
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

411 | P a g e

www.ijacsa.thesai.org

Experimental Evaluation of Security Requirements

Engineering Benefits

Jaouad Boutahar
1
, Ilham Maskani

2
, Souhaïl El Ghazi El Houssaïni

3

1,3
 Systems, architectures and networks Team

EHTP, Casablanca, Morocco
2
LISER Laboratory

ENSEM, Hassan II University

Casablanca, Morocco

Abstract—Security Requirements Engineering (SRE)

approaches are designed to improve information system security

by thinking about security requirements at the beginning of the

software development lifecycle. This paper is a quantitative

evaluation of the benefits of applying such an SRE approach. The

followed methodology was to develop two versions of the same

web application, with and without using SRE, then comparing

the level of security in each version by running different test

tools. The subsequent results clearly support the benefits of the

early use of SRE with a 38% security improvement in the secure

version of the application. This security benefit reaches 67% for

high severity vulnerabilities, leaving only non-critical and easy-to-

fix vulnerabilities.

Keywords—Software security; security requirements

engineering; security evaluation; security testing

I. INTRODUCTION

Security Requirements Engineering (SRE) is the discipline
that integrates security to Requirements Engineering, the very
first step in the Software Development Life Cycle (SDLC). By
adding security requirements to other system requirements
during requirements engineering, a big improvement can be
made in term of security vulnerabilities, software maintenance
efforts and development costs. Moreover, OWASP , the
leading organization in web application security, recommends
focusing a big part of security flaws detecting efforts on the
requirements engineering phase and the design phase[1]. There
is related work which proves that it is critical to address
security issues at the earliest phase, but few works try to
measure just how much improvement can be obtained from
applying an SRE approach. The goal of this paper is to make
such a quantitative evaluation by developing two versions of
the same web application, with and without using an SRE
approach and evaluating their levels of security. The SRE
approach that will be used is CompaSRE, a proprietary
approach detailed in previous work[2]. For evaluation
purposes, there’s a plethora of testing methods and tools that
could be used. A proper benchmark is needed to select the
most appropriate. This paper is structured as follows. First,
related work is discussed. Then, in the second section, the
discipline of SRE is presented, along with definitions of its
most important concepts, and the CompaSRE approach is
explained. Then, in third section, the followed methodology is

explained, along with the scope of the web application that will
be developed for tests, and the selected test method and tools.
Finally, the testing results and their variables are discussed in
the fourth section.

II. RELATED WORK

There is an abundance of security requirements engineering
approaches. But when it comes to evaluating their
performance, to the best of our knowledge, no source
calculates how much is security improved by a certain SRE
approach. Magnusson et al. tried to show how IT security
investments can create value[3]. They studied models for
return on investment on IT security in general. One of the
models, developed by MIT, focused on proving the return of
investment on secure software development, and showed that
the earliest the security is addressed, the highest the benefit.
This benefit was estimated at 21%. As reported in another
paper [4], finding and fixing a software problem after delivery
is often 100 times more expensive than finding and fixing it
during the requirements and design phase. This is an
evaluation of the financial cost of not thinking about security at
the requirements engineering phase, which is their first number
one recommendation on how to reduce software defect.

III. SECURITY REQUIREMENTS ENGINEERING

This section presents the main SRE concepts, their
definition and use in SRE. It also presents the CompASRE
approach used to elicit and model security requirements for this
experiment.

A. SRE approaches

An SRE approach refers to any method or process or
framework that sets clear steps in order to elicit security
requirements for a system to be at the Requirements
Engineering phase. In a previous study, 9 approaches were
studied. They go about eliciting requirements from different
starting points: goals, users, or risks. But, ultimately, any SRE
approach uses a different set of the same concepts. These
concepts are drawn from both the fields of security and
requirements engineering. All 9 approaches include identifying
“goals”, 7 of them identify threats, 6 of them identify
stakeholders and 4 of them identify assets and risks. Table 1
offers a definition of these concepts, which is based on the
ISO/IEC 27000:2016 vocabulary[5].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

412 | P a g e

www.ijacsa.thesai.org

TABLE I. SRE CONCEPTS DEFINITIONS

Concept Definition Alternate labels

Stakeholder

Person or organization that can

affect, be affected by, or perceive

themselves to be affected by a

decision or activity. Some
approaches include other systems

that have an interest in the IS. Are

also included internal software
agents to whom a goal will be

assigned.

Actor, client,

agent

Asset

Anything that has value to the
organization, its business operations

and their continuity, including

Information resources that support
the organization's mission (Data).

Information,
Resource, Object

Goal
A Security objective that must be

achieved by the system to be
Objective

Risk

Potential that threats will exploit

vulnerabilities of an information

asset or group of information assets

and thereby cause harm to an

organization

Requirement

Need or expectation that is stated,
generally implied or obligatory.

Requirements are low level details

of goals.

Goal, objective

B. CompASRE

The CompaSRE approach is the result of a personal
previous work. It was designed as a comprehensive approach,
incorporating the strengths and best practices found in existing
approaches, and filling the gaps between them. It’s based on
the previous definitions and will be used in this experiment to
elicit and model requirements. CompASRE, as illustrated in
Fig. 1. below, is structured in five phases, each phase contains
a set of activities to perform.

Fig. 1. CompASRE Steps.

The first phase “context establishment” aims to identify all
common elements that are necessary to perform security
requirements engineering in later phases. Then, the second
phase “User & Goal track” aims to elicit requirements from the
earlier identified goals. Security goals, as expressed by the
stakeholders, are detailed and refined until reaching
requirements. The third track is about deriving security

requirement by doing a risk assessment, which implies
analyzing threats and vulnerabilities. Risk assessment can be
time and work consuming and was featured in only 4 out of the
9 studied SRE approaches. But assessing risks leads to thinking
about security controls which might lead to new security
requirements. Therefore, it was chosen to include this but keep
it optional. The choice to perform it or not will depend on the
type and size of the project. The more complex a project is, the
more necessary it is to conduct a risk assessment. Once
requirements are elicited (through phase 2 or 3), they must be
modeled. The model created to be used with CompASRE or
other SRE approaches is an extension of SysML requirements
diagrams[6] and was presented in detail in previous paper [7].
In phase 4, elicited requirements are categorized and
prioritized, then inspected for validation to resolve conflicts
and eliminate redundancies. When an organization keeps a
repository of requirements, this repository is to be updated.
Finally, in phase 5, the security requirements are added to all
other system requirements to complete the RE phase of the
SDLC. Further validation might be necessary by the RE team.

IV. METHODOLOGY & TESTING

In this section, the methodology followed to conduct the
study, the web app used as a test subject, the tests that were
performed and the tools that were used are presented.

A. Methodology

The aim is to evaluate the positive impact of SRE on
reducing system vulnerabilities, using specifically the
CompASRE approach to elicit security requirements. To
achieve that aim, first, the same web application was developed
using 2 different software development lifecycles, resulting in
2 levels of security. The first version of the web app, the “No
Secure” version, was developed following a classical waterfall
lifecycle. This lifecycle was chosen because the app’s
functional perimeter is relatively small and unchanging. As for
security, the way it was incorporated is the it’s typically done
in software projects where security is either not addressed at all
(vulnerabilities will be patched after release) or is only
addressed during the test phase. For this case, some minimal
testing was done, in addition to correcting for the most obvious
vulnerability “SQL injection”. For the second “Secure”
version, the same lifecycle was applied, but will be
complemented by CompASRE. It means that, during the
“Requirements Engineering” phase which is the first phase,
CompASRE will be applied to elicit security requirements.
Other later phases will be carried normally. Both versions
were developed using the same language (JEE
framework/java), same database management system and same
development tools. Then, upon development completion, they
were hosted on Microsoft’s cloud solution Azure.

Finally, once both versions of the web app were hosted,
security tests were conducted from a hacker’s perspective.
Quantitative results were obtained on vulnerabilities found in
each version.

Both versions of the application are publicly available for
fellow researchers on the following links:
https://appgestionschool.azurewebsites.net/ for the secure

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

413 | P a g e

www.ijacsa.thesai.org

version; https://appgestionschoolnosecure.azurewebsites.net/
for the no secure version.

B. Test Web Application

The web application that will be used as a test subject is a
grade management system for an engineering school. The
primary criterion of choice was that the app must be security
sensitive, which is the case here since it manages security
sensitive information such as students’ grades and their
personal information. The web app’s functional perimeter
includes security problematic features such as authentication,
filling forms, uploading and downloading files. But the
perimeter was kept small on purpose because auditing the two
versions of the web app and comparing their security levels is
the main goal, not web app’s complexity. The app offers 3
menus for:

1) teachers to enter students’ grades

2) students to view grades, download records, submit a

claim and review individual contractor lecturers

3) administrative staff to manage grades, claims and

reviews and upload program’s data.

C. Testing Method

Empirically proving SRE benefits relies on obtaining
quantitative results on the vulnerabilities found and their levels
of severity. To obtain such results, security tests can be
conducted in 3 manners:

1) Static Application Security Testing (SAST): It’s a

white box testing method where the testers have access to the

system’s code. The code is scanned to systematically detect

and eliminate security vulnerabilities

2) Dynamic Application Security Testing (DAST): It’s a

black box testing method applied on running applications from

the outside.

3) Penetration Testing: Manuel conducting of an

application penetration scenario to target a specific asset or

vulnerability that require human intervention.

Table 2 summarizes the pros and cons of using each test
method in relation to this experiment.

TABLE II. COMPARISON OF TESTING METHODS

Testing

method
Pros Cons

SAST
 Finds vulnerabilities sooner during

SDLC (before deployment)

 No quantitative report

on found
vulnerabilities

 Tests conducted from

the inside

 Focus on code

DAST

 Tests conducted from the outside

 Automated repetitive tests

 Quantitative results

 Used post-development

 No previous knowledge of the app

is needed

 Web app had to be
deployed on an internet

facing server

Pen Testing

 Allows more targeted tests
requiring human intervention

 Allows analyzing and exploiting
other system components such as

OS and hardware

 Tests and results can’t
be reproduced for both

versions

 Costly in term of time
and human resources

From this comparison, the DAST testing method was
chosen because, tests must be conducted from a hacker
approach (i.e. a malicious outsider seeking harm), rather than a
developer or tester approach (i.e. a development team member
seeking to improve security). Furthermore, DAST’s automated
and repetitive tests will give better quantitative results to
compare security in each version such as the number of
vulnerabilities.

D. Testing Tools

Many DAST tools are available to conduct tests. These
tools work by executing predefined attack scripts that send a
request to the web app. The web app’s response to the tool is
analyzed to determine the existence of a vulnerability. Each
tool has its own scripts, and its own parameters to configure
security tests[8]. Choosing and using only one tool would give
biased data as a result. For this reason, it was decided to use
different tools to gather extensive data. The criteria for
choosing these tools were:

1) oriented towards application vulnerabilities rather than

network vulnerabilities

2) not only targeting a certain type of vulnerabilities

3) detailed results: vulnerability severity, page where

found, …

4) available installation and use documentation

5) available user interface

6) Free install or extended free trial

After applying these selection criteria, 3 tools were chosen:
OWASP ZAP 2.7.0 [9], Vega 1.0[10] and Acunetix trial
version 12.0.180911136 [11]. For each one of these tools, both
versions of the web app were tested with the same tool
parameters, to guarantee reliable results.

V. RESULTS

In this section, comparison results are discussed as obtained
by the testing tools, along with the variables that could
influence them. Remaining vulnerabilities are examined.

A. Results Discussion

Fig. 2. shows the number of security alerts reported by each
tool. A security alert arises when one vulnerability is detected
in a certain location of the web app (a location can be a page, a
field within the page, an embedded resource …). So, if the
same vulnerability is detected in many locations, it would rise
as many alerts as the locations where it was found. For each
tool, the benefit was calculated as the percentage of reduction
in the number of alerts (1).

 (1)

Every tool reported a decrease in the number of alerts, with
a security benefit average of 38%. But benefits varied greatly
between tools, with Vega reporting the highest benefit (68%),
while Acunetix reporting the lowest (18%). As for the number
of alerts, they were quite close to the average with an average
number of alerts of 20,66 for the “non-secure” version, and
11,66 for the “secure” version.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

414 | P a g e

www.ijacsa.thesai.org

Fig. 2. Number of alerts and benefit per tool.

TABLE III. BENEFIT PER TOOLAND PER SEVERITY

Seve

rity

Vega ZAP Acunetix Aver

age

bene

fit

No

sec

ure

Sec

ure

ben

efit

No

sec

ure

Sec

ure

ben

efit

No

sec

ure

Sec

ure

ben

efit

High 16 4
75

%
4 0

100

%
4 3

25

%
67%

Med 1 1 0% 4 3
25

%
8 8 0% 8%

Low 4 0
100

%
9 9 0% 3 2

33

%
44%

Info 7 4
43

%
0 0 2 1

50

%
46%

To get into the detail of alerts severity, Table 3 shows the
number of security alerts, ranked by severity, as reported by
each tool. Benefits are calculated by severity level. As shown
in the diagram, the best benefits were obtained for high
severity alerts with a 69% decrease. Indeed, high severity
vulnerabilities are among those targeted early on during the
SRE phase. As a result, the secure version of the web app is
built with embedded security measures against those
vulnerabilities.

As for the nature of the vulnerabilities that were found,
table 4 presents the reported vulnerabilities for each version,
along with the number of occurrences of each one. In the
secure version, some vulnerabilities have disappeared (i.e.
cross site scripting XSS), but some persisted, sometimes with
fewer occurrences. This persistence of vulnerabilities can be
explained, in some cases, by the fact that no requirement has
been expressed against that vulnerability. In other cases, a
requirement has been expressed against that vulnerability, but
wasn’t implemented during development (i.e. verbose error
output). This is true in software development projects when a
requirement is abandoned for time or cost reasons, or because
of requirements mismanagement. There are also cases when a
requirement is badly implemented, or implemented in only a
few locations of the application, leaving some pages
vulnerable. Regarding SQL injection, it’s a high severity
vulnerability that was considered during SRE, and all measures
against it had been taken, but it was still reported by one tool in
the secure version. Further manual tests could not confirm the
vulnerability in the indicated location, so it’s considered it as a
false positive due to the tool itself.

TABLE IV. NUMBER OF ALERTS PER VULNERABILITY AND PER TOOL

Discovered Vulnerabilities
No secure version Secure version

Vega ZAP Acunetix Vega ZAP Acunetix

XSS Cross-site scripting 1 1 0

Integer Overflow 2

 SQL Injection 4 1 1

Page Fingerprint Differential Detected 12 3

Session Cookie Without Secure Flag 1 1

Apache tomcat infromation diclosure 2 2

Verbose Java error output 1 7 1 7

HTLM form without CSRF protection 1 1

String format error 1

Javascript inter-domain sourcefile inclusion 3 3

Autocomplete enabled in password field 4

HTTP cache-control Header not set 1 3 1 3

X-Content-Type-Options Header not set 3 3

Lack of pretection against password brute force
attack

 1 1

Cookie Without Secure Flag 1 1 1

 X-Frame-Options-Header not set 3 3 1 1 3 1

Character Set Not Specified 1 1

Blank Body Detected 1 1

Possible sensitive information disclosure 1 1

TOTAL 28 17 17 9 12 14

B. Remaining Vulnerabilities

Even after applying the SRE approach, the secure version
of the application still has some vulnerabilities. Indeed, no SRE
approach claims to be able to eliminate all vulnerabilities.
Furthermore, other phases of the SDLC play a big role in how
secure a system would be. In the case of this application,

the remaining vulnerabilities are not critical and can be
corrected with a minimum of effort. More importantly, none of
them comes from a design flaw which means that no redesign
of the application will be necessary. Some could argue that,
since SRE isn’t failproof, all vulnerabilities could be left to be
discovered and corrected at the end of the SDLC. This could be

28

17 17

9

12
14

68%

29%

18%

0%

10%

20%

30%

40%

50%

60%

70%

80%

0

5

10

15

20

25

30

Vega ZAP Acunetix

p
er

ce
n

ta
g

e
o

f
b

en
ef

it

N
b

r
o

f
a

le
rt

s

Non secure version

Secure version

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 11, 2018

415 | P a g e

www.ijacsa.thesai.org

true for applications with a simple scope. But, for more
complex systems, correcting vulnerabilities at the end can
either be too costly, too cumbersome (impacting quality) or
sometimes downright impossible because of design constraints.
So, even if applying SRE has its own cost and isn’t failproof, it
still delivers better built-in security and quality.

C. Variables

It’s noticeable that the nature of the discovered
vulnerabilities and the numbers of their occurrences vary a lot
from tool to tool. There are many variables to consider when
interpreting these results. Any change in these variables would
influence the results. The greatest variable is the testing tool
itself. It’s true that the tools work in a similar way: they crawl
the website to find URLs, they attack said URLs with
proprietary scripts and malicious input, then they analyze how
the web app responds.

But where they differ is: how deep do they crawl? what
vulnerabilities are tested for? what script/input is used to detect
the vulnerability? The answers to these questions can lead to
big differences detection efficiency, leading to false negatives
(existing vulnerabilities that go undetected), or false positives
(vulnerabilities reported but don’t exist)[8]. This analysis by
severity is also biased by the fact that the same vulnerability
can be considered with different levels of severity (i.e. verbose
error output, which is like apache tomcat information
disclosure, is high severity for Acunetix and medium severity
for Vega). Tools also differ in their settings and parameters.
ZAP offered more advanced parameters such as creating
contexts, authenticated attacks, adjusting crawling depth… It
was found that the same parameters couldn’t be applied to all
tools, but for each tool, the parameters were the same in each
version. Last but not least, if the tests had been done at
development phase, prior to deployment, SAST tools would
have been used, giving different results.

The second big variable is due to the web application used
as a test subject. The more complex an application is, the more
locations there are to find vulnerabilities. Security also depends
on the technology used for the application. It was noted that
applications in truly compiled application languages (i.e. C,
C++) are more secure (in terms of (regarding OWASP Top 10)
than general-purpose bytecode languages (i.e. Java, .NET)
while scripting (i.e. PHP, ASP) are even less secure[12].

Furthermore, the type of application (social network, e-
commerce ...) and industry (finance, e-gov ...) also influences
what vulnerabilities would be found[13].

Finally, the SRE approach used to elicit requirements is
another variable. Each approach has a different set of steps to
follow, and various approaches work differently for different
projects[14]. The security requirements elicited may also vary,
for the same approach, depending on how correctly the
approach was applied.

VI. CONCLUSION & PERSPECTIVES

The aim of the paper was to quantify the benefit of using an
SRE approach. To achieve that, two versions of the same web

application were developed. The contribution of this research is
the evaluation of the security level of each version, proving the
benefit of SRE. It was found that the second version was 38%
more secure than the first. High severity vulnerabilities are the
more impacted and were decreased by 67%. Vulnerabilities
that persisted were either overlooked during SRE, or
mechanisms against them were poorly developed or not
developed at all. Remaining vulnerabilities are not critical and
easy to correct. These results depend on many variables related
to the testing tools, the web application subjected to the tests,
and the SRE approach that was applied.

Plans for future work are to further investigate all
discovered vulnerabilities to detect false positives and
determine how that may have influenced the results. Tests
could be done on other types of applications of different
technologies to mitigate the effect of these variables. It’s also
planned to improve CompASRE’s efficiency after a detailed
study of its results, challenges and lessons learned.

REFERENCES

[1] “Testing Guide Introduction - OWASP.” [Online]. Available:
https://www.owasp.org/index.php/Testing_Guide_Introduction.
[Accessed: 13-Oct-2016].

[2] I. Maskani, J. Boutahar, and S. El Ghazi El Houssaïni, “Analysis of
Security Requirements Engineering: Towards a Comprehensive
Approach,” IJACSA Int. J. Adv. Comput. Sci. Appl., vol. 7, no. 11, pp.
39–45, Nov. 2016.

[3] H. S. Venter and Information Security South Africa, Eds., Peer-reviewed
proceedings of the ISSA 2004 enabling tomorrow conference. ISSA,
2004.

[4] B. Boehm and V. R. Basili, “Top 10 list [software development],”
Computer, vol. 34, no. 1, pp. 135–137, 2001.

[5] “ISO/IEC 27000:2016 - Information technology -- Security techniques --
Information security management systems -- Overview and vocabulary,”
ISO. [Online]. Available:
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?cs
number=66435. [Accessed: 20-Oct-2016].

[6] “What is SysML? | OMG SysML.” [Online]. Available:
http://www.omgsysml.org/what-is-sysml.htm. [Accessed: 14-Nov-
2017].

[7] I. Maskani, J. Boutahar, and S. El Ghazi El Houssaïni, “Modeling
Security Requirements: Extending SysML with Security Requirements
Engineering Concepts,” Int. J. Appl. Inf. Syst., vol. 12, no. 9, pp. 30–36,
Dec. 2017.

[8] A. Doupé, M. Cova, and G. Vigna, “Why Johnny can’t pentest: An
analysis of black-box web vulnerability scanners,” in International
Conference on Detection of Intrusions and Malware, and Vulnerability
Assessment, 2010, pp. 111–131.

[9] “OWASP Zed Attack Proxy Project - OWASP.” [Online]. Available:
https://www.owasp.org/index.php/OWASP_Zed_Attack_Proxy_Project.
[Accessed: 01-Nov-2018].

[10] “Vega Vulnerability Scanner.” [Online]. Available:
https://subgraph.com/vega/. [Accessed: 01-Nov-2018].

[11] “Acunetix 14 Day Trial,” Acunetix. .

[12] Veracode, “State of Software Security Report, Supplement to Volume 6:
Focus on Application Development,” 2015.

[13] Veracode, “State of Software Security Report, Volume 6: Focus on
Industry Verticals,” 2015.

[14] D. Mellado, C. Blanco, L. E. Sánchez, and E. Fernández-Medina, “A
systematic review of security requirements engineering,” Comput.
Stand. Interfaces, vol. 32, no. 4, pp. 153–165, Jun. 2010.

