
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 12, 2018 

218 | P a g e  

www.ijacsa.thesai.org 

Using Game Theory to Handle Missing Data at 

Prediction Time of ID3 and C4.5 Algorithms

Halima Elaidi
1
, Zahra Benabbou

2
, Hassan Abbar

3
 

Laboratory of Information and Decision Support Systems 

Hassan 1st University Settat, Morocco 

 

 
Abstract—The raw material of our paper is a well-known and 

commonly used type of supervised algorithms: decision trees. 

Using a training data, they provide some useful rules to classify 

new data sets. But a data set with missing values is always the 

bane of a data scientist. Even though decision tree algorithms 

such as ID3 and C4.5 (the two algorithms with which we are 

working in this paper) represent some of the simplest pattern 

classification algorithms that can be applied in many domains, 

but with the drawback of missing data the task becomes harder 

because they may have to deal with unknown values in two major 

steps: at training step and at prediction step. This paper is 

involved in the processing step of databases using trees already 

constructed to classify the objects of these data sets. It comes with 

the idea to overcome the disturbance of missing values using the 

most famous and the central concept of the game theory 

approach which is the Nash equilibrium. 
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I. INTRODUCTION 

Machine learning is a discipline where knowledge is 
created automatically from raw data. Several algorithms have 
been developed for this purpose. This knowledge is then 
exploited to make decisions. Naturally, good decisions are 
made when data is of a good quality. Even though decision 
trees have proved that they are efficient classification tools, 
they remain, just like any other machine learning technique, 
helpless in front of missing data. This paper proposes to 
employ the concept of Nash equilibrium which is a 
fundamental concept of the theory of non-cooperative games 
with perfect information, to put an end to the disturbance 
caused by missing data. We only consider trees constructed by 
the use of algorithms ID3 or C4.5, and we suppose that these 
trees are perfectly constructed, the reason why our proposed 
method intervenes in the step of utilizing the resulting decision 
rules (trees) to classify new data sets containing observations 
with missing values. 

When data is missing, it does not mean that we are allowed 
to ignore the corresponding records or observations. Because if 
we do ignore them, we are immediately causing a partial loss 
of information about the population we are studying through 
this data set. On contrary, we should treat them very accurately 
and try to find some useful techniques we can use to deal with 
missing values in a given data set. As a result researchers have 
developed several methods to handle this problem [1], such as: 

 Deleting the records with missing values. 

 Allocating the missing value of an attribute by its 
amount if it is quantitative or by the most frequent value 
if it is qualitative. 

 Looking for the maximum likelihood between the 
records, etc. 

The imputation technique this paper proposes is based on a 
mathematical approach which can be considered as one of the 
most fundamental and important discoveries of the last 
century: game theory. 

Furthermore, the technique we are proposing can be 
considered as an improvement of both algorithms ID3 and 
C4.5 at the same time. Because, the calculations based on the 
Nash equilibrium that we will present later on our paper might 
be added as instructions or steps to the algorithm structure. As 
a result, for a given training data, the algorithms ID3 and C4.5 
with their new structures permit to produce trees that are able 
to deal with data sets containing attributes with some missing 
values, thing which makes it possible to classify their records 
without any problem and with no need to look for a method 
among those that already exist to handle or impute the missing 
data. 

Our document will be organized as follows: we will start by 
presenting the theory of decision trees and its algorithms we 
are interested in for this research. Then, we will introduce in 
details the problem to which we are proposing a solution in this 
paper. Next, Section 4 will be about the game theory and Nash 
equilibrium concepts. Section 5 will present in details the 
proposed imputation method, which is at the same time a way 
to improve the performance of the algorithms discussed in 
Section 2. And finally we will conclude with a brief and 
concise discussion. 

II. THEORY OF DECISION TREES 

Decision trees constitute simple tools for decision making 
[2]. Actually, they are used in various fields. Their form of 
graphical tree representation makes of them a very simple tool, 
but also a very powerful one. Decision trees are the result of a 
set of algorithms which identify different ways of dividing a 
database into branches called segments, these segments form a 
tree characterized by a root node at the top of it. 

In the same paper, Quinlan claimed "Decision-makers need 
to make predictions...One sound basis for such predictions is 
an extrapolation of past, known cases" this population of 
known cases is called, in the field of machine learning, the 
training data. It represents the principal raw material of a 
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decision tree. In fact, a decision tree describes how to divide a 
population into homogeneous groups depending on the 
discriminant variables, since each node is just a choice on an 
attribute. The method used to separate the training data differs 
from one algorithm to another. However they all aim at making 
the best separation possible at each node of the tree by testing 
the "goodness of split" of each attribute [3]. 

Decision tree learning is a powerful tool and one of the 
most widely used and practical methods in the domain of 
machine learning. It is one of the supervised methods whose 
idea consists of classifying objects according to their 
characteristics or attributes and then the way these classes are 
formed should be used so that the resulting decision tree learn 
how to classify the elements  of every treated data-set [4]. 
Several decision tree learning algorithms have been developed, 
but in this paper we are going to be interested in the two 
famous algorithms of Quinlan ID3 and C4.5. Their process of 
construction is based on the concept of gain (Profit or benefit): 
ID3 uses "Information gain" as its attribute selection measure, 
while the C4.5 algorithm which is the successor of ID3 uses 
the "gain ratio" as its attribute selection measure. Let’s briefly 
present an overview of each of the two algorithms. 

A. The ID3 Algorithm 

ID3 is the well-known decision tree algorithm [5]. It is 
based on a recursive top-down approach; Giving a training data 
in which each observation is described in terms of a set of 
attributes, the ID3 algorithm uses the information gain as an 
attribute selection measure in order to separate recursively that 
set of examples. The information gain is calculated using the 
entropy: 

 ( )    ∑       (  )
 
                 (1) 

Where; 

 E is the entropy function. 

 S the set of examples that can be divided into classes 
C1, C2, …, Ck 

 pi  is the probability that a set of objects from S belongs 
to class Ci 

The resulting entropy value for a treated attribute gives an 
idea about its randomness or uncertainty, in a way that the 
attribute with the smallest entropy value is the best to use in 
data separation. Contrariwise, the more information gain value 
is important, the more the tested attribute is gainful for the 
separation. This property of information gain to vary in the 
opposite direction of variation of entropy is explained by its 
formula: 
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 A is the treated attribute.  

 n the number of possible values of attribute A. 

 Sj are the subsets of S containing objects with the same 
value of attribute A. 

Even though the ID3 algorithm works well in some cases, it 
remains powerless with attributes having a significant number 
of values, continuous data and missing values. These 
limitations of ID3 were the reason why J.Ross Quinlan 
developed C4.5. 

B. The C4.5 Algorithm 

The C4.5 decision tree algorithm [6] was developed in 
order to overcome the limitations of ID3 mentioned previously. 
Just like the ID3 algorithm, C4.5 has as a starting point a given 
training data, but this time the measure used to split the data is 
the Gain Ratio which is none other than a normalized 
information gain. Its formula is written as follows: 
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where; 
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The present gain formula (Gain Ratio) intervenes to put an 
end to the weakness of information gain in front of attributes 
with a large number of values, because the information gain 
used as a splitting measure by the ID3 algorithm favors 
attributes with a significant number of values. Furthermore, 
C4.5 is said to be more efficient than ID3 in view of the fact 
that it is able to overcome the problem of features with 
continuous values as well as missing data, which is not the case 
for the ID3 algorithm. Another advantage of C4.5 over ID3 is 
that it can produce pruned decision trees. Pruning technique 
aims at reducing the size of a tree that over-fits the training 
data, which allows decreasing the prediction error rate [7]. 

III. PROBLEM TO BE SOLVED 

Our paper assumes that a tree is perfectly constructed using 
a given training set and one of the algorithms we discussed 
previously (ID3 and C4.5). Since decision trees are developed 
for the purpose of making decisions and classifying data, the 
produced tree can be used to classify the elements of any data 
set structured in the same way of the training data i.e. a data set 
where the objects are described using the same attributes of the 
training data. The set of rules established after constructing this 
tree may be useless if the object we are trying to classify has 
one or several attributes with missing values. 

This work comes to remedy that problem of unknown data 
by using the game theory approach (more precisely, the Nash 
equilibrium technique). In order to fully understand the way 
game theory works for helping an ID3 or C4.5 algorithm to 
overcome the missing data problem, we propose a simple 
example. Thus we will consider the same example (playing 
tennis) already introduced by the paper "Induction of decision 
trees" [4]. It is an ID3 algorithm example. 

The training set of our example is presented by table1 

By using this data set and applying the ID3 algorithm steps 
on it, we obtain the decision tree of figure 1: 

“N” to indicate the decision “Not play” and “P” to indicate the 
decision “Play”. 
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TABLE I. A TRAINING SET EXAMPLE 

Day Outlook Temperature Humidity Windy Class 

1 sunny hot high false N 

2 sunny hot high true N 

3 overcast hot high false P 

4 rain mild high false P 

5 rain cool normal false P 

6 rain cool normal true N 

7 overcast cool normal true P 

8 sunny mild high false N 

9 sunny cool normal false P 

10 rain mild normal false P 

11 sunny mild normal true P 

12 overcast mild high true P 

13 overcast hot normal false P 

14 rain mild high true N 

 
Fig. 1. The Resulting Tree using the ID3 Algorithm. 

The classification rules of our example appear clearly on 
the established tree, we can then easily classify new 
observations described and defined by the use of the same set 
of attributes. But, suppose that while processing a data set, our 
classifier has encountered an observation like that of the 25th 
day appearing on table 2 

It is absolutely clear that the decision rules of our classifier 
are helpless in such a case. That is why in the following parts 
of our paper, we will present the discipline (game theory) that 
will help us adjust this limitation. 

TABLE II. EXAMPLE OF A RECORD WITH MISSING VALUES 

Day Outlook Temperature Humidity Windy 

.. .. .. .. .. 

25 ? mild ? false 

.. .. .. .. .. 

IV. GAME THEORY AND NASH EQUILIBRIUM APPROACHES 

Despite of the fact that the fundamentals of game theory 
began to emerge earlier, this mathematical approach became 
more famous as a discipline only after publishing the book 
"Theory of Games and Economic Behavior" by J.V.Neumann 
and O.Morgenstern in 1944 [8]. And in spite of the presence of 
the word "Game" in the theory appellation, game theory 
remains very useful and helpful in plenty of domains which are 
crucial and of a major importance such as biology, economics 
and business, political science, engineering, computer 
science...and many others. The purpose of this paper is to find 
a solution for a problem often encountered in one of machine 
learning branches (decision trees). 

In the field of game theory, the player is the principle 
element. His definition is extremely large: he can be an 
individual, a firm, a political party...In general, he is the 
decision-maker, conscious of his choices and their results, 
looking forward to ensure a gainful position in the game, and 
aware of the fact that his decisions and actions depend on those 
of other players i.e. he is supposed to be rational. 

Thus, the main idea of game theory is to model the 
behavior of a set of players by observing and analyzing their 
strategic interactions. Usually, a game is defined by three 
elements: the set of players, the set of strategies (a strategy of 
each player is the set of his decisions) and utilities (the 
preference indicators of each decision) [9]. 

A. Mathematical Representation of a Game 

First of all, note that our proposed game is a non- 
cooperative one. Because as we will discover later on this 
paper, the players of our game do not make any agreements 
that can bind them. 

In the field of game theory, a normal form game is defined 
as follows: 

  (  (  )    (  )   )               (5) 

where; 

 N is the set of players (Card (N) = n). 

 Si is the strategies set of player i, namely the set of 
decisions the player i can make. 

                         is the utility function of 
each player i (i=1,2, ..., n) called also the payoff 
function. 

Concerning the game of this paper: The set of players is 
defined as the attributes with missing values of a given 
observation (or object). The strategy of each of the players is 
given by the set of values of each attribute. We will suppose 
that the utility or payoff of a player when making a decision, 
corresponds to the value of information gain (or Gain Ratio; 
depending on the algorithm constructing the decision tree) 
realized by the node that comes immediately after the branch 
representing the taken decision. But in this case, the utility 
value remains the same whatever the decisions made by the 
rest of players, which makes of the player a non-rational one. 
Because, the payoff of a rational player participating in a non-
cooperative game as presented with (5) should depend not only 
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on his own strategy, but also on the decisions of other players. 
Thus, for a player (attribute) making a decision, his utility is 
equal to the amount of information gain (Gain Ratio) provided 
by this decision (which is always the value of information gain 
mentioned on the node that comes immediately after the branch 
representing the decision) multiplied by a proportion that we 
determine with the help of the training data. Indeed, for all 
observations on training data that have the same decisive value 
for the attribute (player) in question, we must look for the 
proportion of records that respect each of the decisions made 
by the rest of the players. For instance, considering the same 
example presented by the tree of figure 1, assume that 
"outlook" and "humidity" are the attributes players of the game 
as shown on table 2: the utility of the attribute "outlook" when 
"sunny" is its decision and "normal" is the decision of 
"humidity" is equal to 0.971*(2/5) = 0.388. We can then 
conclude that the utility of a player i is calculated using the 
following formula: 

  (      )       
       

   
               (6) 

Where; 

 si is the decision of player i. 

 s-i is representing the strategic profile of the rest of 
players. 

         is the number of records from the training data 

whose attributes players have the profile of strategies 
(      ). 

     is the number of records from the training data 

where player i plays his strategy si. 

Intuitively,     is equal to 1 when the successor node of the 

branch representing the decision si of the player i is a leaf, 
because the information is fully provided. On the other hand, if 
an attribute does not appear at least in one of the classification 

rules of the established tree,     will be equal to 0 for all the 

possible values of this attribute, i.e. the attribute does not 
provide any information. 

B. Nash Equilibrium 

The notion of Nash equilibrium can be considered as the 
most brilliant as well as influential game theoretical concept 
that was invented by the "beautiful mind" John Nash. It is 
defined as a stable situation, where each player (from the set of 
players in interaction) is not ready to deviate of his decision. 
Because if he does, while the rest of players are keeping their 
strategies, his utility will immediately decrease, thing which is 
not gainful for a rational decision-maker (or simply player) 
[10]. 

1) Pure nash equilibrium: The normal form of a game as 

it is previously presented (5) is considered in the field of game 

theory as a game with pure strategies. The Nash equilibrium 

(the pure strategy Nash equilibrium) for a set of players 

participating in such a game is given by a profile of strategies 

(  
    
      

 )  where each   
  is representing the best 

decision made as a response to other players’ strategies [9, 

10]. Mathematically, this can be written as follows: 

For all players i = 1, 2, ..., n 

  (  
     
 )    (      

 )                       (7) 

where 

    (                      ) 

2) Mixed Nash equilibrium: The concept of mixed 

strategy can be adjudged to be the generalization of pure 

strategy, which comes to provide a much clearer vision about 

the real behavior of a rational player. A mixed strategy is 

simply a pure strategy associated to a distribution of 

probability with which each player is making his choice. 
So, for a set of pure strategies Si, let  (  ) denote the set of 

probability distributions over it, so that: 

    (  )  {

       [   ]

            (  )

∑   (  )     
  

              (8) 

Thus Pi which is a probability distribution over Si 
represents the mixed strategy of player i. 

Therefore, in a case where the decisions of players are in 
the form of mixed strategies, the mixed Nash equilibrium is 
defined as a profile of mixed strategies(  

    
      

 ), such as: 

For all players i=1, 2,..., n 

  
     (  

     
 )    

     (      
 )      (  )            (9) 

Where;   
      is the expected utility function defined as 

follows: 

  
     (  )   ∑ (∏   (  )   )  (  )     

           (10) 

V. PROPOSED METHOD 

As it is already mentioned at the beginning of the paper, 
our work assumes that a decision tree is constructed using one 
of the famous algorithms of Quinlan (ID3 or C4.5). It also 
supposes that the stage of construction did not face any 
obstacle. As a matter of fact, the present work comes to fix a 
problem which appears during the use of the established tree 
for classifying new data, more precisely data with missing 
values. Our method assumes that, for a given observation, the 
imputation of its missing values is a strategic game of the form 
(5). According to the theorem of existence of the Nash 
equilibrium [10], the proposed game accepts at least a Nash 
equilibrium in mixed strategies, because the number of players 
is finite as well as the number of strategies for each player i. 

Since the construction of decision trees using ID3 and C4.5 
algorithms is a task which is mainly based on the theory of 
information, we then had the idea of using the same theory to 
impute the missing values of a data set at prediction time. In 
fact, Quinlan’s splitting measures were based on the 
information theory of shannon in order to find how well each 
attribute by its own classifies the records of the training set, 
then the attribute with the highest value of information gain or 
gain Ratio is the one that can generate the best partition i.e. that 
attribute is providing the best quantity of information. Hence 
the inspiration of making from this concept of information 
gains a useful tool to handle missingness at prediction process. 
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The idea is to impute missing values of each observation by 
values maximizing the quantity of information, respecting of 
course the structure and the characteristics of the training data; 
to that end, we are suggesting the use of the game theory 
approach every time when encountering a data entry where at 
least two attributes’ values are missing: each of those attributes 
is represented as a player and the strategy set of each one 
consists of the possible values in the range of the attribute. The 
payoffs correspond to that quantity of information we cited 
previously. As a matter of fact, the Nash equilibria would yield 
"balanced" ways of substituting the missingness: all values 
used for imputation had the same objective which is 
"maximization of information gain". 

Using the example presented in section 3 (table 1), let’s 
assume that the established decision rules (tree) (figure 1) are 
used to classify the elements of a given database containing an 
observation where the values of attributes "outlook" and 
"humidity" are missing (table 2). We can look for the Nash 
equilibrium in pure strategies for this game with two players: 
outlook and humidity. Notwithstanding this equilibrium point 
does not exist all the time, but if it does exist, the values of the 
corresponding attributes represent the ones that should be used 
to impute the missing values. If a Nash equilibrium in pure 
strategies does not exist, then we proceed to a Nash 
equilibrium in mixed strategies which always exists, depending 
on the theorem of Nah we discussed above. 

It is to highlight that the job becomes difficult when the 
problem of missingness concerns continuous attributes (This 
difficulty is encountered only while working with the C4.5 
algorithm). But as it is widely known, C4.5 converts 
continuous values to nominal ones by proposing to perform 
binary splits based on a threshold value. As a matter of fact two 
intervals should be obtained: [minimum value, threshold] and 
]threshold, maximum value]. Then we propose using the 
centers of those intervals to impute missing values. 

A. Imputation by the use of Pure Nash Equilibrium 

Always in the case of our explanatory example, the payoff 
matrix of the game is given by table 3: 

According to the rule of determining the pure Nash 
equilibrium (7), we can deduce that this game admits two 
equilibrium profiles which are (high, sunny) and (normal, rain) 
("humidity" is the first player and "outlook" is the second one). 
As a result, for the observation of table 2, attributes outlook 
and humidity can take respectively the values (high and sunny) 
or (normal and rain). 

TABLE III. THE PAYOFF MATRIX OF THE GAME 

 Outlook 

  sunny overcast rain 

Humidity 
normal 

high 

(0.286, 0.388) (0.286, 0.5) (0.429, 0.583) 

(0.429, 0.583) (0.286, 0.5) (0.286, 0.388) 

TABLE IV. THE PAYOFF MATRIX OF THE NEW GAME 

 Player 2 (Attribute 2) 

Player 1 (Attribute 

1) 

 C D 

A (0.7 , 0.97) (0.88 , 0.1) 

B (0.81 , 0.5) (0.6 , 0.92) 

B. Imputation by the use of Mixed Nash equilibrium 

In this subsection, we will treat another case in which we 
are confronting a situation where the game does not accept any 
Nash equilibrium in pure strategies, the reason why we are 
forced to look for Nash equilibrium in mixed strategies. Giving 
an example remains the best way to explain a technique. Thus, 
for a given training data (different from the one we worked 
with previously), assume that by using once again the ID3 (or 
C4.5) algorithm, we got a new tree and certainly different 
values of the players’ utilities. Then suppose that while 
working with the obtained tree for the purpose of classifying 
new data, we have encountered an observation with two 
attributes whose values are missing. Therefore, the first thing 
to do is to construct the payoff matrix, which is given by 
table 4: 

It is quite clear that the game in question does not admit a 
Nash equilibrium in pure strategies, thereby we will look for 
the mixed equilibrium. In fact, note α as the probability with 
which player 1 plays the strategy "A" and (1 – α) the 
probability with which he plays strategy "B". Similarly, player 
2 plays strategy "C" with probability β and strategy "D" with 
probability (1 – β). 

According to these probability values, the expected utility 
of player 1 is written as follows: 

 0.7 β + 0.88 (1 - β) = 0.88 - 0.18 β; if player 1 chooses 
to play strategy A. 

 0.81 β + 0.6 (1 – β) = 0.6 + 0.21 β; if player 1 chooses 
to play strategy B. 

Accordingly: 

u1(P1, P2) = α (0.88 – 0.18 β) + (1 – α) (0.6 + 0.21 β) 

 = (0.6 + 0.21 β) + α (0.28 – 0.39 β) 

Which is a function increasing in α if (0.28 – 0.39 β) > 0 
and decreasing if (0.28 – 0.39 β) < 0. 

Consequently, the strategy A constitute the best response of 
player 1 in mixed strategies if and only if β < 0.72, while B is 
the best response of player 1 in mixed strategies if and only if β 
> 0.72, but when β=0.72 he still indifferent between the two 
strategies. 

Similarly, the expected utility of player 2 is written as 
follows: 

 0.97 α + 0.5 (1 - α) = 0.5 + 0.47 α; if player 2 chooses to 
play strategy C. 

 0.1 α + 0.92 (1 - α) = 0.92 - 0.82α; if player 2 chooses to 
play strategy D. 

Thus; 

u2(P1, P) = β (0.5 + 0.47 α) + (1 – β) (0.92 – 0.82 α) 

 = (0.92 – 0.82 α) + β (1.29 α – 0.42) 

Which is a function increasing in β if (1.29 α - 0.42) > 0  
and decreasing if (1.29 α - 0.42) < 0. Therefore, C is the best 
response of player 2 in mixed strategies if and only if α > 0.33 
and D is the best response of player 2 in mixed strategies if and 
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only if α < 0.33. But in the case where α = 0.33 the player 2 is 
indifferent between the two strategies C and D. 

The equilibrium of a game in mixed strategies is 
established when the players are indifferent in their choices of 
strategies. Concerning our example, the equilibrium is 
presented as a profile of probabilities: [(0.33 , 0.67) ; (0.72 , 
0.28)] where player 1 chooses strategy A with a probability of 
0.33 and strategy B with a probability of 0.67, and similarly 
player 2 chooses 72% of the time the strategy C and 28% of the 
time the strategy D. 

VI. DISCUSSION AND CONCLUSION 

Just like any other machine learning algorithm, techniques 
used for classification tasks are all the time facing the problem 
of missing data. In fact, in real data applications, the presence 
of missing data is a general and challenging problem [11]. A 
decision tree classifier may encounter this problem in two 
contexts: values may be missing in the training data (at 
induction time) or while predicting the classes to which new 
records should belong (at prediction time) [12]. Concerning the 
method we are proposing, it aims at handling missing values at 
prediction time and it only concerns two types of algorithms 
constructing decision trees: ID3 and C4.5. 

Specialists in the field of data missingness insist on the 
necessity of making assumptions about what caused the data to 
be unknown. Thereby, they identify three categories or types of 
missing data: 

 MCAR: (Missing Completely At Random) refers to 
data that were collected randomly which means that for 
an observation where a feature’s value is missing, that 
missingness does not depend on any variable of the data 
set. 

 MAR: (Missing At Random) requires that the cause of 
missingness is not related to the unknown feature while 
it could be conditional on some of the rest of variables 
in the data set. 

 NMAR: (Not Missing At Random) this case takes place 
when the missingness is not random and depending on 
the actual value of the missing data. 

"When data are MCAR or MAR, the missing data 
mechanism is termed ignorable" [13], the approach we are 
proposing does not require any prior knowledge about the 
reasons of data missingness i.e. we are assuming data to be 
MCAR or MAR. Classification approaches and methods have 
proved their usefulness in many problem domains. However, 
they have to deal with the problem of missing data which is a 
common drawback when solving a real life classification task. 
A wide range of techniques were elaborated to handle the 
limitations caused by unknown values such as: 

 Case deletion 

 Mean imputation 

 Multiple imputation 

 Hot and cold deck imputation 

 Maximum likelihood 

As their being classifiers, ID3 and C4.5 can use such 
approaches to face unknown values while processing a data set 
for prediction. Of course each one of these methods has its 
advantages and disadvantages. But logically, each 
classification technique has some specific characteristics 
related to the way the classifier should be constructed, from 
this point we thought that the approach adopted by every 
classifier to handle the limitations of missing data should 
respect the characteristics and essential elements of the 
classifier. This work concerns two well-known classification 
algorithms (ID3 and C4.5) that are based on the notion of 
"quantity of information gained", for that reason a method 
respecting this notion should be used when handling data 
missingness. Thereby, our proposed method consists of 
maximizing the gain of information while imputing unknown 
values in treated observation: our method covers all the 
features of only one record at the same time. Thus, working on 
a data set for classification purpose, we propose to handle the 
unknown values as a first step by the use of our method based 
on game theory approach (as seen on section 5), then the 
classifier can be applied to determine the class of each record. 

Note that we are proposing a method under two forms: 
imputation using pure Nash equilibrium and imputation using 
mixed Nash equilibrium. The first one seems to be easier, but 
the second one is the most relevant as it always gives results 
and it is more realistic. In fact, records having exactly the same 
features whose values are unknown will use the same form of 
game to impute missing data. And as it was already mentioned, 
the solution in mixed strategies comes in the form of 
probabilities. For instance, assume that an attribute is part of a 
game and that attribute can take two possible values A and B, 
at the Nash equilibrium in mixed strategies, A can be the best 
decision with a probability of P% and B can be the best 
decision with a probability of (1 - P)%. We can then conclude 
that for all records utilizing the same game, A will be assigned 
to P% of these observations and B will be assigned to (1 - P)% 
of that observations (N.B for an observation, when only one 
variable is missing, we assign to it the value with the maximum 
payoff). 

In general, features are considered the fundamental 
elements for constructing classifiers such as ID3 and C4.5 and 
they still unchanged while processing data sets. Assume that 
we are working on a data set with N variables, the number of 
possible games that can be used to deal with missing data 

is∑   
    

   ; it is a finite number of cases. Consequently, it is a 
step which can be added to both of algorithms as an 
improvement of algorithms ID3 and C4.5. 
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