nowadays [1, 2] even though, there are many novel sorting
algorithms being instigated and used. Many software engineers
in their area of programming they are depending on the
different sorting algorithms: i-e. Merge, Quick sort etc. sorting
is universally globally sorting is performed and it is known as
essential activity. Most important sorting application is used in
daily life. For example: Phone book faster access to contacts,
income tax files, contents of tables, libraries access,
dictionaries, search engine [1-9].

A. Computational Complexity

Sorting algorithms, computational complexities, are based
on:

 O (nlogn)

 O (log2n)

B. Memory Usage

Classifications of algorithms on the bases of memory

1) When data set is small; internal sorting preferred

primary memory only, [2] [1]

2) External sorting uses primary and secondary memory.

II. RESEARCH METHODS AND DISCUSSION

The Algorithms implemented by using java language and
discussed the outcomes.

A. Computational Method of Merge Sort

Merge sort algorithm is used DAC (Divide and Conquer)
prototype; for example, it split the list of records into two
smallest units after that it compare each element with adjacent
list and sort the two pieces or units of data sets recursively,
consequently it merges and sorted the all the elements in the
list. Theoretically, a merge sort perform operation as trails to
split the disorder list into n elements sub units or lists,
comparing every element of a list of single element observed
sorted.

MER-SORT (Data_list, k, m)

1) k < m
[Check base case value]

2) Then x = FLOOR [(k + m)/2]
[Div step]

MergeData (Data_list, k, x)

[Conquer step]

3) Merge Data(Data_list, x + 1, m)
[Conquer step.]

4) Merge Data (Data_list, x, k, m)
[Conquer step]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

193 | P a g e

www.ijacsa.thesai.org

Fig. 1. Execution Output Console.

Fig. 2. Merge Sort Pictorial Presentation.

The Fig. 1. Shows the execution output console of merge
sort.

To investigate the Merge Sort function, the two different
processes that we need to reflect is to form its implementation.
Fig.2 shows the list is divided into two parts. The first part of
list is the length defined by, half log (n) times wherever n
represents the no: of elements in the list. Another part of list is
merging of the list. Where every element from the list will be
computed, and positioned on the output list that is sorted.
Hence, the merging procedure outcomes in a list require n
procedures and size n. The analysis gives the outcome, split of
log n, and each costs n for a whole of n (log n) processes.

 Best Case Complexity O(nlogn)

 Average Case Complexity O(nlogn)

 Worst Case Complexity O(nlogn)

Advantages:

 Time complexity O(nlogn).

 Used both internal and external sorting

 Stable sort algorithm

Disadvantages:

 As a minimum double the memory necessities of the
further sorts since it is recursive.

 Required high space complexity

B. Computational Method of Quick Sort

Quick sort algorithm is used DAC (Divide and Conquer)
prototype. Quick sort initial splits a list with in two small sub
units: one having low item and another having the high items.
Quick sort perform operation to sort sub lists recursively. The
implementation activities are: to pick element from the list is
called a pivot, from the data list.

Recursively type the sub-list of smaller components and the
sub-list of larger components.

Quick sort could be extremely economical algorithmic rule
and is predicated on dividing of an array of knowledge with in
smaller arrays. An oversized array is divided into 2 arrays one
among that hold prices smaller than the desired value, say
pivot, supported that the divider is created and another array
holds prices larger than the pivot value.

Quick type divides an array and so calls itself recursively
doubly to type the 2 ensuing sub arrays. This algorithmic
program is sort of economical for large-sized information sets
as its average and worst case complexness square measure of
Ο(nlogn), wherever n is that the variety of things.

In fact, it isn't essential to separate the list accurately; even
though every pivot devides the weather, 99% one side and 1%
on another side, the decision depth remains restricted to,
therefore the total period of time remains O(n log n) [3].

Algorithm:

1. quick_sort(DATA, start, end):

2. if (start < end)

 a. set point = partition_list(DATA, start, end)

 b. quick_sort(DATA, start, point - 1)

 c. quick_sort (DATA, point + 1, end)

 [End if in step 2]

3. Exit

Function partition_list(Data_list, start_list, end_list)

 1. Set pivotIndx = select Pivot(Data_list, start_list, end_list)

2. Set pivotElement = Data_list[pivotIndx]

3. Set Exchange Data_list [pivotIndx] and Data_list[end_list]

4. Set storeArrIndex = start_list

5. for k = start_list to end_list−1 a)

 if Data_list[k] <= pivotElement

 exchange Data_list[k] and Data_list[storeArrIndex]

storeArrIndex = storeArrIndex + 1

[End of if statement in step a]

 [End of for statement in step 5]

6. Exchange Data_list[storeArrIndex] and DATA[end_list]

7. return storeArrIndex

Fig. 3. Shows the output execution console of quick sort.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

194 | P a g e

www.ijacsa.thesai.org

Fig. 3. Execution Output Console.

Fig. 4. Quick Sort Pictorial Presentation.

It has been analyzed by using a list has n length of
elements, although the partition elements take place at mid of
the list shows in fig. 4. More over the complexity will be the
log(n) partitions carried out. However, to find themid-
pointeach element of the list has been analyzed instead of pivot
value. The result has been observed log (n). On other hand in
worse case situation did not occur in the middle. It has been
observed the mid-point in this case towards the left or right of
the mid. That’s why it has been observed irregular partition
within this case list of n elements sorting split with 0 and n-1
element. After this by using:

n-1 split into 0 size and n-2 size and consequently. As it has
been analyzed the recursion requires as O(n2) sort.

According to above algorithm the base case will be
O(nlogn), average case O(nlogn) and worst case O(n2)

Advantages

 No extra memory is required

 Fastest algorithms on average.

 When we have string and integer type of data
compassion relatively cheap.

 The list has been traversed successively, and it has been
produce very decent locality of location and the
performance of cache for arrays

Disadvantages

 In case of recursive function, the average case space
complexity is little bit costly, especially when we have
large set of data

 Worst case complexity is O(n2)

 Un stable sort algorithm

Comparison of merge and quick sort algorithms on bases
on (Base, average and worst case) as showing in the
subsequent table 1 [1, 4].

TABLE I. COMPLEXITY COMPARISON

Complexity Merge Quick

Best Case O(nlogn) O(nlogn)

Average Case O(nlogn) O(nlogn)

Worst Case O(nlogn) O(n2)

III. CONCLUSION

From the above analysis, it has concluded that both the
quick and merge sort uses DAC (Divide and Conquer) strategy.
Both having the average time complexity of O(nlogn).
However, both algorithms are quite different. The merge sort is
usually required while sorting a too large set to hold or handle
in internal memory. It divides the set into a few subsets of one
element and then repeatedly merges the subsets into
increasingly larger subsets with the elements sorted correctly
until one set is left. Usually this method means that the sorting
ultimately deals with only portions of the complete set.

In many cases, implementing the quick sort often yields a
faster sort other than O(nlogn) sorting algorithms but the
worst-case time is O(n2). The quick Sort operates by selecting a
single element from the set and labeling it the pivot. The set is
then reordering to ensure that all elements of lesser value than
the pivot appear earlier than it and the entire elements of
greater value come after it. This operation is recursively
applied to the subsets on both sides of pivot until the entire set
has been deemed and sorted.

REFERENCES

[1] M. P.K. Chhatwani and M. J. S. Somani ,"Comparative Analysis &
Performance of Different Sorting Algorithm in Data Structure"
International Journal of Advanced Research in Computer Science and
Software Engineering, Vol. 3, no.11, pp.500-507, 2013.

[2] M. Gul, N. Amin and M. Suliman "An Analytical Comparison of
Different Sorting Algorithms in Data Structure" International Journal of
Advanced Research in Computer Science and Software Engineerin, Vol.
5, no.5, pp. 1289-1298, 2015.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

195 | P a g e

www.ijacsa.thesai.org

[3] M. N. Kumar and M. R. Singh "Performance Comparison of Sorting
Algorithms On The Basis Of Complexity" International Journal of
Computer Science and Information Technology Research Vol. 2, no. 3,
pp. 394-398, 2014.

[4] G. Kocher1 , N. Agrawal “Analysis and Review of Sorting
Algorithms”International Journal of Scientific Engineering and Research
(IJSER), Vol. 2, no. 3, pp. 81-84, 2014.

[5] K.K. Pandey, R.K. Bunkar, and K.K. Raghuvanshi. "A Comparative
Study of Different Types of comparison Based Sorting Algorithms in
Data Structure" International Journal of Advanced Research in
Computer Science and Software Engineering, Vol. 4, no. 2, pp. 304-309,
2014.

[6] Raju and D. Narasimha. "An efficient new approach mean based
sorting." In Electrical Computer and Electronics (UPCON), UP Section
Conference on, IEEE, pp. 1-5., 2015.

[7] Y. You, P. Yu, and Y. Gan. "Experimental study on the five sort
algorithms" In Mechanic Automation and Control Engineering (MACE),
Second International Conference, IEEE, pp. 1314-1317. 2011.

[8] D. Rajagopal, and K. Thilakavalli. "Comparison of different sorting
algorithms in Data Structure based upon the Time
Complexity" International Journal of Technology, Vol.6, no. 1, pp. 23-
30, 2016.

[9] Z. Marszałek, “Parallelization of modified merge sort
algorithm” Symmetry, Vol. 9, no. 9, pp.1-18, 2017.

