
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

360 | P a g e

www.ijacsa.thesai.org

Evaluation of Gated Recurrent Unit in Arabic

Diacritization

Rajae Moumen1, Raddouane Chiheb2, Rdouan Faizi3, Abdellatif El Afia4

ENSIAS

Mohammed V University

Rabat, Morocco

Abstract—Recurrent neural networks are powerful tools

giving excellent results in various tasks, including Natural

Language Processing tasks. In this paper, we use Gated

Recurrent Unit, a recurrent neural network implementing a

simple gating mechanism in order to improve the diacritization

process of Arabic. Evaluation of Gated Recurrent Unit for

diacritization is performed in comparison with the state-of-the

art results obtained with Long-Short term memory a powerful

RNN architecture giving the best-known results in diacritization.

Evaluation covers two performance aspects, Error rate and

training runtime.

Keywords—Gated recurrent unit; long-short term memory;

arabic diacritization

I. INTRODUCTION

Natural languages require different processing steps in
order to perform Natural Language Processing (NLP) tasks,
such as Text-to-speech synthesis (TTS), speech recognition,
sentiment analysis, information retrieval, etc. In the case of
Arabic, an additional preprocessing step is mandatory:
Diacritization, or diacritic restoration. Diacritics are signs
placed below or above a letter indicating a different phonetic
value.

Arabic is a semitic language with two varieties: Classical
and Modern. Classical Arabic is the pure language spoken by
Arabs; Modern Standard Arabic (MSA) is an evolving variety
with constant new terms to meet the modern innovations and
changes. Generally, Arabic (Classical or MSA) is transcripted
without diacritics, leading to different ambiguities at various
linguistic levels as explained in [1].

According to [2], in over 77% of cases, a non-vocalized
word can have several possible diacritizations and
consequently different possible meanings.

TABLE I. POSSIBLE DIACRITIZATIONS FOR THE STRING “صدق”

Word Diacritized word Meaning

 Sadaka He is right صَدقَََ

 Sad~aka He believes صدَّقََ

ق Sud~ika We believe him صد ِّ

دْقَ Sidku Truth ص ِّ

 Sudku Dowries ص د قَ

Table 1 gives an example of this aspect and lists some of
the possible diacritization forms of the string “صدق” and the
inferred meaning.

Arabic diacritization received a lot of interest and went
through different models: Rule based models, statistical models
and hybrid models.

Rule based models rely on existing linguistic rules
formulated, in most cases by human experts. They have proven
an acceptable efficiency in diacritization, given the lack of
linguistic resources. The major drawback of rule-based models
is the laborious, costly and time-consuming task to formulate
and maintain rules that covers all rich linguistic aspects of
Arabic. Moreover, Rule based models require strong linguistic
knowledge.

Statistical models attempt to learn a diacritization model
from diacritized texts; by predicting the probability of
distribution of a sequence of words or characters. Authors in
[3] present a review of these methods, using Hidden Markov
chains, n-gram or finite state transducers.

The weakness of statistical models is their reliability on
large corpus of fully diacritized text. Their strength is that no
linguistic knowledge or tools like Pos Taggers or
morphological analyzers are needed.

Hybrid methods come from the statement that the strength
of linguistic knowledge combined to statistic methods would
yield to better results.

Recurrent neural networks (RNN) language models have
been used to solve diacritization problem as a statistical or
hybrid method. The results are impressive and the error is
proven to be asymptotic with a DER of 5.08% over all
characters using long short-term memory (LSTM) a powerful
RNN architecture proving its performance in various tasks.
Moreover, RNN have been used successfully without relying
on any linguistic tools, and solely on diacritized corpus.

However, the superior performance of RNN comes at the
cost of expensive model training, reaching days or weeks in
some experimental settings requiring a significant computation
capability.

As a solution to these issues, authors introduced new RNN
architectures with simple internal architectures. GRU,
introduced in [4] is one of these RNN; in some tasks, it seems
to perform better on the training runtime, and maintain a

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

361 | P a g e

www.ijacsa.thesai.org

comparable accuracy to LSTM. To our knowledge,
diacritization has never been addressed by GRU.

In this paper, we present the results of our evaluation of
GRU to enhance the diacritization results regarding its
performance in training runtime and error scoring. We use the
performances scored by LSTM in diacritization as a baseline.
We show that we achieve to maintain the state-of-the art results
with better scoring on the training and runtime.

II. RELATED WORK

A. RNN Performance

The first motivation of this study is to enhance the
performances of Arabic diacritization. The evaluation of GRU
on Arabic diacritization is conducted in comparison with
LSTM. In literature, many studies have made this evaluation in
various tasks. For example, in [5], authors used a probabilistic
approach to determine which RNN architecture is optimal.
They evaluated thousand different RNN architectures and
identified some that outperform LSTM and GRU in some tasks
but not all. In [6], authors compared LSTM and variants over
large-scale tasks such as speech recognition, handwriting
recognition, etc. Authors conclude that variants of LSTM do
not improve significantly the performance.

In [7], an empirical comparison between LSTM and GRU
is performed for music and speech modeling. The study did not
conclude the superiority of one on the other and then considers
GRU to be a better choice since it uses less parameters.

We find the studies in literature inconclusive and
insufficient to generalize over all tasks, taking into
consideration the considerable differences that might remain in
experimental settings and characteristics of the addressed
problem.

B. Arabic Diacritization

The Arabic diacritization problem is mainly addressed as a
classification problem over seven classes corresponding to the
possible diacritics.

Diacritization is divided into two sub-types: The
morphological diacritization giving satisfying results reaching
an error of 3% to 4%, while syntactic diacritization is still to be
improved with a rate of 9.9%.

Earlier approaches in diacritization are rule-based models,
like in [8], where morphological analyzer is used for semi-
automatic diacritization. Work in [9] presents “Alserag”,
another rule based system working through three modules:
Morphological analysis, syntactic analysis and morph-
phonological module. The system scores 8.68% as
diacritization error rate (DER) and 18.63% as word error rate
(WER). The main drawback of rule-based models is their high
development cost; and the fact that creating linguistic resources
such as corpuses are laborious task that need to be reproduced
over the studied language.

More recent studies benefit from the evolution of machine
learning to learn a diacritization model from vocalized text, the
study in [3] presents an overview of these models: Using
Maximum Entropy, Hidden Markov Models (HMM) and
weighted finite state machine.

In [10], a maximum entropy model is trained for sequence
classification to restore the diacritic of each character. They
used The Arabic treebank corpus, containing 600 documents
form newspapers with over 340k words. The system achieves a
DER of 5.5% and a WER of 18%.

More recently, Machine-learning models tend to rely on
less and less external resources such as in the study in [11]
where the model relies solely on diacritized text. To our
knowledge, among systems depending on no external
resources, this study gives the best results scored to now with a
DER of 8.14% for the end-case character, and 5.08% for all
characters.

III. RECURRENT NEURAL NETWORKS

RNN are computational approach based on large connected
neural unit forming a directed graph.

In basic RNN we assume that , … ,) is the
input sequence, , … ,) the hidden sequence and
 , … ,) the output sequence, the basic RNN
computes h and y by executing the equations (1) and (2) from
t=1 to T iterations:

) (1)

 (2)

f is the activation function for hidden layers, w the matrix
weights and b the bias vector, the hidden bias vector.

RNN are suitable for capturing dependencies among
sequential data types. The problem of RNN is that they remain
weak on long-term dependencies as studied in [12] where
authors proved the difficulty to capture long-term dependencies
because of the “vanishing” or “exploding” of stochastic
gradients.

Gated recurrent neural networks (GNN) have been
proposed to resolve this problem; LSTM and GRU belong to
the category of GNN.

A. Long Short-Term Memory (LSTM)

Introduced in [13], LSTM are special case of RNN capable
to resolve long-term dependencies issue encountered in
standard RNN by using a gating mechanism.

LSTM has the property to remember patterns selectively.
Making them suitable for a number of sequence learning
problems such as language modelling, translation, speech
recognition, and Arabic diacritization.

Study in [11] uses LSTM to build a language-independent
diacritizer trained solely from vocalized text without referring
to any external tools. Authors run several RNN architectures
and achieve with a 3-layer-Bidirectional LSTM to reach a DER
of 4.85%.

In the work in [14], the problem is approached with
bidirectional LSTM considering diacritization as a sequence
transcription problem. The system does not require any
previous treatment (lexical, morphological or syntactic) The
WER scored in this study is 5.82%.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

362 | P a g e

www.ijacsa.thesai.org

B. Gated Recurrent Unit (GRU)

First proposed in [4], GRU is generally incorrectly
considered as a special-case of LSTM, because of the fact that
global architecture is quite similar to LSTM. In fact, GRU is
quite different form LSTM .It defines two gating signals
instead of three in LSTM, an update signal and a reset gate.

GRU has no cell state. Unlike LSTM, it exposes the
memory content at each time step. The transition between the
previous memory content and the new memory contents is
made using leaky integration controlled by the update gate.

GRU has shown its efficiency in many studies like [15] and
[16], it achieves promising results in classification tasks and
reduces the training runtime since few iterations are needed to
update the hidden states and the internal structure of a cell is
simplified.

However, GRU still comes second to LSTM in terms of
performance. Therefore, GRU is mainly used in situations
where fast training is needed with limited computation
capability.

IV. APPROACH

A. Experimental Setup

Our goal is to set up an environment based on GRU to
maintain state-of-the art results and enhance the computation
efficiency. For this purpose, we use as a comparison pattern the
approach used in [11], giving the best results to our knowledge
in same conditions, relying solely on diacritized text.

We compare the error rate and runtime of both GRU and
LSTM over same datasets and experimental setup. For this
purpose, we use the setup described in Fig. 1. The GNN in the
figure stands for the network used, namely GRU and LSTM.

We use single recurrent layer for our networks for limited
computation capacity in one hand, and in the other hand to
omit potential issues related to multilayer deep learning
architectures.

The network needs exclusively two inputs for training,
represented in two separate documents, the first one contains
the diacritized text, and the second contains the equivalent
undiacritized text.

In the whole process, we use the Buckwalter Arabic
Transileration, an ASCII scheme, representing Arabic
orthography strictly one-to-one.

Fig. 1. Architecture of the GNN for Arabic Diacritization.

We tried different environments for experiments, and the
results might be quite different to an environment to another; in
this paper, we present the results of experiments with Python,
Numpy and Theano [17]. We use Theano in order to parallelize
computation of GPU and giving the best possible results with
the limited computation capacity.

We first go through Word embedding, i.e. mapping the
characters sequence into letter vectors. We use for this purpose
word2vec [18] implemented with Theano and Lasagne
Framework.

We use GRU as it has been introduced in [4] and we define
the states as following in the equations (3), (4), (5) and (6):

) (3)

)) (4)

) (5)

) (6)

 stands for element-wise multiplication.

 being the input vector

 being the output vector

 being the update gate vector

 being the reset gate vector

W, U and b the parameter matrices and vector

g being the chosen function, here we use Tanh as it has
been proved to converge faster in practice.

We implement LSTM as following in (7), (8), (9), (10),
(11) and (12):

 ([]) (7)

 []) (8)

 []) (9)

) (10)

 []) (11)

) (12)

 being input vector

 being the previous cell output

 being the previous cell memory

 being the current cell output

 being the current cell Memory

 = Weight vectors for gates (forget: f; candidate: c; i/p
gate: i; o/p gate: o)

For training, test and dev, we use the data described in the
section IV-B.

We use a softmax output layer because it ensures that the
sum of possible output is 1, moreover, it defines a distribution
overall output target classes, suitable to the addressed problem.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

363 | P a g e

www.ijacsa.thesai.org

B. Dataset

The Dataset used in this work is a part of the corpus
“Tashkeela” introduced in [19]. The corpus contains 75
millions of fully vocalized words extracted from 97 books
mainly religious and media online from different sources in
classical and modern Arabic language. We use the approach
described in [10] by splitting the part of the corpus into three
parts, Train/Dev/Test as described in Table 2.

TABLE II. DATA STATISTICS

 Training Dev Test

Words 560k 90k 80k

V. RESULTS AND DISCUSSION

A. Evaluation Metrics

To evaluate the accuracy of GRU we adopt the same
metrics used in most of the diacritization studies, for instance
[14], [11], [3]. The metrics are the Diacritics Error rate (DER)
that compares the diacritization of the predicted word with the
input word at a character level. In addition to the word error
rate (WER), that compares the predicted word to the original at
a word level, in other terms, if an error is detected on a
character, the whole word is considered incorrectly diacritized.

To evaluate the performance of GRU, we consider the
average epoch runtime.

B. Diacritic Error

Table 3 lists the results of the networks error rates,
measured with diacritic error rate (DER) over all diacritics
DER (ALL) and DER over the last character only DER (Last)
on the dev dataset.

TABLE III. DER FOR GRU AND LSTM OVER DEV DATASET

 DER (ALL) DER(Last)

LSTM 7.15 10.50

GRU 7.31 10.79

Experiments show that LSTM achieves better results than
GRU in both the DER of all characters and the DER of the last
character; however, the results obtained by GRU are still good.

a) Qualitative Analysis

To identify the errors we get from the system implemented
with GRU, we proceeded in a direct way by classifying a
sample set of the words incorrectly diacritized.

For classification, we use the diacritization scheme error
proposed in [20].

Table 4 and Table 5 show the distribution of errors among
the sub-categories. We notice that both networks behave in the
same way, and distribution over categories is quite the same;
we notice that most of the errors are made in Form/Spelling,
this is to be expected as it has been reported in works like [21]
that the diacritization tools are less performant in case-ending
diacritics.

TABLE IV. GRU ANNOTATED ERROR CATEGORIES

Error Category Sub-category Nbr of Errors

Form/Spelling
Shadda 8

Tanween 11

Grammar Active-Passive Voice 4

Diacritization
Missing short Vowel 5

Confused short Vowel 2

Morphology
Partial inflection 1

Full-inflection 0

Overall 31

TABLE V. LSTM ANNOTATED ERROR CATEGORIES

Error Category Sub-category Nbr of Errors

Form/Spelling
Shadda 6

Tanween 10

Grammar Active-Passive Voice 3

Diacritization
Missing short Vowel 5

Confused short Vowel 1

Morphology
Partial inflection 1

Full-inflection 0

Overall 26

C. Training Performances

Fig. 2 compares average Epoch Runtime of GRU and
LSTM.

The results do not include the embedding process training.

Fig. 2. Average Epoch Runtime of GRU & LSTM.

D. Discussion

We notice that GRU scores better results and outperforms
LSTM in training. The Training time is reduced by 18.82%.

The evaluation showed that GRU gives comparable results
to LSTM in diacritization accuracy and improves the training
process. Consequently, we assume that GRU gives satisfactory
results in Arabic diacritization. However, we consider our
study to be completed by running different experiment settings
over different datasets.

0:00

0:28

0:57

1:26

1:55

T
ra

in
in

g
 r

u
n

ti
m

e

(h
o

u
rs

)

GRU LSTM

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

364 | P a g e

www.ijacsa.thesai.org

VI. CONCLUSION

In this paper, we presented a new approach for Arabic
diacritization using gated recurrent unit. We showed that GRU
outperforms LSTM in training runtime and gives an error rate
comparable to LSTM. In future work, we intend to evaluate
our approach over different datasets and integer the
diacritization tool into a text-to-speech synthesizer for Arabic.

REFERENCES

[1] A Azmi and R. S.Al Majed, «A survey of automatic Arabic
diacritization techniques» Natural language Engineering, vol. 3, n° 121,
pp. 477-495, 2013.

[2] M. Boudchiche and A. Mazroui, «Evaluation of the ambiguity caused by
the absence of diacritical marks in Arabic texts: statistical study» 5th
International Conference on Information & Communication Technology
and Accessibility (ICTA), Marrakech, Morocco, Dec. 2015.

[3] I. Zitouni and R. Sarikaya, «Arabic diacritic restoration approach based
on Maximum Entropy Models» Computer Speech and Language, vol.
23, n° 13, pp. 257-276, July 2009.

[4] K. Cho, B. v. Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H.
Schwenk, Y. Bengio, «Learning Phrase Representations using RNN
Encoder-Decoder for Statistical Machine Translation» Conference on
Empirical Methods in Natural Language Processing, Doha, Qatar,
October 2014.

[5] R. Jozefowicz, W. Zaremban and I. Sutskever, «An Empirical
exploration of recurrent network architectures» Proceedings of the 32nd
International Conference on Machine Learning, Lille, 2015.

[6] K. e. A. Greff, «A search space odyssey.» IEEE Trans. Neural
Networks. lean. Syst., 2016.

[7] J. Chung, C. Gulcehre, K. Cho and Y. Bengio, «Empirical evaluation of
gated reccurent neural networks on sequence modeling» ArXiv preprint,
2014.

[8] T. A. El-Sadany and M. A. Hashish, «Semi-Automatic Vowelization of
Arabic Verbs» 10th National computer conference, Utilization of
computers in development, Jeddah; Saudi Arabia, 1988.

[9] S. Alansary, «Alserag: An Automatic Diacritization System for Arabic»
Intelligent Natural Language Processing: Trends and Applications,
2017, pp. 523-543.

[10] I. Zitouni, J. S. Sorensen and R. Sarikaya, «Maximum entropy based
restoration of Arabic diacritics» 21st International Conference on
Computational Linguistics, Sydney, Australia, July 2006.

[11] Y. Belinkov and J. Glass, «Arabic diacritization with Reccurent Neural
Networks» Conference on Empirical Methods in Natural Language
Processing, Lisbon, Portugal, September 2015.

[12] Y. Bengio, P. Simard and P. Frasconi, «Learning long-term
dependencies with gradient descent is difficult» IEEE Transactions on
Neural Networks, vol. 5, n° 12, pp. 157 - 166, Mar 1994.

[13] S. H. a. J. Schmidhuber, «Long Short-Term Memory» Neural Comput.
9, 1997, pp. 735-1780.

[14] G. A. Abandah, A. Graves, B. Al-Shagoor, A. Arabiyat, F. Jamour and
M. Al-Taee, «Automatic diacritization of Arabic text using recurrent
neural networks» International Journal on Document Analysis and
Recognition, vol. Volume 18, pp. 183-197, June 2015.

[15] D. Bahdanau, K. Cho and Y. Bengio, «Neural machine translation by
jointly learning to align and translate» International Conference on
Learning Representations, Vancouver, 2015.

[16] A. Graves, «Generating sequences with recurrent neural networks»
Neural and Evolutionary Computing.

[17] T. D. Team, « Theano: A Python framework for fast computation of
mathematical expressions» 2016.

[18] M. Tomas, S. Ilya, C. Kai, C. Greg and D. Jeffrey, «Distributed
Representations of Words and Phrases and their Compositionality»
Advances in neural information processing systems, 2013.

[19] T. Zerrouki and A. Balla, «Tashkeela: Novel corpus of Arabic vocalized
texts, data for auto-diacritization systems» Data in brief, February 2017.

[20] G. Abuhakema, R. Faraj, A. Feldman and E. Fitzpatrick, «Annotating an
arabic learner corpus for error» Proceedings of the International
Conference on Language Resources and Evaluation, Marrakech,
Morocco, 2008.

[21] N. Habash, R. Gabbard, O. Rambow, S. Kulick and M. Marcus,
«Determining Case in Arabic: Learning Complex Linguistic Behavior
Requires Complex Linguistic Features.» Proceedings of the 2007 Joint
Conference on Empirical Methods in Natural Language Processing and
Computational Natural Language Learning,, Prague, Czech Republic,
2007.

