
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 12, 2018

Validation of the Proposed Hardness Analysis
Technique for FPGA Designs to Improve Reliability

and Fault-Tolerance

Abdul Rafay Khatri1, Ali Hayek2, Josef Börcsök3
Department of Computer Architecture and System Programming,

University of Kassel, Kassel, Germany

Abstract—Reliability and fault tolerance of FPGA systems is a
major concern nowadays. The continuous increase of the system’s
complexity makes the reliability evaluation extremely difficult
and costly. Redundancy techniques are widely used to increase
the reliability of such systems. These techniques provide a large
area & time overheads which cause more power consumption
and delay, respectively. An experimental evaluation method is
proposed to find critical nodes of the FPGA-based designs, named
“hardness analysis technique” under the proposed RASP-FIT
tool. After finding the critical nodes, the proposed redundant
model is applied to those locations of the design and the code is
modified. The modified code is functionally equivalent and is more
hardened to the soft-errors. An experimental set-up is developed
to verify and validate the criticality of these locations found by
using hardness analysis. After applying redundancy to those loca-
tions, the reliability is evaluated concerning failure rate reduction.
Experimental results on ISCAS’85 combinational benchmarks
show that a min-max range of failure reduction (14%-85%) is
achieved compared to the circuit without redundancy under the
same faulty conditions, which improves reliability.

Keywords—Dependability; fault injection; fault tolerance; reli-
ability; single event effects

I. INTRODUCTION

Field Programmable Gate Array (FPGA) has been involved
in various applications in the last couple of decades, such as
aerospace, biomedical instrumentation, safety-critical systems,
and spacecraft, due to their remarkable features. These features
include parallelism, reconfiguration, separation of functions,
self-healing capabilities, overall availability, low cost and low
design turn-around time [1], [2]. Therefore, FPGA has be-
come the core of many embedded applications. SRAM-based
FPGA devices are sensitive to Single Event Effects (SEE),
which can be caused by various sources, such as α-particles,
cosmic rays, atmospheric neutrons, heavy-ion radiations and
electromagnetic radiations (x-rays or gamma rays) [2], [3], [4].
When a charged particle hits a critical node of FPGA-based
design, it generates the transient pulse which can produce a
bit-flip effect. This phenomenon is known as Single Event
Upsets (SEU). The failure rate for a component or system is
the number of failures that occur per unit time.

Verilog HDL is one of the most widely used languages
for implementing the design structure for Application Specific
Integrated Circuit (ASIC) and FPGA-based designs [5]. Ver-
ilog HDL describes designs in various abstraction style, for
example, gate, data-flow, and behavioural levels. For small

designs, gate abstraction style is used, and testing & veri-
fication processes can directly and easily be applied to the
designs. At this level, designs look more similar to the actual
hardware design. For large designs, data-flow and behavioural
abstraction styles are adopted to develop and implement the
specification of the design in an HDL code [6].

The reliability of Integrated Circuits (ICs) is profoundly
affected due to technology scaling. Due to shrinkage size
of components, the reliability of the device is a challenge
nowadays. One way to improve the reliability of these designs
is redundancy, but it increases the area and time overheads.
The reliability can be defined as “It is the probability that the
circuit output is correct even in the presence of faults” [7].
Several SEE mitigation techniques have been presented in the
literature to protect the FPGA-based designs from SEE effect.
The reliability of the FPGA systems is improved by various
error mitigation schemes such as multiple-redundancy with
voting, Triple Modular Redundancy (TMR), hardened memory
cell level, and Error Detection And Correction (EDAC) coding.
Among all SEU mitigation techniques, TMR has become
the most common practice because of its straightforward
implementation and reliable results [8], [2], [9], [10], [11].
These mitigation methods reduce the failure rate (SER) in
combinational logic in integrated circuits and improve the
reliability.

An experimental set-up is presented to find the critical
nodes of the designs. This set-up works on the code-level of
the design, i.e. Verilog HDL. The proposed hardness analysis
technique is developed under the tool “RASP-FIT” in a contin-
uation of the previous work [6], [1]. In this work, the primary
objective is to validate the proposed hardness technique which
is used to find the most critical nodes of the design and to
increase the fault tolerance capability and reliability of the
FPGA-based designs by reducing the soft error failure rate.
The redundancy of these sensitive locations is achieved by
modifying the fault injection control unit. However, improving
reliability by applying redundancy to the sensitive locations
by code modification, area-overhead calculations, power and
delay analyses are in progress. These locations are the most
sensitive nodes to the permanent and transient faults. Few fault
models such as bit-flip and stuck-at (1/0) are involved in the
experimentation. Various benchmark circuits are considered &
evaluated, and authors found that a significant improvement
in reliability is achieved. The proposed approach is a simple,
straightforward, and easy to use.

www.ijacsa.thesai.org 1 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 12, 2018

The remainder of this paper is organised as follows: The
related work is presented in Section II. Section III presents
an overview of the RASP-FIT tool and explains the proposed
methodology to find sensitive locations in the design. Section
IV describes the experimental set-up and their components in
detail. Results are discussed in Section V. Finally, Section VI
concludes the paper and presents some directions for future
work.

II. RELATED WORK

Reliability concerning soft errors has become a crucial
issue in digital circuits due to technology scaling nowadays.
Soft errors are transient errors that can cause digital circuits to
operate incorrectly. If a soft error occurs in the combinational
logic, it results in a Single Event Transient (SET). On the
other hand, if it occurs in the memory cell itself, it results
in a Single Event Upset (SEU). Both SET and SEU have a
significant impact on circuit operation, and they should be ad-
equately treated [12]. Soft Error Rate (SER) is a measurement
evaluation metric for the sensitivity of the digital design to soft
errors. SER estimation can be evaluated using two methods,
i.e. dynamic and static. Fault injection and logic simulation
techniques practice dynamic methods [13].

Authors in [14] demonstrated that, with increasing tech-
nology generations, soft errors caused more effects in logic
devices than memory devices. Therefore, soft errors are be-
coming a major concern in digital systems. To overcome the
effect of soft errors in combinational circuits, several fault
tolerance techniques have been introduced in the literature.
Fault tolerance techniques for combinational circuits are clas-
sified into three main categories: hardware redundancy-based,
synthesis-based, and physical characteristics-based techniques
[12].

The reliability of the FPGA systems is improved by various
error mitigation scheme such as Triple Modular Redundancy
(TMR). The problem with TMR technique is that it requires
high area overhead nearly more than 200%. In [15], authors
proposed a method for reducing the effect of SEU and called
it “Selective Triple Modular Redundancy (STMR)”. In this
method, the conventional TMR technique is applied to selec-
tive gates of the whole design. These gates are more sensitive
than other gates in the design. The signal probabilities of its
inputs determine the sensitivity of a gate to an SEU. Soft
error mitigation scheme based on logic implication is proposed
in [16]. According to this method, the selective functionally
redundant wires are attached to the combinational logic of a
circuit. The procedure to find these functionally redundant wire
is illustrated in this work.

Authors in [17] described the co-hardening technique,
which is a technique that tries to reduce protection overheads
complementing software mitigation techniques with hardware
techniques in a selective way. Probabilistic Transfer Matrix
(PTM) is a gate-level approach for the accurately measured
reliability of combinational designs. The drawback of PTM
is long simulation runtime and memory usage. Therefore,
this technique is upgraded and called Efficient Computation
PTM [18]. Authors in [13] proposed a new method for SER
estimation based on vulnerability evaluation of the design
gates. They introduced a probabilistic vulnerability window

concept which considered three masking factors (i.e. logical,
electrical and timing).

In this work, the validation of the proposed hardness
analysis technique is presented in detail, which shows the
reduction in failure rate and hence achieves the improvement in
reliability. In comparison with the above works in general, our
experimental set-up provides more enhancement in reliability
with both permanent and transient fault models.

III. RASP-FIT TOOL AND HARDNESS ANALYSIS

The RASP-FIT (RechnerArchitektur and SystemProgram-
mierung)–German name of the institute– Fault Injection Tool
has the capability to instrument FPGA-based designs, for fault
simulation and emulation of designs. This tool is designed
specifically for the FPGA-based designs, which are written
in Verilog at different abstraction levels. The tool consists
of three major functions, namely, fault_injection(),
static_compaction() and hardness_analysis().
RASP-FIT tool, with its Graphical User Interface (GUI), is
developed in Matlab. All these functions are developed in
Matlab under the function RASP_FIT().

A. Verilog Code Modifier under RASP-FIT tool

The RASP-FIT tool has the capability to instrument FPGA-
based designs, written in Verilog at different abstraction levels.
This tool modifies or instruments the code by inserting faults.
At each abstraction level, the way of modification of the
code is different and also fault models are defined at that
abstraction level [6]. In the modification process, it also adds
Fault Injection, Selection and Activation (FISA) control unit
in the target design. The FISA unit selects and activates the
particular fault in the whole design.

Test and reliability evaluation using fault injection tech-
niques require the modification of the design. Modification of
Verilog code for various FPGA-based designs and obtaining
the compact test vectors for maximum fault coverage using
static compaction technique, also hardness analysis provides
the information about the critical nodes of design are presented
in previous work [19], [1], [6]. Fig. 1 shows the modified
code of the original design with fault injection control unit.
The RASP-FIT tool injects faults in every possible location
in the design. This example shows the insertion of a bit-flip
fault model in the design. For understanding purpose, we call
it “full-faulty module” in this paper. The FISA control unit of
the full-faulty module can select and activate all faults in the
design. More detail about the RASP-FIT tool is described in
[20].

B. Hardness Analysis: Identification of Sensitive Nodes

The sensitive location is the location in a System Under
Test (SUT), where the occurrence of any fault results in
a failure. The sensitive locations of the SUT are obtained
using the proposed hardness analysis approach. According
to this approach, these locations are more or less equally
sensitive to bit-flip and stuck-at (1/0) faults. In this method, we
obtained the more efficient test vectors/patterns which detect
more faults than others. We selected a set-point value for
each design and each fault model. The experimental way to
obtain the sp-value is described in [21]. The procedure for

www.ijacsa.thesai.org 2 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 12, 2018

/ / O r i g i n a l d e s i g n
module c17 (N1 , N2 , N3 , N6 , N7 , N22 , N23) ;

input N1 , N2 , N3 , N6 , N7 ;
output N22 , N23 ;
wire N10 , N11 , N16 , N19 ;

nand NAND2 1 (N10 , N1 , N3) ;
nand NAND2 2 (N11 , N3 , N6) ;
nand NAND2 3 (N16 , N2 , N11) ;
nand NAND2 4 (N19 , N11 , N7) ;
nand NAND2 5 (N22 , N10 , N16) ;
nand NAND2 6 (N23 , N16 , N19) ;

endmodule

/ / Compi lab le f a u l t y d e s i g n
module c17 1 (s e l e c t , N1 , N2 , N3 , N6 , N7 , N22 f1 ,

N23 f1) ;
input N1 , N2 , N3 , N6 , N7 ;
output N22 f1 , N23 f1 ;
wire N10 , N11 , N16 , N19 ;
input [3 : 0] s e l e c t ;
reg f0 , f1 , f2 , f3 , f4 , f5 , f6 , f7 , f8 , f9 , f10 , f11 ;
always @ (s e l e c t) begin
i f (s e l e c t == 4 ' d0) begin
f0 = f i s ; f1 =0; f2 =0; f3 =0; f4 =0; f5 =0; f6 =0; f7 =0; f8

=0; f9 =0; f10 =0; f11 =0; end
e l s e i f (s e l e c t == 4 ' d1) begin
f0 =0; f1 = f i s ; f2 =0; f3 =0; f4 =0; f5 =0; f6 =0; f7 =0; f8

=0; f9 =0; f10 =0; f11 =0; end
.
.
.

e l s e i f (s e l e c t == 4 ' d11) begin
f0 =0; f1 =0; f2 =0; f3 =0; f4 =0; f5 =0; f6 =0; f7 =0; f8

=0; f9 =0; f10 =0; f11 = f i s ; end
e l s e begin
f0 =0; f1 =0; f2 =0; f3 =0; f4 =0; f5 =0; f6 =0; f7 =0; f8

=0; f9 =0; f10 =0; f11 =0; end
end
nand NAND2 1 (N10 , f0 ˆ N1 , f1 ˆ N3) ;
nand NAND2 2 (N11 , f2 ˆ N3 , f3 ˆ N6) ;
nand NAND2 3 (N16 , f4 ˆ N2 , f5 ˆ N11) ;
nand NAND2 4 (N19 , f6 ˆ N11 , f7 ˆ N7) ;
nand NAND2 5 (N22 f1 , f8 ˆ N10 , f9 ˆ N16) ;
nand NAND2 6 (N23 f1 , f10 ˆ N16 , f11 ˆ N19) ;
endmodule

Fig. 1. Original code (left) & instrumented compilable design code (right) by RASP-FIT.

obtaining the qualified test patterns is outlined in algorithm
1. Once the efficient test patterns are obtained, then hardness
analysis is performed on them using the RASP-FIT tool under
hardness analysis function. The sequel describes the procedure
to calculate hardness.

Algorithm 1 Dynamic compaction algorithm in a nutshell
1: Input patterns are applied using LFSR from total vector

space TS
2: Fault detections are counted for each pattern applied
3: Sum of detections are compared with set-point value
4: if Is sum greater than or equal to set-point value then
5: Stored pattern as qualified test vectors Tq
6: Increment the number of Tq count
7: else
8: Apply new pattern to the SUT
9: end if

10: Go to step 2
11: Stop simulation when Tq count reaches 500

The whole experimental set-up is shown in Fig. 2 in order
to find sensitive locations. In the first step, a Verilog design file
is applied as an input to the RASP-FIT tool. The RASP-FIT
tool generates the faulty copies of the original design with
evenly distributed faults in them. The user selects the fault
models and the number of defective modules. This tool gener-
ates a file (top module design) which contains the instantiations

of different modules, comparator logic, dynamic compaction
logic to select efficient test vectors and memory logic to store
responses. Once the faulty modules are generated, the Xilinx
ISE and Modelsim tools are used to create the project and
simulate the designs. Repeat this procedure for every fault
models, e.g. bit-flip, stuck-at 0 and stuck-at 1 fault models.
The simulation results are stored in text (*.txt) file which is
further applied as an input to the RASP-FIT tool to perform
the hardness analysis. The simulation set-up generator, shown
in Fig. 4, is explained in Section IV to validate the hardness
analysis technique. The technique is described in the sequel.

Hardness or Hard to Detect (HTD) is the characteristic of
those faults which can be detected very rarely. The hardness
analysis receives text files as input, reads them and stores the
data in a matrix form. Authors call it Fault Matrix (FM), which
is an arrangement of qualified input patterns and the detection
of faults for the input patterns given in Eq. 1,

FM =


P1 F1,1 F2,1 · · · FN,1

P2 F1,2 F2,2 · · · FN,2

...
...

...
...

...
Pi F1,i F2,i · · · FN,i

 (1)

Where P 1 to P i are qualified input patterns obtained
during fault-experiment, and the array of detected faults for
a particular pattern are placed in a row of the matrix. When

www.ijacsa.thesai.org 3 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 12, 2018

Fig. 2. Overall flow of RASP-FIT tool, hardness analysis and simulation set-up generator.

the specific fault is detected, it gets value ‘1’, otherwise gets
value ‘0’. Hardness (H) of individual fault is calculated by Eq.
2,

H =

(
1− No. of Fault Detections

Total Patterns in FM

)
X100 (2)

If the hardness of a fault results in 100%, it means the fault
is not detectable for any input; hence, it is called an un-testable
or undetectable fault. On the other side, a hardness of 0%
shows the detection of fault for all test vectors, which means
that the portion of the circuit where the fault has appeared is
very critical to fault attacks. The hardness of each fault for
every fault model is calculated and placed in a matrix, named
Hardness Matrix (HM) as shown in Eq. 3,

HM =

[
Hf1,bf Hf2,bf ... HfN ,bf

Hf1,sa0 Hf2,sa0 ... HfN ,sa0

Hf1,sa1 Hf2,sa1 ... HfN ,sa1

]
(3)

Hardness values of each fault for every fault model are
arranged column-wise. Each column is compared with the
different threshold values one after the other for each fault
to get the number of sensitive locations. Threshold values
are used to get the number of the most sensitive areas to
less vulnerable places. There are four levels considered for
obtaining sensitive locations empirically, i.e. 35%, 55%, 75%
and 95%. Once, we identify the sensitive locations for different
threshold values, we will apply the proposed redundant model
on to those locations only and obtained the modified code
for the design under experiment. The modified code is more
hardened than the original design. The proposed redundant
model is described in the sequel.

Development of Redundant Model: The sensitive location
is merely a wire/net either connecting two gates or input of
gates. Redundant model is developed based on the Duplication
With Comparison (DWC) technique, in which the sensitive
location is duplicated, and their outputs are compared using
XOR gate. The output of the XOR is feed to the select input of

a multiplexer, which routes the correct output. It is noted that
this redundant model is used for the validation of the proposed
hardness analysis technique. These sensitive locations should
be made hardened to improve reliability and reduce the soft
error rate. The sensitive node is replaced by the proposed
redundant model as shown in Fig. 3, for the wire/net without
fan-out. This work is in progress to modify the original code
according to the redundant model to add hardening.

Fig. 3. Redundant fault model for validation of approach.

IV. EXPERIMENTAL SET-UP

To validate the efficiency of the proposed hardness analysis
technique in the process of improving fault tolerance capa-
bilities and reliability of FPGA-based designs, we created an
experimental set-up. Various benchmark designs are evaluated,

www.ijacsa.thesai.org 4 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 12, 2018

and the results are presented in this work. Fig. 4 shows
the experimental set-up for the validation of the proposed
hardness analysis technique. Fig. 4 shows the description of
each components in the sequel.

Fig. 4. Experimental set-up for the validation for the hardness analysis
technique.

A. Input Pattern Generator

This block is used to generate different input patterns which
are simultaneously applied to both the original and faulty
copies of the SUT. For small circuits having few input ports,
we generate and apply all possible combination of inputs. For
a large number of inputs, random input patterns are generated
and applied to the golden, full-faulty and redundant SUT
simultaneously. These patterns are generated using the Linear
Feedback Shift Register (LFSR), defined in the test-bench. Fig.
5 shows the code for the generation of input patterns randomly
for the SUT (c432.v) having 36 inputs.

/ / Random i n p u t g e n e r a t o r code f o r 36
i n p u t d e s i g n

reg [3 5 : 0] e = 36 ' hF59611d09 ; / / s eed

always @(c l k) begin
e = { e [3 4 : 0] , e [3 5] ˆ e [3 4] } ;
{N1 , N4 , N8 , N11 , . . . , N73 , N76} = e ;
end

Fig. 5. Generate random input patterns in test-bench.

B. Random FISA (Fault Generator)

In this experimental set-up, random faults are generated,
selected and activated in both the full-faulty module and the
redundant module. Poisson distribution is used to generate
random faults because of the following reasons:

1) The event is something that can be counted in whole
numbers.

2) Occurrences are independent. Therefore, one occur-
rence neither diminishes nor increases the chance of
another.

3) The average frequency of occurrence for the period
in question is known.

4) It is possible to count how many events have oc-
curred.

Poisson distributed numbers can be generated using this
code in the test-bench. During the simulation, for each pattern,
40 faults are selected and activated using Random FISA unit in
each copy of the SUT shown in Fig. 6 for each pattern applied.
The total of 500 patterns is stored with their responses in a
text file for the further calculations.

always
begin

5 ; s e l e c t = $ d i s t p o i s s o n (seed , mean) ;
end

Fig. 6. Part of test bench to generate random faults for FISA unit.

C. Golden Model (SUT)

Golden SUT is the original module without faults, and it
is a reference design for the comparison between the faulty
SUT and the SUT with redundant logic. Various combinational
logic circuits from ISCAS’85 benchmark are considered for the
validation of the proposed hardness analysis technique.

D. Full-Faulty SUT with FISA Unit

Faulty SUT is the modified benchmark design by injecting
faults in every possible location. The RASP-FIT tool generates
the faulty SUT. This tool is capable of instrumenting the
Verilog design, written in all abstraction levels, by injecting
various types of permanent and transient faults in all possible
location. The user can choose between the types of fault
models for analysis. Fig. 1 depicts the original code and
modified code generated by RASP-FIT tool.

E. Redundant SUT with Modified FISA Unit

Once the information about the critical nodes is obtained,
redundancy is applied to them. Fig. 3 shows the proposed
redundant model. When the fault occurs on this sensitive
location, the multiplexer logic masks it. However, we modified
the FISA unit included in the SUT with redundant logic in this
work. With this modification, the FISA unit does not activate
the particular sensitive fault in the design, even though, it is
selected by random FISA input generator.

F. Comparators

One comparator logic is used to compare the responses
of golden SUT with the full-faulty SUT, whereas another
comparator logic compares the responses of golden SUT with
the SUT having modified FISA unit for sensitive locations.
The value of comparator is logic ‘1’ when both responses are
different from each other and logic ‘0’ in another case.

G. Result Analyser

Result analyser is developed in Matlab. The failure rate for
both modules is stored during simulation in a text file. Result
analyser program reads the text file containing responses and
calculates the number of fault detections for both designs.

www.ijacsa.thesai.org 5 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 12, 2018

Reliability Improvement Calculations: Based on the def-
inition of reliability mentioned earlier in the introduction
section, the reliability of the combinational logic system can
be improved by reducing the failure rate. There are two main
methods which are most widely used, i.e. error detection
and retry and error masking. In the proposed technique, full-
faulty and the module with redundancy are run under the
same conditions. Both modules are compared with the golden
reference module design which is a fault-free design. Several
faults are randomly selected and activated, and fault detections
for both modules are stored in a text file. Reliability evaluation
program is written in Matlab which takes responses of the
experimental set-up stored in a text file and count the number
of errors occurred for both modules. Improvement in reliability
is calculated, in term of failure rate reduction, using the Eq.
4,

FR =
SERfullFaulty − SERredundant

SERfullFaulty
X100% (4)

Where FR is a failure rate reduction (SER reduction)
achieved after making the critical locations as redundant by
using modified FISA unit, SERfullFaulty is a fault detection
for full-faulty SUT and SERredundant is a fault detection for
redundant SUT with modified FISA unit.

V. RESULTS AND DISCUSSION

The primary objective of the work is to obtain the high
reliability with applying the selective redundancy to some
sensitive locations. In this way, a cost-effective solution is
obtained with high reliability. These following steps describe
the procedure used to perform the proposed technique:

1) Using the RASP-FIT tool, first, perform the fault
injection analysis to generate faulty code of the
design using Verilog code modifier function.

2) Repeat the step 1 for all fault models, e.g. bit-flip,
stuck-at 0 and stuck-at 1.

3) Create a simulation set-up using Xilinx ISE and
Modelsim tool.

4) Using the RASP-FIT tool, perform hardness analysis
and find the sensitive locations of the design.

5) Modify the fault control unit for the most sensitive
places as described earlier.

6) Create a simulation set-up as explained in Section IV.
7) Run simulations for all fault models and save the

simulation results in text files separately.
8) Import all these files in Matlab and evaluate reliabil-

ity.

To explain the proposed method, we consider a simple
benchmark design c17.v from ISCAS’85 designs as an
example (Fig. 1). In this design, the RASP-FIT finds and
injects a total of 12 faults in the whole design. Hardness
analysis is performed, and it is found that the 4 locations are
most sensitive (at Threshold = 55%) and we have to apply for
the redundancy on these locations. Fig. 7 shows the critical
nodes for various benchmark designs at different threshold
values. The redundant module is proposed in Section III, but
it is not used here because, in this work, we are validating the
proposed hardness analysis technique regarding failure rates. In

0

500

C2670

N
um

be
r

of
 C

rit
ic

al
 N

od
es

1000

C1908

1500

C1355

Systems Under Test (ISCAS85 benchmark)

C880

Sensitive Locations using Hardness Analysis Technique

C499
95%C432

Different Threshold Values

75%
C17 55%

35%

Fig. 7. Number of critical nodes for different threshold.

this work, we modified the FISA unit such that these four faults
never selected and activated. Total number of fault selected and
activated during the experiment can be obtained using the Eq.
5,

Tfault = Pi × nSec× Fcopy (5)

Where Tfault is the total number of fault injected per
experiment for each fault model, Pi is the number of patterns
considered, i.e. 500, nSec is the number of faulty copies of
SUT and Fcopy is the number of faults selected and activated
per copy of SUT during the experiment.

We perform the simulation of a full-faulty SUT and the
SUT with modified FISA unit. Soft error rate (failure rate) for
the full-faulty module is observed with random fault injection.
Similarly, the detection rate for the module with redundancy
is also recorded for each fault model separately. Reliability
improvement is calculated and presented in Table I. The
results validate that the obtained locations using the proposed
hardness analysis technique are susceptible. By applying re-
dundancy or masking/hardening techniques to these locations,
it shows the significant improvement in the reliability as shown
in the last column of Table I.

VI. CONCLUSION

In this paper, the authors introduced a method to increase
the fault tolerance capability and the reliability of combina-
tional circuits. The idea is based on first finding the sensitive
locations of the design using the proposed hardness analysis
technique and then applying redundancy/hardening to those
nodes only. In this way, the overall fault tolerance of the
original circuit is enhanced and the failure rate is also reduced
as well. Experimental results on ISCAS’85 combinational
benchmarks show that we can get a maximum reliability
improvement of 85%. The approach is straightforward and
easy to use.

Future work includes the analysis of area-overhead due to
redundant logic applied to the sensitive locations. Also, the
delay and power consumption analyses are the core areas after

www.ijacsa.thesai.org 6 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 12, 2018

TABLE I. IMPROVEMENTS IN RELIABILITY AND FAULT TOLERANCE CAPABILITY OF FPGA-BASED DESIGNS

SUT Fault Model
Total Fault (Tfault)

Injected/Experiment

Number of

Sensitive Nodes

Faulty Module

Detection Rate

Redundant Module

Detection Rate

SER

Reduction

(%)

c17

Bit-flip

20,000 4/12

9759 3435 64.802

Stuck-at 0 6104 1973 67.68

Stuck-at 1 3689 1403 61.79

c432

Bit-flip

60,000 17/336

5641 4441 21.28

Stuck-at 0 2581 2208 14.95

Stuck-at 1 3005 2180 27.45

c499

Bit-flip

60,000 177/408

24689 3607 85.39

Stuck-at 0 7058 1118 84.15

Stuck-at 1 17602 2484 85.88

c880

Bit-flip

60,000 155/729

22780 16442 27.823

Stuck-at 0 11703 8411 28.13

Stuck-at 1 11077 8203 25.95

c1355

Bit-flip

60,000 67/1064

10604 8454 20.28

Stuck-at 0 2930 2276 22.32

Stuck-at 1 7674 6178 19.50

c1908

Bit-flip

100,000 242/1498

32962 21874 33.64

Stuck-at 0 18765 12171 35.14

Stuck-at 1 14197 9703 31.65

applying redundancy to the critical/sensitive nodes in the future
work.

REFERENCES

[1] A. R. Khatri, A. Hayek, and J. Börcsök, Applied Reconfigurable
Computing, vol. 9625 of Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2016.

[2] W. Xin, “Partitioning Triple Modular Redundancy for Single Event
Upset Mitigation in FPGA,” in 2010 International Conference on E-
Product E-Service and E-Entertainment, (Henan), pp. 1–4, IEEE, Nov
2010.

[3] M. Desogus, L. Sterpone, and D. M. Codinachs, “Validation of a tool for
estimating the effects of soft-errors on modern SRAM-based FPGAs,”
in 2014 IEEE 20th International On-Line Testing Symposium (IOLTS),
(Platja d’Aro, Girona, Spain), pp. 111–115, IEEE, Jul 2014.

[4] L. A. C. Benites and F. L. Kastensmidt, “Automated design flow
for applying Triple Modular Redundancy (TMR) in complex digital
circuits,” in 2018 IEEE 19th Latin-American Test Symposium (LATS),
pp. 1–4, IEEE, Mar 2018.

[5] H. Ben Fekih, A. Elhossini, and B. Juurlink, Applied Reconfigurable
Computing, vol. 9040 of Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2015.

[6] A. R. Khatri, A. Hayek, and J. Börcsök, “Validation of the Proposed
Fault Injection , Test and Hardness Analysis for Combinational Data-
flow Verilog HDL Designs under the RASP-FIT Tool,” in 2018 IEEE
16th Int. Conf. on Dependable, Autonomic & Secure Comp., 16th Int.
Conf. on Pervasive Intelligence & Comp., 4th Int. Conf. on Big Data
Intelligence & Comp., and 3rd Cyber Sci. & Tech. Cong., (Athens,
Greece), pp. 544–551, IEEE Comput. Soc, 2018.

[7] G. dos Santos, E. Marques, L. d. B. Naviner, and J.-F. Naviner, “Using
error tolerance of target application for efficient reliability improvement

of digital circuits,” Microelectronics Reliability, vol. 50, pp. 1219–1222,
Sep 2010.

[8] A. R. Khatri, A. Hayek, and J. Börcsök, “RASP-TMR: An Automatic
and Fast Synthesizable Verilog Code Generator Tool for the Imple-
mentation and Evaluation of TMR Approach,” International Journal of
Advanced Computer Science and Applications, vol. 9, no. 8, pp. 590–
597, 2018.

[9] P. Balasubramanian, K. Prasad, and N. E. Mastorakis, “A Fault Toler-
ance Improved Majority Voter for TMR System Architectures,” WSEAS
Transactions on Circuits and Systems, vol. 15, pp. 108–122, 2016.

[10] S. Müller, T. Koal, M. Schölzel, and H. T. Vierhaus, “Timing for Virtual
TMR in Logic Circuits,” in IEEE 20th InternationalOn-Line Testing
Symposium (IOLTS), pp. 190–193, 2014.

[11] S. Di Carlo, G. Gambardella, P. Prinetto, D. Rolfo, P. Trotta, and
A. Vallero, “A novel methodology to increase fault tolerance in au-
tonomous FPGA-based systems,” in 2014 IEEE 20th International On-
Line Testing Symposium (IOLTS), (Girona, Spain), pp. 87–92, IEEE,
Jul 2014.

[12] A. H. El-Maleh and K. A. K. Daud, “Simulation-Based Method
for Synthesizing Soft Error Tolerant Combinational Circuits,” IEEE
Transactions on Reliability, vol. 64, pp. 935–948, Sep 2015.

[13] M. Raji, H. Pedram, and B. Ghavami, “Soft error rate estimation of
combinational circuits based on vulnerability analysis,” IET Computers
& Digital Techniques, vol. 9, pp. 311–320, Nov 2015.

[14] P. Shivakumar, M. Kistler, S. Keckler, D. Burger, and L. Alvisi, “Model-
ing the effect of technology trends on the soft error rate of combinational
logic,” in Proceedings International Conference on Dependable Systems
and Networks, pp. 389–398, IEEE Comput. Soc, 2002.

[15] P. Samudrala, J. Ramos, and S. Katkoori, “Selective triple Modular
redundancy (STMR) based single-event upset (SEU) tolerant synthesis
for FPGAs,” IEEE Transactions on Nuclear Science, vol. 51, pp. 2957–
2969, Oct 2004.

www.ijacsa.thesai.org 7 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 12, 2018

[16] S. Almukhaizim and Y. Makris, “Soft Error Mitigation Through Selec-
tive Addition of Functionally Redundant Wires,” IEEE Transactions on
Reliability, vol. 57, pp. 23–31, Mar 2008.

[17] F. Kastensmidt and P. Rech, FPGAs and Parallel Architectures for
Aerospace Applications. Cham: Springer International Publishing, 2016.

[18] H. Cai, K. Liu, L. A. de Barros Naviner, Y. Wang, M. Slimani,
and J.-F. Naviner, “Efficient reliability evaluation methodologies for
combinational circuits,” Microelectronics Reliability, vol. 64, pp. 19–
25, Sep 2016.

[19] A. R. Khatri, A. Hayek, and J. Börcsök, “ATPG method with a hybrid
compaction technique for combinational digital systems,” in 2016 SAI
Computing Conference (SAI), (London, UK), pp. 924–930, IEEE, Jul
2016.

[20] A. R. Khatri, A. Hayek, and J. Börcsök, “RASP-FIT : A Fast and Au-
tomatic Fault Injection Tool for Code-Modification of FPGA Designs,”
International Journal of Advanced Computer Science and Applications,
vol. 9, no. 10, pp. 30–40, 2018.

[21] A. R. Khatri, A. Hayek, and J. Börcsök, “Validation of selecting SP-
values for fault models under proposed RASP-FIT tool,” in 2017 First
International Conference on Latest trends in Electrical Engineering and
Computing Technologies (INTELLECT), (Karachi, Pakistan), pp. 1–7,
IEEE, Nov 2017.

www.ijacsa.thesai.org 8 | P a g e

	Introduction
	Related Work
	RASP-FIT Tool and Hardness Analysis
	Verilog Code Modifier under RASP-FIT tool
	Hardness Analysis: Identification of Sensitive Nodes

	Experimental Set-Up
	Input Pattern Generator
	Random FISA (Fault Generator)
	Golden Model (SUT)
	Full-Faulty SUT with FISA Unit
	Redundant SUT with Modified FISA Unit
	Comparators
	Result Analyser

	Results and Discussion
	Conclusion
	References

