
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

207 | P a g e

www.ijacsa.thesai.org

Data Flows Management and Control in Computer

Networks

Ahmad AbdulQadir AlRababah

Faculty of Computing and Information Technology in Rabigh, Rabigh 21911, KSA.

King Abdulaziz University

Abstract—In computer networks, loss of data packets is

inevitable, because of the buffer memory overflow of at least one

of the nodes located on the path from the source to the receiver,

including the latter. Such losses associated with overflows are

hereinafter referred to as congestion of network nodes. There are

many ways to prevent and eliminate overloads; these methods, in

the majority, are based on the management of data flows. A

special place is taken by the maintenance of packages, taking into

account their priorities. The ideas of these solutions are quite

simple for their implementation in the development of

appropriate software and hardware for telecommunication

devices. The article considers a number of original solutions to

these problems at a level sufficient for the development of new

generations of telecommunication devices and systems such as

allowing interrupting transmission of the low-priority packet

practically at any stage, then to transmit a high-priority packet

and only then resume the interrupted transfer, moreover

warning in time the data source about the threat of overloading

one or several nodes along the route in the propagation of data

packets.

Keywords—Data transmission; data stream; input output

buffers; telecommunication devices; data packets; blocks of

memory; switching matrix; high priority packets; bitstaffing

I. INTRODUCTION

Controlling data flows is one of the functions of the
network layer, including load management and anti-blocking.
There are several levels of management. Inter-node
management is associated with the allocation of buffer memory
at intermediate nodes (allocation to each direction of a certain
number of buffers), which reduces to the restriction of the
channel queues lengths [5]. Control "input-output" is aimed at
preventing locks. It is realized by indicating the length of the
message in the first packet, which allows the receiving node to
predict the memory filling and to prohibit receiving certain
messages datagrams, if a memory lock is predicted.

In the general case, the communication network is a
distributed communication system serving to transmit
information at a distance. These include television and radio
broadcasting networks, telephone and cellular communication
networks, cable television networks, etc. Synonym for
communication - data transmission. The concept of
telecommunications network implies a territorially distributed
data transmission network.

A separate computer is an example of a centralized
computer system. Unlike the centralized, the computer network
is a distributed computing system. This is a combination of

computer and communication equipment, communication
channels and special software that manages the process of
distributed computing between members of a given network.

Since the role of transferring non-numeric information via
computer networks has recently increased, the term data
network is now often used for them. To avoid confusion with
the communication network, in which data is also transmitted,
the term computer network is used. a program queue
management scheme in computer networks, in which the
scheduler serves queues with a higher priority to the detriment
of low priority queues [1].

The maximum possible number of queues is four: High,
Medium, Normal, and Low. The scheduler starts the service
from the higher priority queue High. If there are no more
waiting packets in its queue, it goes to the next less priority
queue in which there are waiting packets. After each servicing
of the Medium, Normal or Low queues, the scheduler returns
to the High queue, that is, the process repeats. A low-priority
Low queue is served only when there are no waiting packets in
the High, Medium, Normal queues [2]. PQ planner has some
obvious advantages and disadvantages. Packages from the
high-priority High queue can claim 100% bandwidth with low
latency and latency, while low-priority traffic is served much
longer.

The management of external threads (access) is realized by
giving priority to the transfer to internal threads before external
ones, limiting the number of packets in the network (the packet
is received if the node has the appropriate permission), sending
warning packets-stubs to the source address, from which the
packets go to the congested line connection [3].

II. RESEARCH METHODS AND RELATED WORKS

Method 1: Control the flow of data adjusting the length of
pauses between packets

In this method, during the data transfer, the receiver notices
a persistent shortage of arriving packets (for example, by
tracking their sequence numbers) and sends a control packet
containing the XOFF command to suspend the data stream to
the data source A. The address of the data source is known to
the receiver, since the data packets coming to it contain
information about the addresses (or directly addresses) of
devices A and B. Sending requests for retransmission of lost
packets is also sent the node M2 is overloaded, its input buffer
memory (in the following, for brevity, the input buffer) is
completely or almost completely filled with incoming data

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

208 | P a g e

www.ijacsa.thesai.org

packets [4]. New packages, at least some of them, are lost due
to lack of free space in the buffer.

When the XOFF command is received, the data source
completely stops sending packets and resumes it, either after
some time specified in the data exchange protocol [5], or after
receiving the renewal of transmission from the XON command
receiver.

Fig. 1. Traditional Way to Control the Flow of Data.

Fig. 2. Improved way to control the flow of data: a - if there is a danger of
overflow of the buffer memory of the node M2; b - during normal operation.

The proposed solution (Figure 2) largely eliminates these
shortcomings due to a smooth and "advanced event"
adjustment of the data transmission rate by the source. The
speed is controlled by changing the length of pauses between
packets: the longer the pause, the lower the data transfer rate,
and vice versa [3], [6]. Note that the presence of a pause does
not mean that there is no signal in the communication line - the
signal is present constantly, but there are no flag codes
indicating the beginning of the packet, or vice versa - a
continuous stream of these codes is transmitted.

 In the Fig. 2, and the pause situations between packets
transmitted on the route A-B are relatively small, or in other
words [3], the data rate of the data placed in the packets is
relatively large, in the sense that the buffer memory level of the
intermediate node M2 is steadily increasing, which may result
in buffer overflow [7]. Buffer memory for clarity is shown in
the figure as a tank with liquid replenished by the input stream
of packets, while the output stream tends to reduce the level of
its filling.

In this case, the node M2 registers the operation of the
second upper level sensor (the comparator of read and write
addresses of the buffer memory block) [9]. This means that the
level of filling is close to critical, therefore, it is necessary to
reduce the rate of data flow to the buffer. To reduce the speed,
the node M2 sends to the node A a service packet, a command
to increase the pauses between packets.

In response to this command, node A increases the duration
of pauses between packets (Figure 2, b) [5], [8]. The degree of
increase can be stipulated in the protocol of data exchange
between nodes of the network or in the explicit form indicated
in the service package. After increasing the pauses, the buffer
memory level of the M2 node starts to decrease, if there is no
other reason for its increase[8]. Upon reaching the central or
lower mark, the node M2 sends to the node A the command to
reduce the duration of the pauses, the level of the buffer filling
again begins to increase, etc.

Thus, in an ideal case, the buffer memory of node M2 does
not overflow and does not emptied, the speed of data output
from the buffer memory remains constant [10], the rate of data
arrival adapts to it, making slow fluctuations inherent in
conventional automatic control systems.

If there are several data sources, then to prevent overload
the work of the most active one, but not the most priority, is
slowed down; if the sources are equally active, then the impact
on those with low priorities is primarily affected [11].

In the development of the described method, it is proposed
to take into account, not only the level of the buffer
completion, but also the dynamics of its change when forming
commands for decreasing or increasing the intensity of the
flow [12]. This allows eliminating unnecessary flow control
commands when the buffer fill level is high, but the history of
the process is such that there is a steady tendency to stop its
growth and the subsequent decrease (and vice versa) [13].
Essentially, along with absolute reference, the rate of change in
the rate (acceleration) of the motion of the level of buffer
memory filling is considered.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

209 | P a g e

www.ijacsa.thesai.org

Method 2: Managing the flow of data by notifying the
packet source of causes of overload

Let's continue our consideration of the known methods of
data flow control (Fig. 3) using the same network model as
before (Figure 1, 2). The data source A transmits a series of
data packets to the receiver B. In response to each packet or to
a group of packets, the receiver B sends the ACK or NACK
response packets to the source A. The ACK response
acknowledges the successful reception; the NACK response is
a request to retransmit a single packet or group of packets [10].
In principle, even such a simple feedback (using ACK or
NACK response packets) allows detecting and eliminating
network congestion on the A TO B path [2]. Indeed, if the data
source is increasing the packet rate or at some fixed rate starts
to receive an excessive number of retransmission requests,
then, most likely, at least one of the nodes of the route entered
the overload mode.

Fig. 3. Informing the data source A about the upcoming or available

overload of the input buffer of the M2 node of the network: a - packet
propagation paths b, c - packet structure D and ACK (NACK).

In this case, the data source drastically reduces the packet
transmission rate or (and) increases their length to reduce the
share of the overhead bits that make up the headers in the data
stream[15]. In the future, the data source gradually either by
random trial and error increases the data transmission speed,
moving to the permissible upper limit, taking into account
some permitted speed increase margin. Such a method is called
a "slow start."

Of course, packet loss is possible, not related to the
overload of network nodes, for example, due to uncorrectable
errors caused by interference in the communication line, but in
this case we are not interested in such losses [16]. The
considered method of data flow control does not prevent the
forthcoming loss of packets, but allows reacting only to the
accomplished fact of overloading of the intermediate node of
the network or the data receiver [14], [17]. This is its main
defect.

The other main idea in this method is to warn in time the
data source A about the threat of overloading one or several
nodes along the route A in the propagation of data packets D.
This warning is the bit Z included in the header of the ACK or
NACK response packet [18] (Figure 3, c).

In the example shown in Fig. 3, the processor of node M2
anticipates overload, observing the steadily increasing level of
buffer filling, as it was shown on its model, shown in the right
part of Fig. 2, a; (other events are possible, such as
predecessors of congestion.

In packages passing through the node M2, more precisely,
in the header of each of them, there is information sufficient for
its routing, for example, in the form of IP addresses of the
source and the data receiver [19]. Viewing this information
allows the M2 node to identify the "culprit" of the expected
overload, from which the most intensive flow of packets
originates.

Suppose that the main "culprit" of the impending
congestion is the data source A. This source, like all others,
transmitting data packets D, sets the Z bits to zero. With
normal data transmission on the route A TO B, these bits
remain in the zero state.

If the conditions for the upcoming overload are detected
and knowing that the largest number of packets per unit of time
originate from the source A, the node M2, when transmitted
along the route A TO B, marks all packets or a part of them
with their Z = 1 bits that inserts in the headers, as shown in Fig.
3, b. The data receiver B returns the received Z = 1 bits to
source A, including them in the headers of the response packets
ACK and NACK (Figure 3, c).

Finally, data source A receives bits Z = 1 and sharply
reduces the data transfer rate to node M2[21]. Further, the data
source A gradually restores the original data flow parameters
[20] or even exceeds the previously reached data transmission
rate until a new series of bits Z = 1, etc., is detected (here, too,
the "slow start" mentioned earlier is applied) [22]. Having
determined the allowable upper speed limit, the data source
takes a small step down to create some margin, guaranteeing
the route from overload.

This way of preventing or eliminating overloads is
satisfactory, but its disadvantage is that, without knowing the
reason for the overload of node M2, the source of data A is
unable to adequately respond to it. So a sudden and sharp
decrease in the data transfer rate - is unacceptable for many
applications [23]. But if, for example, the data source A knew
that the reason for the upcoming overload was that the
processor of the M2 node could not cope with header stream
processing, then it could, without reducing the transfer rate of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

210 | P a g e

www.ijacsa.thesai.org

payload data, increase the packet length to reduce the intensity
of this flow.

The problem solved by the method 2 discussed below is
thus not only to prevent the source of data on the impending
overload, but also to inform him of its cause. Then the source
could choose the most appropriate "line of behavior" in this
situation[24]. The problem is solved by extending the single-
digit sign Z to several bits. Let us explain what has been said
by example, accepting some assumptions.

Suppose that route A-B (Figure 3) is a virtual telephone
link between devices A and B, for example, between
computers or IP telephones. The technology of VoIP (Voice
over IP) is used [26]. Devices A and B contain codecs such as
AMR (adaptive multi rate) [25]. The codec generates
compressed speech fragments every 20 msec and encodes data
from one of eight speeds in the range from 4.75 to 12.2 kbps.
Further, as before, one-way data transfer from device A to
device B is considered.

After the connection A-B is established, the data source
generates packets, each of which contains a header and a data
field. The data field of the packet is filled with fragments of
speech from the codec output, and then the packet is sent along
the communication line to node M2 [27]. The codec, if the
bandwidth of the A-B channel allows, is initially set to the
maximum coding rate to ensure the highest speech
intelligibility recovered from the data input to receiver B. The
Z bits of the sent packets are set to zero.

In the event of detection of the danger of overload by some
node located along the A TO B route, this node (in our
example, the M2 node) inserts some indication Z in the headers
of packets originating from the most active source (A), as
described earlier, taking into account that this feature contains
not one, but at least two bits. This attribute is returned to the
source; as a result, the processor of node A receives
information about the reason for the upcoming overload. The
node M2 may experience overloading for at least one of the
following reasons.

1) Narrowing the bandwidth of the channel A TO B due to

the appearance of a "bottleneck." This can happen, for

example, because a part of the dedicated link A TO B of the

linkage between the nodes M2 and M3 (Figure 3) has

decreased. This decrease may be due to various reasons. Let's

name two of them.

 The previously unobtrusive competing data flow along
the route M4 M2 M3, which uses the same channel M2
to M3, as the route A TO B, has increased to a
significant level earlier. As a result, the M2 node
redistributed the strip of this channel to the detriment of
the route A TO B .

 The M2 node has changed the type of signal modulation
in the M2 to M3 channel, reducing the transmission rate
due to the deterioration of the signal-to-noise ratio in
this channel.

2) The M2 node processor for some reason or other has

stopped coping with the volume of work on analyzing packet

headers following the route A TO B.

The first and second reasons above for the approaching
overload are displayed respectively by the codes Z = 012 and Z
= 102, the absence of an overload hazard corresponds to the
code Z = 002, both causes simultaneously generate the code Z
= 112. The code Z = 112 can Form one node if it
simultaneously observes both reasons for the upcoming
overload, or by two or more nodes located along the A to V.

So, the node M2 can insert the Z = 102 codes into the
headers of the A B packets that pass along the route, because
the processor of this node cannot cope with the volume of work
on the analysis of headers. These packets are transmitted to the
M3 node, which is supposed to reveal a decrease in the M3 to
B channel bandwidth allocated to the A to B route. In this case,
the M3 node replaces the Z = 102 codes in the packets passing
through it with Z = 112. These codes, as described, reach the
receiver B and return to the data source A as part of the headers
of the response packets (Figure 3, c).

The optimal response of the data source to the identified
causes (1 or 2) of overloading may be this.

The narrowing of the channel bandwidth A to B (reason 1)
should cause a corresponding decrease in the total data rate
(both useful and service) of the source A. To estimate the rate
reduction, it would be desirable to use a multi-bit code Z in
which this degree is reflected. However, in this case there is no
such possibility, therefore the processor of the data source A
switches its codec to the mode of the lowest encoding speed
(out of eight possible - from 4.75 to 12.2 kbps). If the packet
length is unchanged, and the lowest

The frequency of their succession decreases due to the
increase in pauses between them. At the same time, the delay
in the formation of the packet increases due to the increase in
the time it is filled with compressed fragments of speech. Thus,
the data transfer rate (both useful and service data) is reduced
by source A, and if the narrowing of the band is not too large,
then there is no danger of overloads. To restore the high quality
of voice transmission, the coding rate and, correspondingly, the
packet repetition rate gradually increase to the experimentally
detected limit, in which there is still no danger of overloading
the network nodes on the A to B

Alternative response of the data source to the narrowing of
the channel band A to B also provides for using the lowest
encoding rate. When this keeps the packet repetition rate and
their length decreases. The rate of transfer of useful data
decreases, the service data flow remains unchanged.

Finally, the strongest reaction is possible, at which the
coding rate is set to the minimum, and the length of the packets
increases to such an extent that their average delay approaches
the permissible limit (not more than 100 ms) [3], after which,
during a telephone conversation, begins eavesdropped. Such a
reaction is the maximum that can be done in this situation.
After exiting the crisis, the coding rate gradually increases, and
the length of the packets decreases with this in time (to reduce
the delay of their transmission along the route A to B). This
process of two-dimensional optimization of flow parameters is
completed when the boundary is reached, after which the risk
of overloading again arises.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

211 | P a g e

www.ijacsa.thesai.org

Overloading the processor of one or more nodes on the A
to B route (reason 2) is eliminated by reducing the intensity of
the header stream that it (they) has to process. For this, while
maintaining a high coding rate, the data source increases the
length of the transmitted packets to such an extent that their
average propagation delay along the A to B path does not
exceed the previously mentioned allowable limit (100 ms).
Thus, the correct response to the overload warning in many
situations allows to eliminate the danger of overflow of input
buffers and, what is essential, to maintain high quality of voice
transmission.

Method 3: Control of the flow of data with compensation
of the inertia of the feedback loop

One of the simplest ways to control the flow of data
transmitted between the nodes of the network J1 and J2 (Figure
4, a) is as follows.

In steady state, data packets are accumulated in the output
buffer of node J1 for transmission along a certain route,
possibly through other network nodes (not shown in the figure)
to the input buffer of node J2. Both buffers are executed in the
form of blocks of memory of type FIFO.

The flow of data packets passing through the system from
the left to the right has the character of "machine-gun
queuing", since the series of packets are transmitted by the J1
node via the communication line only with the permission of
the receiver, node J2, which "causes fire to the extent
possible". The instantaneous packet transfer rate inside the
series is C; the average speed is less than the instantaneous one
and depends on the average ratio of the pauses between packets
to the length of the series. The unevenness of the arrival of
packets in the buffers of the nodes J1 and J2 causes
fluctuations in the levels of their filling. The challenge is to
protect these buffers from overflow or emptying.

Further, this task is solved only with respect to the input
buffer of the node J2, however, the output buffer of the node J1
can be protected in a similar way by introducing feedback from
the source of the packets sent to it (in the figure this source and
its feedback are not shown). Such a successive chain with
feedbacks between neighboring elements can be arbitrarily
long. Each transmitting port thus issues a stream of packets to
the communication line only if there is a transmission
permission previously received from the destination of the
XON command.

The input buffer of node J2 contains a pointer to the
threshold level F of its filling. In this example, the input buffer
of node J2 contains Q packets. At the moment the current level
Q overcomes the threshold level filling in the F upward side (Q
> F), the node J2 transfers to J1 the packet with the XOFF
command of the transmission suspension. Similarly, at the
moment overcoming the current level Q filling the threshold
level F downwards (Q<= F), the J2 node sends a packet to the
J1 node with the XON resumption command.

Fig. 4. Flow control scheme: a - traditional; b - the proposed.

The problem is that flow control can be very inertial.The
response time of the system to the XON and XOFF commands
is determined by the delay T = T1 + T2, where

T1 - the time from the instant the command is generated by
the node J2 until the previously stopped process of sending
packets by the node J1 resumes or the previously activated
process of issuing packets by the node J1 is suspended;

T2 - the time of packet transmission from the output buffer
of node J1 to the input buffer of node J2.

Thus, if the increasing filling level of the input buffer of the
node J2 has overcome the threshold value F, then the generated
XOFF command will stop the flow of packets at the input of
the node J2 only through the time T. During this time, the input
buffer of the node J2 continues "by inertia "To replenish.
Similarly, the first packet after issuing the XON command to
resume the previously-stopped stream will arrive at the input
buffer no earlier than the time T. During this time, the level of
filling the input buffer of the node J2 "by inertia" is reduced
due to the outflow of data from it.

If the capacity of the input buffer of node J2 is small, then
the inertia of the control can lead to overflow or emptying. In
the worst case, after the moment of exceeding the threshold
level F (Q > F, the command XOFF is issued) and at the time
no outflow of data from the input buffer of the node J2 during
the time T in this buffer "by inertia" will come with C*T
packets. Similarly, if there was no inflow of data, after the
moment of crossing the threshold level F in the direction of
decrease (Q < = F, the command XON is issued) and with
continuous data flow from the input buffer of node J2 during
the time T from this buffer "on inertia "will be selected C*T
packets. Thus, to protect against overflow and emptying, the
input buffer of node J2 should be designed to store at least
2С*Т packets; the threshold F must correspond to its middle.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

212 | P a g e

www.ijacsa.thesai.org

The resulting estimate of the minimum buffer size is
disappointing. Some switches contain several hundred buffers,
In high-speed networks, the T value reaches tens and hundreds
of microseconds. The value of C is of the order of 10 Gbit / s.

As a result, the buffer size 2С Т = 2 10
10

10
–4

is several
megabits. The goal of the next solution is to reduce the buffer
size by half thanks to smoother flow control.

Smoothness of control is achieved by fragmentation of
series of packets and more intelligent algorithm of forming
commands XON and XOFF to resume and stop transmission of
the stream. The circuit shown in Fig. 4, b, [4] contains the same
components and has the same parameters (T, C, Q), which
have just been discussed. The volume of the input buffer of the
node J2 is denoted by B. The new element of this node - the
history memory of the control - is shown for clarity in the form
of a shift register RG, although it can be executed
programmatically using a set of memory cells.

For definiteness, suppose that the flow of ATM cells is
transmitted via the communication channel [5]. (The term
"cell" is equivalent to the term "packet".) This stream is
continuous - after the last bit of the previous cell, the first bit of
the next is transmitted. The length of the cell is 53 bytes. The
cells follow the line of communication with a period of 40 ns.
This does not mean that the proposed idea is applicable only to
ATM technology - it is easy in the following description to
operate with strictly prescribed quanta of time with duration of
40 ns.

Suspension of the flow in this case is conditional (a
continuous stream of cells follows the connection line always)
and means that the output of the nodes J1 accumulated in the
output buffer really stops, but instead of them, bypassing this
buffer, empty cells of the same length are output into the
communication line, as well as cells with data. Empty cells can
be inserted once or form more or less lengthy sequences. Blank
cells are rejected by the J2 node and do not enter its input
buffer.

Suppose that the time T = T1 + T2 = 2 μs, that is,
corresponds to the passage of 50 cells. The rate of issuing
commands XON or XOFF is equal to the rate of arrival of cells
(empty and non-empty) at the input of node J2, that is,
commands are issued every 40 ns. The commands issued by
the node J2 in response to each incoming cell on the
communication line affect the input stream after a time of 50
cells - this is the inertia of the control loop.

Simultaneously with issuing the XON or XOFF command
from node J2 to node J1, it is stored as the corresponding bit (0
or 1) in the right-hand bit of the shift register RG, the
remaining bits are shifted one position to the left, the leftmost
bit is pushed out of the register. Thus, in the RG register, the
history of issuing control commands for the next 50 cycles (the
periods of succession of the cells) is displayed. Each XON or
XOFF command when entering J1 is responsible for making a
decision to issue one (regular) cell either from the output buffer
of this node (when receiving the XON command) or from a
source of empty cells to bypass the output buffer (upon receipt
command XOFF).

The code in the RG register is analyzed by the J2 node.
Counting the number of zeroes contained in it, the node
predicts the number of cells with data that will go to its input
buffer within the next 50 cycles. The single bits in this register
correspond to the number of empty cells that will arrive at the
input of node J2 during this period and will be destroyed by
them. The formation of XON or XOFF commands is as
follows. Let NON be the number of zero bits in the RG
register, B the size of the input buffer of the node J2, Q the
current size of the queue. Then:
XOFF command is generated; otherwise, the XON command.

Indeed, in the worst case, when there is no outflow of data
from the input buffer of the node J2, the expected level of its
filling is equal to the current level of Q, increased by the
number of NON cells that are actually already in transit and
will surely be received in the next 50 cycles. The expected
level of buffer filling Q + NON should not exceed its size B. If
this condition is met, then the thread should not be suspended,
so the XON command is generated. In the opposite situation,
when the predicted level of buffer filling exceeds the volume of
the buffer, stop the flow for at least one clock cycle, that is,
generate the XOFF command. The commands, of course, will
have an effect only after 50 clock cycles, but due to the
"smallness" of their action and the integration of many
commands in time, the total effect is expressed in that the
fluctuations in the buffer fill level become smaller, and the
necessary buffer memory capacity is reduced by two times.

So, in the steady state, the average level of buffer memory
of the J2 node is close to V / 2, in the 50-bit RG register the
average number of zeros and ones is approximately the same.
Suppose that B = 50, the average level is 25. Then the stocks in
relation to overflow and emptying the buffer will be 25 cells in
each direction. This is consistent with the fact that the average
number of arriving cells expected in the nearest time interval T
is 50/2 = 25.

In the prototype (Figure 4, a), in the worst case (in the
absence of data outflow from the buffer), at the time T, 50 cells
arrive at the input of the buffer of node J2. Similarly, in the
opposite situation, in the absence of data flow to the buffer, the
level of its filling during the time T will decrease by 50 cells.
Therefore, to create the necessary reserves of 50 cells in each
direction, a buffer with a volume of 100 cells is needed, which
is twice as large as when using method 3 (Figure 4, b).

As expanding the scope of the method 3, the idea of
reducing the amount of buffer memory of the receiver when
building a data transfer system between nodes of a computer
network was considered. However, this idea can find wider
application. As an example, consider the circuit of the
commutator (Fig. 5). As usual, to simplify the description, we
assume that the data streams propagate only in one direction -
from left to right. In fact, to construct a switch operating with
flows of both directions, it is necessary to apply the same
circuit deployed in the opposite direction, superimpose the
resulting circuit to the original one, and combine the
corresponding external inputs with the outputs.

The switch contains three input buffers # 1 - # 3, a
switching matrix, a processor and three output buffers ## 1 - ##
3. Comparing Fig. 5 with Fig. 4b, one can note the similarity

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

213 | P a g e

www.ijacsa.thesai.org

between the block structures used in both schemes. Some
designations also coincide, therefore further are not explained.
The signals GO_1 - GO_3 from the rightmost cell of the
corresponding input buffer of type FIFO are given a data
packet, with the queue moving one position to the right. Data
packets from independent sources, for example, from computer
network nodes, enter the input buffers of the switch. As a
result, buffers create queues of packets waiting to be sent to the
output buffers. The directions of packet transmission are
detected by the processor based on the analysis of address
information contained in their headers.

Fig. 5. Structure of the switch, the first option.

The packets are transferred from the input buffers to the
output through the switching matrix under the control of the
processor. Packets of some types are sent simultaneously to all
output buffers or to some subset of them. The switching matrix
allows simultaneous transmission of packets in different
independent directions. For example, simultaneously with the
transfer of a packet from the buffer # 1 to the buffer ## 3,
transmissions along the directions # 2 ## 1 and # 3 ## 2 can be
carried out.

In the output buffers, queues of packets awaiting delivery
to the corresponding communication lines are also created. In
each of these buffers, the previously discussed method of
preventing overflows and devastations of the queue is applied
(Fig. 4, b). However, in this case (Figure 5), the output buffer
"does not know" from which directions and in what order the
data is expected to arrive, i.e., it does not have information
about which input buffers and which sequence should be sent
the results of the queue state forecasting - the XON or XOFF
commands. Therefore, the output buffers form the XON /
XOFF flag bits (flag 1-flag 3), irrespective of which input
buffer will be affected. The flags are polled by the processor

and used by the processor to control the transmission of data
through the switching matrix.

Looking through the outputs of buffers # 1 - # 3, the
processor monitors a lot of packets, ready to be sent to the
buffers ## 1 - ## 3. The decision to send each of these packets
is accepted by the processor only if the flag of the
corresponding output buffer is set to the enabling state - XON.
Then the processor creates the required path through the
switching matrix and initiates the issuance of the packet by the
command (signal) GO_i (i = 1, 2, 3). The structure of the
switch (see Figure 5) has a drawback that is not related to the
application of the proposed method for managing data flows.

If the packet type provides its transfer to a group of several
output buffers, the processor does not wait for the entire group
to receive data at the same time to speed up the process. It
transmits copies of this package sequentially, as the output
buffers that make up the group appear. In this case, until the
complete distribution of the packet across the whole group of
output buffers, this packet is not removed from the input buffer
and therefore prevents the progress of the queue in it.

A similar situation (blocking of the input queue) can be
observed when sending a normal packet addressed to only one
output buffer. If the output buffer is not ready for data
reception for a relatively long time, then the packet remains at
the output of the input buffer, and the queue in it does not
advance, but only grows with the arrival of new packets. This
queue may contain packages that could be serviced, since the
corresponding output buffers are ready to receive data, but they
are all prevented by the priority packet waiting for maintenance
and blocking access to the rest of the packets to the switching
matrix.

Fig. 6. Switch structure, second option.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

214 | P a g e

www.ijacsa.thesai.org

Blocking of input queues is eliminated in the scheme
shown in Fig. 6. In comparison with the previously considered
circuit (Figure 5), the input buffers are replaced by buffer
groups, the switching matrix is excluded. Each group of input
buffers accumulates more than one queue for the number of
input channels of the switch. Each group of input buffers
transfers data to the corresponding output buffer.

Packets coming from the input channels Z, X and Y are
sorted. Packets of channel Z, which should get into the output
buffer ## 1, are written to the upper buffer of group # 1.
Packets of the Z channel, intended for sending to the line
through the buffer ## 2, are written to the upper buffer of group
2. Packets of channel Z, which should be sent to the output
buffer ## 3, are written to the upper buffer of group # 3.
Packages from the input channels X and Y are sorted similarly.

The processor analyzes the flags 1 to 3 and, in the presence
of the readiness of one or more output buffers, receives one or
more GO_i signals (i = 1, 2, 3) to receive data. Each of these
commands is addressed to one group of input buffers. Since in
this example the group contains three buffers, the command
contains three bits that indicate from which queue the next data
packet should be issued via the OR gate. Commands (a, b, c) =
(0, 0, 1), (a, b, c) = (0, 1, 0) and (a, b, c) = (1, 0, 0) correspond
to the issuance the data packet from the upper, middle and
lower case of the selected group. The queue number can be
transmitted from the processor with binary code with its
decoding in groups of input buffers, but this possibility is not
considered to simplify the figure.

If one of the output buffers is not ready to receive data for a
relatively long time, this does not affect the transmission of
packet flows through other output buffers. For example, the
output buffer ## 1 may not be ready to receive data (flag 1 in
the XOFF state), then the GO_1 signal remains zero for this
time (0, 0, 0), preventing the issuance of packets from group 1.
Other groups remain in normal operating mode, i.e., as far as
possible under the control of the processor, data is transferred
to the corresponding output buffers.

Accelerated transmission of high priority packets
through the switch. The switch shown in Fig. 7, is an
improved version of the previously considered structure (Fig.
6). Comparing Fig. 6 and Fig. 7, one can note that some of the
previously considered elements in Fig. 7 are not shown,
although they may be present in the circuit. At the same time,
new elements have been introduced, the functions of which do
not violate the work of the previously considered schemes. The
purpose of introducing new elements is to accelerate the
transfer of high-priority packets through the switch.

Just like in the previous scheme, the switch contains three
groups # 1 - # 3 input buffers of type FIFO. The outputs of
these buffers in each group are connected through the first
logical OR and the L1-L3 packet converters with the inputs of
the output buffers ## 1 - ## 3. In each group of input buffers,
the second logical OR is added, through which bypass paths
(without queue) pass high-priority covenants, if they enter
buffers. Switches SW1 to SW3 translate packets either from
the corresponding queues located in the buffers ## 1 - ## 3, or
from the workarounds. In the first case, the key is set to LP
(low priority), in the second - to HP (high priority).

Coordination of actions of all components of the multiplexer is
performed by one or several processors (in Figure 7 processors
are not shown).

As in the previous scheme (Figure 6), the packets arriving
from the input channels Z, X and Y are sorted. Packets of
channel Z, which are addressed to buffer ## 1, are written to
the upper buffer of group # 1. Packets of channel Z, addressed
to buffer ## 2, are written to the upper buffer of group # 2.
Finally, the Z channel packets addressed to buffer ## 3 are
written to the upper buffer of group # 3. Packages from the
input channels X and Y are sorted similarly. Then the packets
are moved along the corresponding input queues, through the
first logical OR elements and the lower channels of the
converters L1 to L3 are transmitted to the output buffers ## 1 -
3 and in the order of their arrival are output from them to
the output lines Q, R and S via the keys SW1 to SW3, which
are in the LP state.

This "natural" sequence of events is violated with the
arrival of a high-priority packet, for example, in the upper
buffer of group # 1. All new arrivals in the buffers, packets are
checked for priority. Suppose first that the number of priority
levels is two, and the high-priority packet came at a time when
all other packets on the switch have low priorities. The priority
level of the package is indicated in its header.

Fig. 7. Switch structure with accelerated maintenance of high-priority

packets.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

215 | P a g e

www.ijacsa.thesai.org

In the known switch structures, a simple and
understandable reaction to the entry of a high-priority packet
was adopted:

 If the desired output link is not used, then the high
priority packet immediately, without delay, begins to be
issued to it;

 If the communication line is busy transmitting a low-
priority packet, the delivery of a high-priority packet is
delayed until it is released.

The latter circumstance leads to delays in switching high-
priority packets, which for some applications is highly
undesirable or even unacceptable. In the worst case, a high-
priority packet may be a little late at the time of issuing a low
priority, which may have a significant length, for example,
1500 bytes.

The proposed solution allows interrupting transmission of
the low-priority packet practically at any stage, then to transmit
a high-priority packet and only then resume the interrupted
transfer. Nested interrupts are possible if the number of priority
levels exceeds two. Let us consider this solution in more detail.

Suppose that in each transmitted packet (Figure 8), in
addition to the address and other information, its priority P and
length N are indicated. The codes P and N can be located, for
example, in two adjacent bytes, with three bits defining one of
the eight priority- and the remaining 13 bits are the length of
the packet (in bytes) in the range from some fixed minimum
length U to the maximum, equal to (U + 213 - 1) bytes. All
transmitted packets pass through converters L1-L3 (Figure 7),
where each of them is bit-oriented and is preceded by a unique
flag.

Fig. 8. Conversion of packets by blocks L1-L3 (Figure 7).

Recall that bit staffing allows you to exclude from the data
stream a random copy of the unique code selected as the frame
start flag F. In this example, F = 01111110.

In Fig. 9, and the "true" flag F of the beginning of the frame
(circled in a rectangular frame) is inserted into some sequence
of bits. The problem is that, most likely, this sequence also
contains codes 01111110, which can be considered as false
flags. In order to prevent the transmission of false flags to the
far side of the communication channel, they are intentionally

reversibly distorted, for example, according to the algorithm
proposed in [7].

Fig. 9. Improved bitstaffing:.

a - the initial sequence of bits with the "true" flag of the
beginning of the frame introduced into it; b - the same
sequence after excluding false flags from it

This algorithm is as follows. The original sequence of bits
with the "true" flag inserted into it is viewed through a sliding
seven-bit window in order to detect in it the code 0111111,
almost coincident with the flag. If such a code is detected and
is not a component of the "true" flag, then it is supplemented
by a single bit of s, regardless of the value of the subsequent bit
(Figure 9, b). Such a procedure is called bitstaffing.

Bitstaffing does not apply to "true" flags, so they become
unique, since all false flags are deliberately distorted by bits of
s. On the far side of the communication channel, the reverse
operation is performed - bits s (following the sequences
0111111, which are not constituent parts of the "true" flags) is
destroyed.

In contrast to the classical bitstaffing used in the HDLC
protocol, the variant proposed in [7] allows us to reduce the
redundancy introduced into the initial bitstream by half.
Indeed, for a single random sample, the probability of detecting
a 7-bit code (0111111) in a random data stream is 1/27 =
1/128. In the classical version of bitstaffing, the probability of
detecting a 6-bit code (011111) in a random data stream is 1/26
= 1/64. In other words, the insertion of redundant bits in the
classical version of bitstaffing is carried out twice as often as in
the version proposed in.

Suppose that in the initial state, a low-priority packet is sent
to the line from the output buffer ## 1 of the switch (Figure 7).
The SW1 switch is set to LP. As shown in Fig. 10, a, at some
time T0, a high priority packet arrives from the upper channel
of the packet transformer L1, bypassing the output queue. The
transmission of the low priority packet terminates in the nearest
bit interval, the SW1 switch goes to the HP state and the first
flag bit of the high priority packet is placed in place of the not
transmitted bit. Then all the bits of this packet are transmitted
(Fig. 10, b).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

216 | P a g e

www.ijacsa.thesai.org

Fig. 10. Interruption of low-priority data stream high priority: a - low-
priority data packet; b - high-priority data packet; c is the total data flow in the

line.

At the time T1, the last bit of the high priority packet is
transmitted. The key SW1 returns to the LP position.
Following the last bit of the high-priority packet, all the bits of
the previously suspended low-priority packet are transmitted.
The total data flow (Fig. 10, c) can be divided on the far side of
the communication channel into two components
corresponding to Fig. 10, a and b, due to the uniqueness of the
flags F and the presence of the P and N fields in the packet
headers.

To simplify the analysis of code situations by the receiver,
one can accept the condition that the low-priority packet flag is
protected from interrupts, i.e., not crashed when switching to a
high-priority packet transmission. In other words, if a high-
priority packet has entered the SW1 key during the low priority
packet transmission, it is delayed and its transmission begins
only after the low-priority packet flag is fully transmitted. In
the worst case, the delay is eight bit intervals. With a greater
number of priority levels, the described process of switching
data flows acquires the nature of nested interrupts widely used
in microprocessor technology. As shown in Fig. 11, the
transmission of packets can repeatedly go from one priority
level to another and back.

In the period T0 - T1, the packet Y0 of the zero (lowest)
priority level is transmitted to the line. At time T1, this
transmission is interrupted due to the arrival of the Y1 packet
of the first (higher) priority level. The transmission of the
packet Y1, in turn, is interrupted at the time T2, after which the
Y2 packet of the second priority level is fully transmitted. The
end of the transmission of this packet is marked by a period.

At time T3, the switch returns to the transmission of the
packet Y1, but at the time T4 the transmission is again
interrupted by the higher priority packet Y3, which in turn is
interrupted by the Y4 packet at the time T5. This packet has the
highest priority; therefore its transfer cannot be interrupted
under any circumstances.

Fig. 11. Transmission of data packets Y0 to Y6 using a four-level priority

system.

Further, at the moments T6 to T8, in the order of decreasing
priorities, the transmissions of the packets Y4, Y3, Y1 are
completed, and the transmission of the packet Y0 resumes. At
time T9, this transmission is again interrupted by a Y5 packet
having the highest priority. At time T10, the Y6 packet is ready
for dispatch, but it is performed only starting from the moment
T11, when the transmission of the Y5 packet is complete.

At the moments T12 and T13, the transmission of the
packets Y6 and Y0 is completed.

III. CONCLUSION

As a summary, the article approved a number of original
technical solutions to improve the quality of control and reduce
the required amount of buffer memory of network nodes. High-
priority packets are wedged into low-priority packets, without
waiting for the end of their transmission. This allows reducing
delays in high-priority packets and with low-priority packets of
long length. The increase in the intelligence of
telecommunication devices became possible to apply more
sophisticated algorithms and original flow control schemes in
comparison with the known ones. This allows us solving the
following tasks:

 reduce the likelihood of overflow and emptying of
buffer blocks located along the distribution routes of
packets and, ultimately, improve the quality of
computer networks;

 reduce the required amount of buffer memory; reducing
the amount of buffer memory of the receiver when
building a data transfer system between nodes of a
computer network

 improve the efficiency of servicing high-priority
packets.

ACKNOWLEDGMENT

I thank, King Abdulaziz University, for supporting and
carrying out this work.

REFERENCES

[1] Archer, C.J. and G.R. Ricard, Administering registered virtual addresses
in a hybrid computing environment including maintaining a cache of
ranges of currently registered virtual addresses. 2016, Google Patents.

[2] Anderson, J.L. and T.J. Balph, Memory interface device with processing
capability. 1981, Google Patents.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

217 | P a g e

www.ijacsa.thesai.org

[3] Kim, S. and R. Lu, The Pseudo‐Equivalent Groups Approach as an
Alternative to Common‐Item Equating. ETS Research Report Series,
2018.

[4] Sansyzbaevich, I.S., et al. Development of algorithm flow graph, mealy
automaton graph and mathematical models of microprogram control
mealy automaton for microprocessor control device. in Control and
Communications (SIBCON), 2017 International Siberian Conference on.
2017. IEEE.

[5] Fujioka, Y., M. Kameyama, and M. Lukac. A dynamically
reconfigurable VLSI processor with hierarchical structure based on a
micropacket transfer scheme. in Information and Digital Technologies
(IDT), 2017 International Conference on. 2017. IEEE.

[6] Kaushansky, D., et al., Programmable test instrument. 2017, Google
Patents.

[7] Tan, C.J., et al. Review on Firmware. in Proceedings of the International
Conference on Imaging, Signal Processing and Communication. 2017.
ACM.

[8] Cabillic, G. and J.-P. Lesot, Selective compiling method, device, and
corresponding computer program product. 2017, Google Patents.

[9] Wiśniewski, R., Prototyping of Concurrent Control Systems, in
Prototyping of Concurrent Control Systems Implemented in FPGA
Devices. 2017, Springer. p. 99-116.

[10] Durand, Y., et al. A Programmable Inbound Transfer Processor for
Active Messages in Embedded Multicore Systems. in 2017 Euromicro
Conference on Digital System Design (DSD). 2017. IEEE.

[11] Maeda, T. and R. Matsubara, Storage apparatus and failure location
identifying method. 2017, Google Patents.

[12] Vladimirov, S. and R. Kirichek, The IoT Identification Procedure Based
on the Degraded Flash Memory Sector, in Internet of Things, Smart
Spaces, and Next Generation Networks and Systems. 2017, Springer. p.
66-74.

[13] Ye, J., A novel ship-borne positive pressure solid phase extraction
device to enrich organo chlorinated and pyrethroid pesticides in
seawater. Se pu= Chinese journal of chromatography, 2017. 35(9): p.
907-911.

[14] Vasumathi, B. and S. Moorthi, Implementation of hybrid ANN–PSO
algorithm on FPGA for harmonic estimation. Engineering Applications
of Artificial Intelligence, 2012. 25(3): p. 476-483.

[15] Wiśniewski, R., Modelling of Concurrent Systems in Hardware
Languages, in Prototyping of Concurrent Control Systems Implemented
in FPGA Devices. 2017, Springer. p. 117-137.

[16] Pearlson, K.E., C.S. Saunders, and D.F. Galletta, Managing and Using
Information Systems, Binder Ready Version: A Strategic Approach.
2016: John Wiley & Sons.

[17] Ruiz, P.A.P., B. Kamsu-Foguem, and D. Noyes, Knowledge reuse
integrating the collaboration from experts in industrial maintenance
management. Knowledge-Based Systems, 2013. 50: p. 171-186.

[18] Han, Y.Y., et al., Unexpected increased mortality after implementation
of a commercially sold computerized physician order entry system.
Pediatrics, 2005. 116(6): p. 1506-1512.

[19] Jagadish, H., et al., Big data and its technical challenges.
Communications of the ACM, 2014. 57(7): p. 86-94.

[20] Rafi, D.M., et al. Benefits and limitations of automated software testing:
Systematic literature review and practitioner survey. in Proceedings of
the 7th International Workshop on Automation of Software Test. 2012.
IEEE Press.

[21] Al-Rababah, A. and N. Hani. Component linked based system. in
Modern Problems of Radio Engineering, Telecommunications and
Computer Science, 2004. Proceedings of the International Conference.
2004. IEEE.

[22] Rodríguez, P., et al., Continuous deployment of software intensive
products and services: A systematic mapping study. Journal of Systems
and Software, 2017. 123: p. 263-291.

[23] Taylor, S.J., R. Bogdan, and M. DeVault, Introduction to qualitative
research methods: A guidebook and resource. 2015: John Wiley & Sons.

[24] Ciccozzi, F., et al., Model-Driven Engineering for Mission-Critical IoT
Systems. IEEE Software, 2017. 34(1): p. 46-53.

[25] AlRababah, A.A., A new model of information systems efficiency based
on key performance indicator (KPI). management, 2017. 4: p. 8.

[26] Al Ofeishat, H.A. and A.A. Al-Rababah, Real-time programming
platforms in the mainstream environments. IJCSNS, 2009. 9(1): p. 197.

[27] Choi, J. and R.A. Rutenbar, Video-rate stereo matching using Markov
random field TRW-S inference on a hybrid CPU+ FPGA computing
platform. IEEE Transactions on Circuits and Systems for Video
Technology, 2016. 26(2): p. 385-398.

