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Abstract—Recurrent neural networks are powerful tools 

giving excellent results in various tasks, including Natural 

Language Processing tasks. In this paper, we use Gated 

Recurrent Unit, a recurrent neural network implementing a 

simple gating mechanism in order to improve the diacritization 

process of Arabic. Evaluation of Gated Recurrent Unit for 

diacritization is performed in comparison with the state-of-the 

art results obtained with Long-Short term memory a powerful 

RNN architecture giving the best-known results in diacritization. 

Evaluation covers two performance aspects, Error rate and 

training runtime. 
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I. INTRODUCTION 

Natural languages require different processing steps in 
order to perform Natural Language Processing (NLP) tasks, 
such as Text-to-speech synthesis (TTS), speech recognition, 
sentiment analysis, information retrieval, etc. In the case of 
Arabic, an additional preprocessing step is mandatory: 
Diacritization, or diacritic restoration. Diacritics are signs 
placed below or above a letter indicating a different phonetic 
value. 

Arabic is a semitic language with two varieties: Classical 
and Modern. Classical Arabic is the pure language spoken by 
Arabs; Modern Standard Arabic (MSA) is an evolving variety 
with constant new terms to meet the modern innovations and 
changes. Generally, Arabic (Classical or MSA) is transcripted 
without diacritics, leading to different ambiguities at various 
linguistic levels as explained in [1]. 

According to [2], in over 77% of cases, a non-vocalized 
word can have several possible diacritizations and 
consequently different possible meanings. 

TABLE I. POSSIBLE DIACRITIZATIONS FOR THE STRING “صدق” 

Word  Diacritized word Meaning 

 Sadaka He is right صَدقَََ

 Sad~aka He believes صدَّقََ

ق  Sud~ika We believe him صد ِّ

دْقَ   Sidku Truth ص ِّ

 Sudku Dowries ص د قَ 

Table 1 gives an example of this aspect and lists some of 
the possible diacritization forms of the string “صدق” and the 
inferred meaning. 

Arabic diacritization received a lot of interest and went 
through different models: Rule based models, statistical models 
and hybrid models. 

Rule based models rely on existing linguistic rules 
formulated, in most cases by human experts. They have proven 
an acceptable efficiency in diacritization, given the lack of 
linguistic resources. The major drawback of rule-based models 
is the laborious, costly and time-consuming task to formulate 
and maintain rules that covers all rich linguistic aspects of 
Arabic. Moreover, Rule based models require strong linguistic 
knowledge. 

Statistical models attempt to learn a diacritization model 
from diacritized texts; by predicting the probability of 
distribution of a sequence of words or characters. Authors in 
[3] present a review of these methods, using Hidden Markov 
chains, n-gram or finite state transducers. 

The weakness of statistical models is their reliability on 
large corpus of fully diacritized text. Their strength is that no 
linguistic knowledge or tools like Pos Taggers or 
morphological analyzers are needed. 

Hybrid methods come from the statement that the strength 
of linguistic knowledge combined to statistic methods would 
yield to better results. 

Recurrent neural networks (RNN) language models have 
been used to solve diacritization problem as a statistical or 
hybrid method. The results are impressive and the error is 
proven to be asymptotic with a DER of 5.08% over all 
characters using long short-term memory (LSTM) a powerful 
RNN architecture proving its performance in various tasks. 
Moreover, RNN have been used successfully without relying 
on any linguistic tools, and solely on diacritized corpus. 

However, the superior performance of RNN comes at the 
cost of expensive model training, reaching days or weeks in 
some experimental settings requiring a significant computation 
capability. 

As a solution to these issues, authors introduced new RNN 
architectures with simple internal architectures. GRU, 
introduced in [4] is one of these RNN; in some tasks, it seems 
to perform better on the training runtime, and maintain a 
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comparable accuracy to LSTM. To our knowledge, 
diacritization has never been addressed by GRU. 

In this paper, we present the results of our evaluation of 
GRU to enhance the diacritization results regarding its 
performance in training runtime and error scoring. We use the 
performances scored by LSTM in diacritization as a baseline. 
We show that we achieve to maintain the state-of-the art results 
with better scoring on the training and runtime. 

II. RELATED WORK 

A. RNN Performance 

The first motivation of this study is to enhance the 
performances of Arabic diacritization. The evaluation of GRU 
on Arabic diacritization is conducted in comparison with 
LSTM. In literature, many studies have made this evaluation in 
various tasks. For example, in [5], authors used a probabilistic 
approach to determine which RNN architecture is optimal. 
They evaluated thousand different RNN architectures and 
identified some that outperform LSTM and GRU in some tasks 
but not all. In [6], authors compared LSTM and variants over 
large-scale tasks such as speech recognition, handwriting 
recognition, etc. Authors conclude that variants of LSTM do 
not improve significantly the performance. 

In [7], an empirical comparison between LSTM and GRU 
is performed for music and speech modeling. The study did not 
conclude the superiority of one on the other and then considers 
GRU to be a better choice since it uses less parameters. 

We find the studies in literature inconclusive and 
insufficient to generalize over all tasks, taking into 
consideration the considerable differences that might remain in 
experimental settings and characteristics of the addressed 
problem. 

B. Arabic Diacritization 

The Arabic diacritization problem is mainly addressed as a 
classification problem over seven classes corresponding to the 
possible diacritics. 

Diacritization is divided into two sub-types: The 
morphological diacritization giving satisfying results reaching 
an error of 3% to 4%, while syntactic diacritization is still to be 
improved with a rate of 9.9%. 

Earlier approaches in diacritization are rule-based models, 
like in [8], where morphological analyzer is used for semi-
automatic diacritization. Work in [9] presents “Alserag”, 
another rule based system working through three modules: 
Morphological analysis, syntactic analysis and morph-
phonological module. The system scores 8.68% as 
diacritization error rate (DER) and 18.63% as word error rate 
(WER). The main drawback of rule-based models is their high 
development cost; and the fact that creating linguistic resources 
such as corpuses are laborious task that need to be reproduced 
over the studied language. 

More recent studies benefit from the evolution of machine 
learning to learn a diacritization model from vocalized text, the 
study in [3] presents an overview of these models: Using 
Maximum Entropy, Hidden Markov Models (HMM) and 
weighted finite state machine. 

In [10], a maximum entropy model is trained for sequence 
classification to restore the diacritic of each character. They 
used The Arabic treebank corpus, containing 600 documents 
form newspapers with over 340k words. The system achieves a 
DER of 5.5% and a WER of 18%. 

More recently, Machine-learning models tend to rely on 
less and less external resources such as in the study in [11] 
where the model relies solely on diacritized text. To our 
knowledge, among systems depending on no external 
resources, this study gives the best results scored to now with a 
DER of 8.14% for the end-case character, and 5.08% for all 
characters. 

III. RECURRENT NEURAL NETWORKS 

RNN are computational approach based on large connected 
neural unit forming a directed graph. 

In basic RNN we assume that      , … ,   ) is the 
input sequence,      , … ,   ) the hidden sequence and 
     , … ,   )  the output sequence, the basic RNN 
computes h and y by executing the equations (1) and (2) from 
t=1 to T iterations: 

                     )         (1) 

            (2) 

f is the activation function for hidden layers, w the matrix 
weights and b the bias vector,   the hidden bias vector. 

RNN are suitable for capturing dependencies among 
sequential data types. The problem of RNN is that they remain 
weak on long-term dependencies as studied in [12] where 
authors proved the difficulty to capture long-term dependencies 
because of the “vanishing” or “exploding” of stochastic 
gradients. 

Gated recurrent neural networks (GNN) have been 
proposed to resolve this problem; LSTM and GRU belong to 
the category of GNN. 

A. Long Short-Term Memory (LSTM) 

Introduced in [13], LSTM are special case of RNN capable 
to resolve long-term dependencies issue encountered in 
standard RNN by using a gating mechanism. 

LSTM has the property to remember patterns selectively. 
Making them suitable for a number of sequence learning 
problems such as language modelling, translation, speech 
recognition, and Arabic diacritization. 

Study in [11] uses LSTM to build a language-independent 
diacritizer trained solely from vocalized text without referring 
to any external tools. Authors run several RNN architectures 
and achieve with a 3-layer-Bidirectional LSTM to reach a DER 
of 4.85%. 

In the work in [14], the problem is approached with 
bidirectional LSTM considering diacritization as a sequence 
transcription problem. The system does not require any 
previous treatment (lexical, morphological or syntactic) The 
WER scored in this study is 5.82%. 
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B. Gated Recurrent Unit (GRU) 

First proposed in [4], GRU is generally incorrectly 
considered as a special-case of LSTM, because of the fact that 
global architecture is quite similar to LSTM. In fact, GRU is 
quite different form LSTM .It defines two gating signals 
instead of three in LSTM, an update signal and a reset gate. 

GRU has no cell state. Unlike LSTM, it exposes the 
memory content at each time step. The transition between the 
previous memory content and the new memory contents is 
made using leaky integration controlled by the update gate. 

GRU has shown its efficiency in many studies like [15] and 
[16], it achieves promising results in classification tasks and 
reduces the training runtime since few iterations are needed to 
update the hidden states and the internal structure of a cell is 
simplified. 

However, GRU still comes second to LSTM in terms of 
performance. Therefore, GRU is mainly used in situations 
where fast training is needed with limited computation 
capability. 

IV. APPROACH 

A. Experimental Setup 

Our goal is to set up an environment based on GRU to 
maintain state-of-the art results and enhance the computation 
efficiency. For this purpose, we use as a comparison pattern the 
approach used in [11], giving the best results to our knowledge 
in same conditions, relying solely on diacritized text. 

We compare the error rate and runtime of both GRU and 
LSTM over same datasets and experimental setup. For this 
purpose, we use the setup described in Fig. 1.  The GNN in the 
figure stands for the network used, namely GRU and LSTM. 

We use single recurrent layer for our networks for limited 
computation capacity in one hand, and in the other hand to 
omit potential issues related to multilayer deep learning 
architectures. 

The network needs exclusively two inputs for training, 
represented in two separate documents, the first one contains 
the diacritized text, and the second contains the equivalent 
undiacritized text. 

In the whole process, we use the Buckwalter Arabic 
Transileration, an ASCII scheme, representing Arabic 
orthography strictly one-to-one. 

 
Fig. 1. Architecture of the GNN for Arabic Diacritization. 

We tried different environments for experiments, and the 
results might be quite different to an environment to another; in 
this paper, we present the results of experiments with Python, 
Numpy and Theano [17]. We use Theano in order to parallelize 
computation of GPU and giving the best possible results with 
the limited computation capacity. 

We first go through Word embedding, i.e. mapping the 
characters sequence into letter vectors. We use for this purpose 
word2vec [18] implemented with Theano and Lasagne 
Framework. 

We use GRU as it has been introduced in [4] and we define 
the states as following in the equations (3), (4), (5) and (6): 

        )              (3) 

                     )    ) (4) 

                   ) (5) 

                   )  (6) 

  stands for element-wise multiplication. 

   being the input vector 

   being the output vector 

   being the update gate vector 

   being the reset gate vector 

W, U and b the parameter matrices and vector 

g being the chosen function, here we use Tanh as it has 
been proved to converge faster in practice. 

We implement LSTM as following in (7), (8), (9), (10), 
(11) and (12): 

    (   [       ]    )           (7) 

        [       ]    )            (8) 

            [       ]    )            (9) 

                    )           (10) 

        [       ]    )          (11) 

               )            (12) 

   being input vector 

    being the previous cell output 

     being the previous cell memory 

   being the current cell output 

   being the current cell Memory 

    = Weight vectors for gates (forget: f; candidate: c; i/p 
gate: i; o/p gate: o) 

For training, test and dev, we use the data described in the 
section IV-B. 

We use a softmax output layer because it ensures that the 
sum of possible output is 1, moreover, it defines a distribution 
overall output target classes, suitable to the addressed problem. 
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B. Dataset 

The Dataset used in this work is a part of the corpus 
“Tashkeela” introduced in [19]. The corpus contains 75 
millions of fully vocalized words extracted from 97 books 
mainly religious and media online from different sources in 
classical and modern Arabic language. We use the approach 
described in [10] by splitting the part of the corpus into three 
parts, Train/Dev/Test as described in Table 2. 

TABLE II. DATA STATISTICS 

 Training Dev Test 

Words 560k 90k 80k 

V. RESULTS AND DISCUSSION 

A. Evaluation Metrics 

To evaluate the accuracy of GRU we adopt the same 
metrics used in most of the diacritization studies, for instance 
[14], [11], [3]. The metrics are the Diacritics Error rate (DER) 
that compares the diacritization of the predicted word with the 
input word at a character level. In addition to the word error 
rate (WER), that compares the predicted word to the original at 
a word level, in other terms, if an error is detected on a 
character, the whole word is considered incorrectly diacritized. 

To evaluate the performance of GRU, we consider the 
average epoch runtime. 

B. Diacritic Error 

Table 3 lists the results of the networks error rates, 
measured with diacritic error rate (DER) over all diacritics 
DER (ALL) and DER over the last character only DER (Last) 
on the dev dataset. 

TABLE III. DER FOR GRU AND LSTM OVER DEV DATASET 

 DER (ALL) DER(Last) 

LSTM 7.15 10.50 

GRU 7.31 10.79 

Experiments show that LSTM achieves better results than 
GRU in both the DER of all characters and the DER of the last 
character; however, the results obtained by GRU are still good. 

a) Qualitative Analysis 

To identify the errors we get from the system implemented 
with GRU, we proceeded in a direct way by classifying a 
sample set of the words incorrectly diacritized. 

For classification, we use the diacritization scheme error 
proposed in [20]. 

Table 4 and Table 5 show the distribution of errors among 
the sub-categories. We notice that both networks behave in the 
same way, and distribution over categories is quite the same; 
we notice that most of the errors are made in Form/Spelling, 
this is to be expected as it has been reported in works like [21] 
that the diacritization tools are less performant in case-ending 
diacritics. 

TABLE IV. GRU ANNOTATED ERROR CATEGORIES 

Error Category Sub-category Nbr of Errors 

Form/Spelling 
Shadda 8 

Tanween 11 

Grammar Active-Passive Voice 4 

Diacritization 
Missing short Vowel 5 

Confused short Vowel 2 

Morphology 
Partial inflection 1 

Full-inflection 0 

Overall  31 

TABLE V. LSTM ANNOTATED ERROR CATEGORIES 

Error Category Sub-category Nbr of Errors 

Form/Spelling 
Shadda 6 

Tanween 10 

Grammar Active-Passive Voice 3 

Diacritization 
Missing short Vowel 5 

Confused short Vowel 1 

Morphology 
Partial inflection 1 

Full-inflection 0 

Overall  26 

C. Training Performances 

Fig. 2 compares average Epoch Runtime of GRU and 
LSTM. 

The results do not include the embedding process training. 

 

Fig. 2. Average Epoch Runtime of GRU & LSTM. 

D. Discussion 

We notice that GRU scores better results and outperforms 
LSTM in training. The Training time is reduced by 18.82%. 

The evaluation showed that GRU gives comparable results 
to LSTM in diacritization accuracy and improves the training 
process. Consequently, we assume that GRU gives satisfactory 
results in Arabic diacritization. However, we consider our 
study to be completed by running different experiment settings 
over different datasets. 
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VI. CONCLUSION 

In this paper, we presented a new approach for Arabic 
diacritization using gated recurrent unit. We showed that GRU 
outperforms LSTM in training runtime and gives an error rate 
comparable to LSTM. In future work, we intend to evaluate 
our approach over different datasets and integer the 
diacritization tool into a text-to-speech synthesizer for Arabic. 
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