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Abstract—Distributed applications have been developed using 

thread pool system (TPS) in order to improve system 

performance. The dynamic optimization and overload 

management of TPS are two crucial factors that affect overall 

performance of distributed thread pool (DTP). This paper 

presents a DTP, that is based on central management system, 

where a central manager forwards client’s requests in round 

robin fashion to available set of TPSs running in servers. The 

dynamic tuning of each TPS is done based on request rate on the 

TPS. The overload condition at each TPS is detected by the TPS 

itself, by throughput decline. The overload condition is resolved 

by reducing the size of thread pool to previous value, at which it 

was producing throughput parallel to the request rates. By 

reducing the size of thread pool on high request rates, the context 

switches and thread contention overheads are eliminated that 

enables system resources to be utilized effectively by available 

threads in the pool. The result of evaluation proved the validity 

of proposed system. 
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I. INTRODUCTION 

The ever-growing expansion of Internet and World Wide 
Web demands scalable services that must be performance 
efficient and highly available. The prominent progression of 
internet’s user doubles internet traffics every two or three 
months. For example, OSN sites such as LinkedIn, Flickr, 
Myspace, Twitter and Facebook provide facilities to over half a 
billion users at the same time [1]. The OSN’s not only provide 
basic communication capabilities but also provide other 
services by third party applications e.g. sharing documents, 
sending virtual gifts, or gaming.  Number of third-party 
applications run by the Facebook are over 81,000 [1]. There is 
a profound impact of these third-party applications on the 
application server’s scalability and performance thus results in 
additional traffic. For example, when Facebook launched its 
developer platform, the traffic increased by 30% in a week 
after launching [2], while in case of Twitter the traffic 
increased by a factor of 20 after launching its API [3]. Also, the 
variations in demand go to extreme levels in some internet 
services that cause overload condition and needs special 
attention to manage server-side resources. In order to deal with 
these complexities, internet services are provided by distributed 
application servers [4], that are responsible of providing run 
time services to applications, where these applications service 
demands of many concurrent users. 

At present, distributed systems have been implemented in 
almost all domains including telecommunication, defense, 
industrial automation, financial services, entertainment, 
government and e-commerce. And that is why, the 
requirements of complexity management, scaling and overload 
management are increasing day by day. As discussed earlier, 
distributed systems handle heavy workloads, where client’s 
requests are incoming from a remote source through some 
network protocol. These heavy workloads are handled by 
distributed systems through extremely concurrent design 
configurations that are implemented as middleware. The 
performance of distributed systems is dominated by 
middleware that provide different functionalities, e.g. 
multithreading policies, remote communication mechanisms, 
persistence services and transaction management etc. It is the 
middleware that makes distributed system scalable, highly 
available and highly performant [5]. Some remarkable 
examples of middleware services for distributed systems are 
middleware of Distributed Object Computing (such as 
CORBA, SOAP, RMI) Component middleware (such as .NET, 
Java Beans), Message Oriented Middleware (such as Java 
Message Queue, BEA’s WebLogic MessageQ) etc. 

One of the most important performance related feature of 
any middleware service in distributed systems is concurrency 
control that handles multiple concurrent requests. Two most 
commonly used concurrency models are Thread Pool System 
(TPS) and event driven model (EDM). 

As compared to TPS, EDM is more performance efficient, 
but at the same time it is much complicated and challenging to 
implement than TPS [6]. The most challenging task in EDM is 
to handle scheduling and assembling of events [7]. Moreover, 
EDM leads to enormous cascading callback chains [8]. As 
compared to EDM, TPS offers more solid structuring 
constructs for concurrent servers by means of threads that are 
light weight and represent work from the perception of the task 
itself [9,10].  Moreover, TPS avoids resource thrashing and 
overheads of thread creation and destruction [11]. Some 
examples of TPS in middleware for distributed systems include 
.NET thread pool [12], Java Message Queue Thread Pool [13]. 

A typical TPS contains a request queue, a pool of threads 
(workers) and dynamic optimization algorithm (DOA) that 
optimizes pool size, as shown in Fig.1. 
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Fig. 1. Conceptual Model of Thread Pool System Embedded in a Server. 

Request queue stores incoming client’s requests. Worker 
threads in the pool fetches and executes these requests. These 
worker threads in the pool are recycled (instead of being 
destroy) to process next client’s request from queue. The re-
spawning and recycling of worker threads avoids thread 
creation and destruction costs, but, under a heavy load 
scenario, additional threads must be dynamically created and 
inserted inside pool to cope with the load. The DOA 
component of TPS is responsible to decide the quantity of extra 
threads. It is a challenging task of DOA to maintain an optimal 
pool size on run time, in order to produce better response times 
and maximum throughput so that quality of service can be 
maintained. If thread pool size is beyond an optimal limit, then 
it increases thread context switches and thread contention (on 
shared resource), that ultimately provides poor performance. 
On the other hand, if pool size is smaller than an optimal limit 
then it results in poor response time and throughput. Handling 
this tradeoff on run time is essential to achieve best 
performance. Optimizing thread pool size by DOA is not an 
exact science and it can be performed on the basis number of 
parameters and factors. 

 
Fig. 2. Conceptual Model of Distributed Thread Pool System. 

The variety of target servers where TPSs are installed 
makes DOA more challenging, as there are varied 
characteristics of the deployment system with a diverse nature 
of tasks. Because of this reason, TPS has been evolved from 
single-pool to multi-pool and from multi-pool to DTP. DTPs 
are designed for distributed systems where they are 
horizontally scaled over number of nodes available on the 
network as shown in Fig. 2. 

In DTPs, overload monitoring of each TPS running in a 
server node is a crucial factor to avoid unsuitable large quantity 
of threads in the pools, so that overheads of thread contention 
and context switches may be reduced. Moreover, metric for 
detecting overload condition must be selected carefully in 
order to gain maximum performance. 

This work is based on our previous work [14], in which, we 
have presented a distributed framework of TPS called 
distributed frequency based thread pool (DFBTP), where each 
server node has its own TPS, that is tuned on the basis of 
request arrival rate, and the load on each node is balanced by a 
round robin strategy in order to fairly distribute the load among 
available TPSs. In this paper, we have extended DFBTP by 
presenting overload control based distributed thread pool 
(OCBDTP), whose overload control mechanism tackles 
overload condition by detecting throughput fall, in case of high 
request frequencies. In such a case, thread pool size is restored 
to previous appropriate size, where it was running normally. 

The rest of the paper is organized as follows. Section 2 
presents literature review. The design of is presented in section 
3. The validation of proposed system is detailed in section 4, 
and finally conclusion is given in section 5. 

II. RELATED WORK 

A mathematical model for dynamic optimization of TPS is 
presented in [15], that forms a relationship among system load, 
pool size and the costs associated with thread creation, 
destruction and maintenance. However, the estimated optimal 
thread pool size might be inaccurate, since accurately 
estimating the time for thread creation and thread context 
switching is difficult in practice. 
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CPU-utilization based TPS is presented in [16], where 
dynamic optimization scheme increases pool size when CPU 
utilization decreases and vice versa. It defines a lower 
threshold and upper threshold variables for CPU utilization, 
and an update function repeatedly optimizes pool size on the 
basis of these threshold variables. This scheme however can't 
be used for I/O bound applications. 

TPS presented in [17] performed dynamic optimization by 
calculating average idle time (AIT) of queued requests. This 
scheme increases pool size if AIT is increasing. However, the 
uses of too many thresholds in dynamic tuning algorithm have 
no justification and can affect the performance. 

A prediction-based scheme is utilized in [18], in order to set 
a pool size in advance for future use by Gaussian distribution. 
These predictions might be inaccurate due to synchronization 
overhead. 

Exponential moving averages were utilized in [19], in order 
to predict pool size in advance. This scheme suffered from 
creating redundant threads. 

Thread borrow scheme was used in an application server 
[20], that utilized multiple thread pools, but management of 
multiple pools is itself a cost-effective operation. 

A model fuzzing approach was used in [21], to optimize 
pool size. Number of parameters and constraints were utilized 
for optimizing pool size which was too complex to quickly 
make a conclusion, hence it is not suitable for the system 
having frequent state change. 

TPS presented in [22], used response coefficient to 
optimize pool size. However, this metric is normally affected 
by different run time parameters. 

By extending the work of [18], the trends of time series in 
exponential moving averages were analysed in [23], in order to 
avoid redundant threads. This scheme however suffered from 
creating lacking threads. 

A theoretical framework of distributed thread pool was 
presented in [24], that is governed by software agents that can 
dynamically add and remove threads in the pool based on load 
conditions. 

A design of hierarchical thread pool executor based on non-
blocking queue was presented in [25]. This TPS was presented 
for java-based DSMs running on cluster. This TPS served as an 
outclass alternative to Jackal’s thread pool executor which is 
based on blocking queue. This design was targeted to only 
DSM systems. 

The dynamic optimization of TPS in [26] is performed by 
performance data of threads associated with system resource 
usage. The calculated value is gradually updated and compared 
with old values over time. This trend is analysed over time to 
perform dynamic optimization. 

It is argued in [27], that response times of a TPS-based 
application suffer when it utilizes more threads than required, 
as it increases context switching overhead. And that is why he 
established an inverse proportional relationship of response 

time to pool size. This TPS gradually decreases pool size on 
high response times, until system’s stability. 

A divide and conquer strategy is used in [28] that divides 
the tasks into subtasks by a pipeline based technology that 
allows the sub-tasks to run in parallel that reduced the 
computational cost. But dynamic division of tasks into subtasks 
was challenging. 

Thread pool system presented in [29] is optimized based on 
application level metric called thread utilization. On high 
thread utilization, thread pool size is increased and vice versa. 

A multiple pool approach is used in [30], where each pool 
is reserved to process requests having specific service time. In 
this way requests having large service times are separated from 
requests having small service times, hence avoiding large 
requests to block small ones in order to occupy all threads in 
the pool. However, a large variation in service times of 
incoming requests results in large number of pools that 
increases pool management overhead. 

In [31], a middleware for CPS-systems is presented which 
utilized a linear approach to tune its thread pool. Thread pool is 
resized on the basis of increase in request rate. The system uses 
unbounded DTS that is only suitable for CPS systems. 

A dynamic framework is offered in [32] for n-tire 
application that is running in the cloud-based system. At each 
tier, thread pool is tuned by queuing laws and system-level 
metrics. 

In our previous work [14], we have presented DFBTP that 
was designed for distributed applications, where each node has 
its own thread pool. The size of each thread pool is optimized 
by frequency of incoming requests and load is equally 
distributed among all nodes by a round robin scheme. This 
scheme creates threads in the pool based on request arrival rate 
that can be very large on heavy load situations that may result 
in very large pool size that effects performance. 

III. MOTIVATION 

Each TPS in DFBTP [14] keeps pool size equal to the 
request arrival rate. In case of high request arrival rate, DFBTP 
creates a very large pool size that effects performance. Fig. 3 is 
an illustrative diagram, that demonstrates the problem of 
throughput degradation due to worse pool size on heavy load. 

 
Fig. 3. Throughput Starts Falling on Saturation Point. 
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Fig. 4. Architecture of Distributed System having Frequency-based Thread Pools on Slave Servers. 

X-axis represents request arrival rate, whereas y-axis 
consists of multiple axis. PoolSize axis represents number of 
threads in the thread pool, and Throughput axis represents 
number of requests completed per second. Throughput is 
represented by blue dots. We can see in Fig.1, that pool size is 
equal to the request arrival rate at every moment. Also, 
throughput is gradually increasing for some moments and 
equal to the request arrival rate. When request arrival rate is N, 
the system kept pool size equal to N also, however, throughput 
decreased and turned into N-1. This point is called saturation 
point (i.e. overload condition), where throughput started 
falling, because, DFBTP continuously increasing pool size on 
next successions and due to very large pool size, system is 
busy in context switch overhead and thread management 
overhead. System resources are busy in managing thread 
context switches and thread contention, instead of doing useful 
work. The motive of proposed scheme is to tackle saturation 
point and react accordingly. 

IV. MATERIAL AND METHOD 

In this section we discuss in detail, the design and 
implementation of OCBDTP. First, we will discuss the 
distributed architecture of our proposed system, and next we 
will describe the design of proposed TPS, followed by 
overload control mechanism. 

A. Proposed Distributed System Architecture 

OCBDTP consists of a central manager (CM) component 
that is running in the main server, and one or more TPS 
running in server nodes, as shown in Fig. 4. System 
initialization starts from CM that runs in the main server first 
and waits for the TPS to connect with it. When a TPS starts on 
a server node in the network, it connects to the CM, that in turn 
stores the IP address of corresponding server in a list and starts 
its Receiver thread that will accept client’s requests and 
handover to round robin scheduler (RRS). RSS is a load 
balancer component that equally distributes the load on all 

available TPS by iterating over the list that contains IP 
addresses of servers. CM is now ready to accept client’s 
request. On request arrivals, Receiver will receive requests and 
forward it to the RRS, that in turn distribute these requests to 
TPSs. Each TPS is responsible to accept requests and process 
these requests. 

B. System Architecture of TPS 

The architecture of proposed TPS is shown in Fig. 5. When 
a TPS starts in the server node, it initializes three detector 
threads named Request Rate Detector (RRD), Throughput 
Detector (TD) and Saturation Detector (SD). Next, it connects 
to the CM through Connector component. On arrival of first 
request, TPS starts detector threads that perform their tasks 
after every second until TPS is running. 

A counter is incremented on every request arrival. Each 
request arrived at TPS is first inserted into request queue and 
picked up by any available thread inside pool that will process 
request and store it as a response in response queue. RRD 
activates after every second, reads the value of counter, stores 
it as a current request frequency and sets the value of counter 
again to zero in order to detect the next request arrival rate. 
RRD maintains request rates of current and previous phases. 
These request rates are later read by SD in order to adjust pool 
size equal to the request frequency if throughput is not falling. 
TD activates after every second, counts and de-queues all the 
responses from response queue. The counts of responses are 
stored in Throughput object. The responses are sent back to the 
CM, that in turn sends these responses back to the client. TD 
maintains throughputs of current and previous phases. 

SD also activates after every second that performs two jobs. 
First, it tunes thread pool size based on request rates. Second, it 
periodically measures throughput of TPS in order to detect 
overload condition. In case of overload condition SD reacts 
accordingly that is discussed in the next section. 
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Fig. 5. Architecture of Proposed Thread Pool System. 

 

Fig. 6. Flowchart Diagram of Saturation Detection and Avoidance Mechanism. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 11, 2018 

449 | P a g e  

www.ijacsa.thesai.org 

C. Overload Detection and Control 

Fig. 6 is a working flow chart diagram of SD, that 
dynamically sets an appropriate pool size of thread pool that 
can avoid thread context switch and contention overheads. And 
this is done by detecting an inappropriate pool size at which 
throughput starts falling. SD algorithm first collects values of 
throughout and frequency regarding current and previous 
phases. Then, it checks for increase of request rate; if it is 
increasing, then it sets pool size equal to the request rate by 
running a separate thread in the background and repeats itself 
after one second. In the next pass it first checks for throughput 
gain. Since quantity of threads was increased in the last phase, 
that means more throughput should be there, and throughput 
should be equal to the size of thread pool per second. If 
throughput is improved and equals to the number of threads in 
the pool, then the size of thread pool is considered to be 
appropriate and it is saved for later use in case of overload, so 
that, an inappropriate size can be restored to saved one. Next, it 
again checks for current request rate; performs corresponding 
steps; and repeat after one second. In case throughput is not 
improved, it means that pool size was not set to an optimal 
value in the last phase, so it resets pool size again to the saved 
one (by running a separate thread in the background) where 
TPS was running normally, i.e. giving throughput equal to the 
request rate. On high request rate, SD first keeps pool size 
high, and watches over throughput. However, due to large 
number of threads in the pool beyond the capacity of system, 
the system turns into a state, where it is busy in managing 
thread context switches and thread contention, instead of doing 
useful work by threads in the pool. And that is why, its 
throughput starts falling initially. However, SD detects this 
overload condition, and resets pool size to the previous phase’s 
size where there were no overheads of thread context switches 
and contention. Restoring pool size eliminates overheads of 
thread context switches and contention and system resources 
are effectively utilized by available threads that again restores 
system performance. 

V. RESULTS AND DISCUSSION 

In order to validate proposed thread pool system, we 
simulated it using a java-based toolkit named Pool-Runner1 
that can embed a DTP inside its server tier for performance 
testing. Its client tier has a load generation engine that displays 
results in form of graphs. We performed simulation on a 
network with three machines. First machine has a client tier of 
toolkit, second machine is used as a main server running CM 
and third machine is used as a slave running a TPS. 

We use static workload for this test. The static workload is 
simulated by StaticTask object (available in toolkit) that 
simulates 1kb file by sleeping for 100 milliseconds 
(approximately). Load is first generated by poisson distribution 
with the rate of 1000 request/sec as shown in Fig. 7. After 
every minute we increased the load. As shown in Fig. 7 that the 
load is 2000 request/sec in second minute, and 3000 request 
/sec in third minute. 

                                                           
1 http://www.jpoolrunner.net 

 
Fig. 7. System Load Used for Simulation. 

Fig. 8 shows comparative analysis of thread pool size 
between DFBTP and OCBDTP, where DFBTP kept its pool 
size equal to request rate all the time, whereas OCBDTP kept 
its pool size equal to the request rate till 2 minutes, however, 
pool size is restored to previous appropriate size that was in the 
second minute. And this is because of throughput falling in 3rd 
minute. When request rate turned into 3000 request/sec in 3rd 
minute, OCBDTP detected saturation in the system, that can be 
seen in Fig.9 that shows that throughput started falling initially 
but raised up again when pool size is set to an optimal level. 

Fig. 9 shows throughput per second, where DFBTP 
sustained its throughput in first two minutes, as average 
throughput is equal to the request rate, however in 3rd minute, 
its throughput is continuously falling because its pool size is 
very large that is creating thread management (context 
switches and contention) overheads. OCBDTP also sustained 
its throughput till 120 seconds, however, when request rate 
raised up to 3000 requests/sec, its throughput started falling 
initially, that is recovered by SD, and pool size is set to an 
optimal value that caused throughput to sustain again. 

 
Fig. 8. Comparative Analysis of Pool Size. 

 
Fig. 9. Comparative Analysis of Throughput Per Second. 
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VI. CONCLUSION 

This paper has presented a distributed thread pool system, 
that is based on central manager, that forwards client’s requests 
(in round robin fashion) to all instances of thread pools running 
in the distributed environment. The overload condition at each 
TPS is detected by throughput decline and resolved by 
reducing and restoring pool size to previous appropriate value, 
at which the system was stable. The overload control (by 
reducing pool size) eliminates thread management overhead, 
that enables system resources to be used effectively by threads 
in the pool. Proposed system prevents pool size to increase 
beyond an appropriate level, hence avoids overheads of thread 
context switching and contention, hence increases system 
performance. Proposed system results in more throughput gain. 
In the future, we will tune thread pools by software agents 
having artificial intelligence capabilities that would be used on 
networks and clusters for automatic control of distributed 
system resources. 
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