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Abstract—This paper proposed an integral sliding mode 

control scheme based on repetitive control for uncertain 

repetitive processes with the presence of matched uncertainties, 

external disturbances and norm-bounded nonlinearities. A new 

method based on the combination of repetitive control and 

sliding mode approach is studied in order to use the robustness 

sensibility property of the sliding mode control to matched 

uncertainties and disturbances and to cancel gradually tracking 

error for periodic processes. A sufficient condition of the 

existence of sliding mode is studied based on basic repetitive 

control and a sliding mode controller is synthesized through 

linear matrix inequalities, which guarantees the stability along 

the periods of the controlled closed-loop process and the 

reachability of the sliding surface is ensured. Then, an adaptive 

integral sliding mode controller is synthesized to improve 

performances of the proposed control scheme. The effectiveness 

of the proposed controlled design schemes is proved by the use of 

a third order uncertain mechanical system and the simulation 

results using the new approaches give good performances. 
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I. INTRODUCTION 

Repetitive Control (RC) has been applied to many 
engineering applications, such as robot manipulators, rotary 
systems, power supply systems, computer disk drives, etc. [1]-
[4]. Based on the error signals in previous periods, the basic 
idea of RC is to improve transient responses on each pass by 
refining the control inputs in tracking problems for periodic 
operated dynamic systems. The basic RC is related to learning 
control [5]-[6] and it is formed of two main parts in order to 
produce a zero tracking error; a periodic signal is generated by 
the internal model originated from the idea offered by 
Wonham and Francis [7] and a proper compensator consists to 
stabilize the closed-loop feedback system.  

Recently, an interesting theme in RC research fields is 
robust repetitive control design against system uncertainties. 
In practice, there exist a complex relationship between model 
and real system. When the controller is applied to real 
systems, disturbances and uncertainties must be absolutely 
considered and examined. Thus, they cause instability in the 
control system [8].  

In other hand, many strategies using RC have been 
developed in order to solve this problem. Authors in [9]-[14] 
offer some methods of repetitive control system design for a 

class of linear system. They are based on two-dimensional 
(2D) continuous/discrete hybrid model. The traditional 
problem of repetitive controller design is reformed in an 
equivalent problem for a 2D continuous-discrete system and 
solved it by 2D Lyapunov theory by means linear matrix 
inequality (LMI) approach. 

Therefore, classical RC has been associated and integrated 
with many robust control techniques [15]-[21] such as 

backstepping control, adaptive robust control, H control, and 

sliding mode control (SMC). Referring to offered [8], [22], 
SMC has been looked as a good robust technique, especially 
for its insensibility to uncertainties satisfying the matching 
condition. Besides, SMC can offer good transient 
performance, fast response, and order reduction. These 
advantages make SMC a very practical and effective way in 
robust control design. Therefore, robustness against 
uncertainties matched to the control system can be only 
reached after the apparition of the sliding mode so-called 
reaching phase [23]-[24]. To ensure robustness in the overall 
closed-loop system response and eliminate the reaching phase, 
Integral Sliding Mode Control (ISMC) was proposed in [25].  
The main contribution of this work is to propose a new 
Repetitive Integral Sliding Mode Control (RISMC) law of 
matched uncertain linear repetitive processes with external 
disturbances in order to achieve a zero tracking error. 

The rest of this paper is organized as follows. Section II 
presents major work related to this study. The problem of 
equivalence 2D system and repetitive control is formulated in 
Section III. The sliding mode process is analyzed in 
Section III. Section V presents the reachability analysis. 
Section VI gives an illustrative example, and Section VII 
concludes this paper. 

II. RELATED WORKS 

The authors in [26] proposes a sliding mode based 
repetitive control system for periodic reference tracking in 
order to reduce transient overshoot, output noise, and 
chattering. The design method is simple with less restriction in 
stability conditions. The research work on [27] focused on 
improving the tracking performance and robust performance 
for turntable system by using a repetitive control design based 
on integral sliding mode. In [28], a quasi-sliding mode control 
of differential linear repetitive processes with unknown input 
disturbance is proposed.  
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The main advantage of this work is to design a repetitive 
controller based on integral sliding mode control of matched 
uncertain systems with external disturbances by exploiting 
two major properties; the first is the insensibility to 
uncertainties satisfying the matching condition and the second 
is the improving control system performance in a periodic 
manner by including the learning capacity. 

III. PROBLEM FORMULATION AND PRELIMINARIES 

A. Problem Statement 

Consider this uncertain system defined by: 

( ) ( ) ( ) ( ) ( ) ( , ) ( )

( ) ( )

x t A A x t B B u t f x t t

y t C x t

       


             

(1) 

Where nx , py , mu , ( , )f x t and ( ) mt  are 

the state vector, the output of the system, the input control, the 
vector of unmodelled dynamics and nonlinearities, and the 
vector of  external disturbances respectively. Thus, A is the 
state matrix, B is the input matrix and C  is the output matrix 

with appropriate dimensions. n nA   and n mB  
represent the system and the input matrix uncertainties. To 
complete the description of the uncertain dynamical system, 
the following assumptions are used: 

Assumption 1: 

(i) The pair ( , )A B is stabilizable and the input matrix B has 

full rank. 

(ii) A , B , ( , )f x t and ( )t are continuous on their 

arguments and they are unknown but have a known upper 

bound for all ( , ) nx t   . 

(iii) Matching conditions: there exist functions mA , mB ,

( )v t and ( , )g x t , for all ( , ) nx t   , such that 

   

           

( , ) ( , )  

( ) ( )

  

  





m

m

A B A

B B B

f x t Bg x t

t Bv t

             (2) 

Assumption 2: There exist known positive constants ma ,

mb , m and m such that 

1

( , )

( )



 

 

  





m m

m m

m

m

A a

B b

f x t x

t

                          (3) 

Where  . denotes a signal quadrically-norm.  

The tracking error between the periodic reference input 

and the output is defined by ( ) ( ) ( )e t r t y t  where

( ) ( )r t T r t  and T is the fundamental repetition period. 

Consider the following function which is describe by  

( ) ( ) : ( )

( ) ( ) ( ) : ( )

    

    

  

     

k

k

t kT

t t t T
             (4) 

Where k  and 0 T  are two independent 

parameters. The first describes learning between successive 
periods and the second characterizes control inside a period.  

By applying function which defined in (4), plant model 
can be transformed in the following state-space equation  

1 1 1

1 1 1

1 1

( ) ( ) ( ) ( ) ( )

                     ( , ) ( )

( )  - ( ) ( )

k k k

k k k

k k k

x A A x B B u

f x

e C x e

  

  

  

  

  

 

        


 
   

           (5) 

Let 1 1( ) ( )k kt x    ,
1 1( ) ( )k kt     , 

1 1( ) ( )k ku t u    , and
1 1 1 1( , ) ( , )k k k kf t f x      . Finally, the 

system (5) can be written as follows 

1 1 1

1 1 1

1 1

( ) ( ) ( ) ( ) ( )

                  ( , ) ( )

( ) - ( ) ( )

k k k

k k k

k k k

t A A t B B u t

f t t

e t C t e t

 

 



  

  

 

     


 
  

           (6) 

However, the result system (6) creates a 2D continuous-
discrete hybrid model of the repetitive control system within 
the presence of matched uncertainties in both state and input 
matrices and external disturbances.  

Next, the main objective of this work is to make a 
sequence of control input functions in order to improve 
gradually the desired performance with the successive periods. 
The convergence condition of the tracking error and control 
input can be described as follows:  

1lim ( ) 0,  lim ( ) ( ) 0k k
k k

e t u t u t 
 

              (7) 

Where u is called the learned control.  

In general, there are two distinct stability concepts that 
exist in the stability theory of linear repetitive processes; 
Asymptotic stability and Stability along the pass. The first 
concept ensures the existence of a limit profile described by a 
classical linear system state space model (1D system), the 
second concept guarantees that the existing limit profile is 
stable during the successive pass dynamics (2D system) [29]. 
In order to achieve stability of the controlled system (6), the 
concept stability along the pass must use. 

B. Preliminaries 

In order to explain and achieve main results, the following 
preliminaries are essential.  

Lemma 1. [29] (Schur complement): Let E, F and G be 
given matrices with appropriate dimensions, where E and G 
are positive definite symmetric matrices. Then, the following 
inequality 

- 0TF GF E                (8) 

is equivalent to 
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1
0

TE F

F G

 
 

 
  or  

1

0
T

G F

F E

 
 

 
           (9) 

Definition 1. [28]: Consider the following linear time 
invariant repetitive system 

1 1

1 1

( ) ( )  ( )

( ) ( ) ( )

k k k

k k k

x t Ax t B y t

y t Cx t D y t

 

 

 


 
          (10) 

The system (8) is stable along the pass if and only if three 
conditions are satisfied: 

(i) ( ) 1D   

(ii)  Re ( ) 0A   

(iii) All eigenvalues of 1( ) ( )G s C sI A B  with s j , 

for all real frequencies 0  , have modulus strictly less 

than unity. 

where the pair  ( ), ( )A D  represents respectively the 

spectral radius of a matrices A and D. 

In order to guarantee stability along the pass for system 
(10), the following lemma based on 2D Lyapunov stability 
theory is given.  

Lemma 2. [30]: For linear time invariant repetitive system 

in (10), we introduce the 2D Lyapunov function ( )kV t as 

1, 2,

1, 1 1

2,

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

k k k

T

k k k

T

k k k

V t V t V t

V t x t Px t

V t y t Qy t

 

 





            (11) 

where P and Q represent two symmetric positive definite 
matrices to be found. Then, the associated 2D Lyapunov 

function increment ( )kV t  is given by 

1, 2,

1, 1 1 1 1

2, 1 1

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

k k k

T T

k k k k k

T T

k k k k k

V t V t V t

V t x t Px t x t Px t

V t y t Qy t y t Qy t

   

 

  




 

          (12) 

The linear repetitive process in (10) is stable along the pass 
if and only if there exist two symmetric positive definite 

matrices P and Q such that ( ) 0kV t  . 

The main goal of this paper is to make an ISMC law for 
the uncertain repetitive system described in (1). Details of the 
design process will be formulated in the next sections.  

IV. SLIDING MODE STABILITY 

In the sliding mode literature, the ISMC design is making 
by two stages. The first step consists on choosing the proper 
switching function surface for the 2D uncertain system (6). 
The second step is to design a suitable relay-type controller to 
guarantee the sliding motion asymptotically stable. Now, 
details of those steps will be presented. 

A. Sliding Surface Choice 

The first phase is to choose sliding surface which takes in 
consideration to eliminate the reaching phase. In this study, 
the switching surface is specified by the equation: 

1 1 1( ) ( ) ( )k k kS t B t t 

              (13) 

Where 1(0) 0kS   for any initial conditions, 
1( )T TB B B B  , and the function 1( ) m

k t    represents the 

solution of the following equation: 

11 1 0

1 1

( ) ( ) ( )

(0) (0)

kk k

k k

t B A t u t

B

 

 





 



 

   


 

          (14) 

In addition, 
10 ( )

k
u t


 is a nominal control law which should 

be designed with repetitive control feedback to achieve 
desired nominal performance. Then, we assume that the 
system (6) is forced to reach the sliding surface at the initial 

time 
0t . The intrinsic condition of an ideal sliding motion can 

be achieved as follows  

1 1( ) ( ) 0k kS t S t    for all
0t t            (15) 

To analyze the sliding motion, consider the time derivative 
of (13) given by 

1

1

1 1 1

1 1 1 1 0

1 1 1 1 0

      ( ( ) )

      ( )

k

k

k k k

k k k k

m k m m k k k

S B

B A B B u f Bu

A I B u v g u

 

 









  



   

   

 

       

       
      (16) 

The equivalent control
1
( )

kequ t


with the time derivative 

1( ) 0kS t   along the state trajectories can be written as 

1 1

1

0 1 1 1( ) ( ) ( )
k keq m m m k k ku t I B u A v g
 



                    (17) 

The equivalent control is the average value such that the 
input control must hold the sliding motion on the sliding 
surface. 

Remark 1. In (17), the matrix ( )m mI B  must be 

nonsingular which is guaranteed by Assumption 2. 

B. Stability of the Sliding Motion 

To obtain the sliding mode, the equivalent control (17) is 
not the input control law that must be applied to the system 
(6).  In order to get the sliding motion expression, the value of 

1
( )

kequ t


can be substituted from (17) into (6), yields 

1

1

1 1 1 1

1

0 1 1 1

1 0

( ) ( )

          ( )( )

                       ( )

          ( ) ( )

k

k

k k k k

m m

m k k k

k

t A A f

B B I B

u A v g

A t Bu t

  









   



  



    

    

   

 
         (18) 

We remark from (18) that the effect of the uncertainties, 
nonlinearities and external disturbances during the sliding 
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mode is completely rejected. As a result, uncertain system (6) 
is reduced to 

11 1 0

1 1

( ) ( ) ( )

( ) - ( ) ( )

kk k

k k k

t A t Bu t

e t C t e t

 



 

 

 


 
            (19) 

The resulting system (19) is insensitive to matched 
uncertainties.  Then, to achieve desired nominal performance,

10 ( )
k

u t


is a nominal control input that can be designed by 

repetitive control. 

C. ISMC design based Repetitive Control 

The structure of the basic repetitive control system is 
shown by Fig. 1 where G  is the plant model. The transfer 

function of a basic repetitive controller is 

1
( )

1
R sT

C s
e




            (20) 

where T is the known fundamental period of the reference 
periodic signal and  defines the output signal of the 
repetitive controller given by the following expression: 

1

( ),                0
( )

( ) ( ),    

k

k

k k

e t t T
t

t e t t T


 
  

  
          (21) 

The repetitive control law proposed of the system is 

10 1 1 2 1( ) ( ) ( )
k k ku t K x t K t
              (22) 

where the pair  1 2,K K gains matrices with appropriate 

dimensions will be determined. Thus, these gains matrices 
ensure the stability along the period of the closed-loop system. 

 

Fig. 1. Basic Repetitive Control System. 

Next, the 2D nominal control input can be written as 

10 1 1 2( ) ( ) ( )
k k ku t K t K e t
               (23) 

By replacing the expression of 
10 ( )

k
u t


into (19), the new 

2D state space nominal dynamics can be written as 

   1 1 1 2

1 1

( ) ( ) ( )

( ) - ( ) ( )

k k k

k k k

t A BK t BK e t

e t C t e t

 



 

 

   


              (24) 

The next step consists to study the stability along the pass 
of the sliding mode process in (24) by designing gains 

controller 1K  and 2K . Therefore, to achieve the design 

process, the following theorem gives a sufficient condition for 
the stability along the pass of the sliding mode process in (24) 

by using the LMI method and the 2D system theory. After 
solving it, the designed sliding function in (13) is complete.  

Theorem 1. The sliding mode process is stable along the 
pass if and only if there exist two symmetric positive definite 

matrices
1X and 

2X , and two matrices 
1W  and 

2W  such that 

the following LMI 

1 1 1 1

2 2

1 2 2

(*) (*)

(*) 0

T T T

T T

AX X A BW W B

W B X

CX X X

   
 

  
   

                 

(25) 

holds, then the closed-loop system (24) is stable along the 
pass, that is, the stabilization gains are given by 

1

1 1 1

1

2 2 2

.    

.

K W X

K W X





 




              (26) 

Proof. Consider two symmetric positive-definite matrices 

P and Q and choose a candidate 2D Lyapunov function ( )kV t  

by applying lemma 1 such that 

1, 1 1

2,

( ) ( ) ( )

( ) ( ) ( )

T

k k k

T

k k k

V t t P t

V t e t Qe t

  




          (27) 

Then, the associated 2D Lyapunov function increment

( )kV t  given by 

1 11, 1 1

2, 1 1

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

k k

T T

k k k

T T

k k k k k

V t t P t t P t

V t e t Qe t e t Qe t

   
  

 

 

            (28) 

Therefore, the Lyapunov function increment ( )kV t  can be 

transformed into 

 

1 1

1

1, 2,

1 1

1 1

1 1 2 1

1 1

( ) ( ) ( )

         = ( ) ( ) ( ) ( )

               ( ) ( ) ( ) ( )

          = ( ) ( ) ( ) ( ) ( )

               ( ) ( ) ( ) (

k k

k

k k k

T T

k k

T T

k k k k

T

k k k

T

k

V t V t V t

t P t t P t

e t Qe t e t Qe t

A BK t BK e t P t

t P A BK t

   

 

 

 



 

 

 



   



 

 

   

   

2

1 1

) ( )

            + - ( ) ( ) - ( ) ( )

               ( ) ( )

          = ( ) ( )

k

T

k k k k

T

k k

T

BK e t

C t e t Q C t e t

e t Qe t

t t

 

 

  



        (29) 

where  

1

1 1

2

( ) ( ) ( )

( ) ( ) (*)

( ) 0

T
T T

k k

T T

T

t t e t

A BK P P A BK C QC

BK P QC

 




    
     

  
             (30) 

Notice that (29) implies ( ) 0kV t   (i.e. 0  ) for any 

( ) 0t  .  By Lemma 1, stability along the pass of the sliding 
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mode process in (24) is guaranteed. On the other hand, by 
Lemma 2 (Schur complement), LMI 0  is equivalent to 

1 1

2

( ) ( ) (*) (*)

( ) (*) 0

T

T

A BK P P A BK

BK P Q

QC Q Q

   
 

  
            (31) 

After that, (31) pre-multiply and post-multiply by 

 1 1 1, ,diag P Q Q     and its transpose respectively. Thus, 

LMI 0  is finally equivalent to 

1 1

1 1

1 1

2

1 1 1

( ) ( ) (*) (*)

( ) (*) 0

T

T

P A BK A BK P

Q BK Q

CP Q Q

 

 

  

   
 

  
            (32) 

Let -1

1X P , -1

2X Q ,
1 1 1W K X , and

2 2 2W K X . LMI 

(25) is obtained after replacing correspondent’s terms in (32). 
Thus, the proof is finished. 

V. REACHABILITY ANALYSIS 

In the last section, a sufficient condition for the stability 
along the pass of the sliding mode process was derived. The 
next step consists to analyze the reachability of the sliding 
surface. Therefore, the reachability is a sufficient condition 
which to guarantee that the sliding mode process will 
converge to the sliding surface at each time instant.  

A. Repetitive Integral Sliding Mode Control Law 

In order to satisfy reachability condition, the following 
theorem proposes an RISMC law. 

Theorem 2. Consider the 2D uncertain system (6) with the 
assumptions (1–2). Suppose that the sliding surface is given 

by (13) and 1X , 2X , 1W  and 2W  are solutions of the LMI (25). 

The RISMC is defined by 

1

1 1 1 2

1

( )
( ) ( ) ( ) -

( )

k

k k k

k

S t
u t K t K e t

S t
  

 



 

                            

(33) 

where  

1 1

1 1 1 2 2 2

1 1

2

. , .

1
( )

1

                    

m m m k

m

m k m

K W X K W X

a B b K
b

b K e B

   



 







 

   


 
                (34) 

with  is a small positive scalar.  

Proof. Let choose a Lyapunov function candidate to be 

1 1 1

1
( ) ( ). ( )

2

T

k k kV t S t S t                (35) 

In order to prove that the proposed RISMC law satisfies 
the reachability condition, substituting the value of (33) into 
(16) gives 

11 1 1 1 1 0

1 1 2 1 1

1

1

( )

      ( )

           - ( )

kk m k m m k k k

m m k m k k k

k

m m

k

S A I B u v g u

A B K B K e v g

S
I B

S







    

  





       

      

 

        (36) 

Pre-multiplying both sides of (36) by 1

T

kS   yields 

1 1 1 1 1 2

1

1 1

1

1 1 1 2

1 1

1 1

1

[( )

                   ( ) ]

           [( )

                   ] ( )

T T

k k k m m k m k

k

k k m m

k

T

k m m k m k

T

k k

k k m m

k

S S S A B K B K e

S
v g I B

S

S A B K B K e

S S
v g I B

S









   



 



 

 

 



    

    

    

    

          (37) 

and by using the property
2

1 1 1

T

k k kS S S   , (37) becomes 

1 1 1 1 2

1 1 1

1 1 1 2

1 1 1 1

1 1 1 2

[( )

             ] ( )

     [( )

             ]

     [( )

             

T

k k m m k m k

k k m m k

T

k m m k m k

k k k m k

T

k m m k m k

V S A B K B K e

v g I B S

S A B K B K e

v g S B S

S A B K B K e







 



  

  

 

   

 

    

    

    

    

    

 1 1 1

1 1 1 2

1 1 1

] (1 )

     [( )

             ] (1 )

k k m k

k m m k m k

k k m k

v g b S

S A B K B K e

v g b S







  

 

  

  

     

   
        (38) 

Finally, by using Assumption 2, (38) can be written as 

 

1 1 1 1

2

[( )

               (1 )]

k k m m m k

m k m m

V S a B b K

b K e B b

 

 



  



  

   
             (39) 

The reachability condition is guaranteed if and only if 

1 0kV   is satisfied. Then, in order to enforce it, any choice of 

 must satisfy the following condition 

1 1

2

1
[( )

1

                      ]

m m m k

m

m k m

a B b K
b

b K e B

  









  


 
           (40) 

Let  is a small positive scalar, the inequality in (39) 

becomes 

1 1 1( ) ( ) ( ) 0T

k k kS t S t S t                 (41) 

Besides, the initial value of 1( )kS t is provided by 

1(0) 0kS   for any initial conditions. So, the reachability of 

the sliding surface is guaranteed.  That ended the proof. 
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B. Adaptative Repetitive Integral Sliding Mode Control Law 

Applicability of the designed RISMC law presents two 
major problems. The first is the chattering phenomenon and 
the second is the difficulty to get the exact upper bound values 
of uncertainties and external disturbances [31].  

In order to overcome these problems, we will present an 
Adaptive RISMC (ARISMC) law in this section. To get there, 
we start by rewriting (6) as 

1 1 1

1 1

1 1

1 1 1

( ) ( )

                            

     ( )

                           ( )

k k k

k k

k k

m k k k

A A B B u

Bv Bg

A B B u

B A v g

 





  

 

 

  

     

 

   

   
         (42) 

Let
1 1 1 1k m k k kA v g        , (42) becomes 

1 1 1 1

1 1

( )

-

k k k k

k k k

A B B u B

e C e

  



   

 

    


            (43) 

To complete the description of the 2D uncertain system 
(43), the following assumption is used: 

Assumption 3: There are unknown positive constants
1

and 2 , for all ( , ) nx t   , such that 

1 1 1 2k k                  (44) 

To achieve design of ARISMC law, two steps are 
necessaries. First step, simple adaptation laws will be 

proposed for the upper bound of 1k  . Second step consists 

to design a control law using this result, adaptive upper bound 

[31]. Let consider 1 and 2 , respectively, the adaptive 

parameters about 1 and 2 . The proposed adaptive upper 

bound of 1k  is defined by 

1 1 1 2k k                   (45) 

Now, define the parameter adaptation errors as 
1 1 1   

and
2 2 2    . The simple adaptation laws proposed for the 

upper bound of 1k  is  

1 1 1 1

2 2 1

  k k

k

S

S

  

 

 



           (46) 

where 1 and 2 are positive adaptation gains. However, 1  

and 2 are assumed as constant values. Then, the result 

adaptation laws can be rewritten as 

1 1 1 1

2 2 1

k k

k

S

S

  

 

 



             (47) 

After that, by integrating (47), the adaptive parameters are 
described by the following expressions: 

0

0

( 1)

1 1 1 1 1
( 1)

( 1)

2 2 2 1
( 1)

t k T

i k k
t k T

t k T

i k
t k T

S dt
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   

  

 

 
 

 


 

 

 




           (48) 

where 1i and 2 i represents, respectively, the initial values 

of 1 and 2 . Then, we can expose the following theorem. 

Theorem 3. Consider the 2D uncertain system (6) with the 
assumptions (1-3). Suppose that the sliding surface is given by 

(13) and 
1X ,

2X ,
1W  and 

2W  are solutions of the LMI (25). 

The ARISMC is defined by 

1

1 1 1 2

1

( )
ˆ( ) ( ) ( )
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k

k k k

k
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u t K t K e t
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  
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(49) 

where  
1 1

1 1 1 2 2 2

1 1 1 1 2 2

1

. , .

ˆ ( )

1
ˆ ˆ

1

m k m k

m

K W X K W X

b K b K e

b

    

 

 



 

    




          (50) 

with  is a small positive scalar. By employing the 

adaptation laws (46) and the control law (49), 1 0kS   is 

stable along the pass. 

Proof. Let choose an improved Lyapunov function 

candidate instead of 
1 1

T

k kS S 
to be 

 
 1 2 1 2

1 1 1 1 1 2 2

1

2

T

k k kV S S     

    
          (51) 

where 1 and 2 are defined in (46). Substituting the value 

of (49) into (16) gives 
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    (52) 

Pre-multiplying both sides of (52) by 1

T

kS   yields 

1 1 1 1 1 1 2

1 1
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1
ˆ                       ( )

1
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Then, the Lyapunov function increment is given by 
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Then, by using Assumption 2, (54) can be written as 
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The reachability condition is guaranteed if and only if 

1 0kV   is satisfied. Finally, by using Assumption 3, it is 

sufficient to choose the value of 1̂ as 

1 1 1 2 1 1 2
ˆ

m k m k kb K b K e        
                (56) 

Let  is a small positive scalar, the inequality in (55) 

becomes 

1 1( ) 0k kV S t                  (57) 

In addition, the initial value of 1( )kS t is provided by 

1(0) 0kS   for any initial conditions. So, the reachability of 

the sliding surface is guaranteed.  That ended the proof. 

Remark 2. In this proposition, the rate of parameter 

adaptation is adjusted by an appropriate choose of  1 2,i i 

and  1 2,  . In practice, choices of adaptation gains are 

limited by many practical considerations such as the bound of 

control input and other parameters. 

VI. ILLUSTRATIVE EXAMPLE 

In order to prove the validity and the effectiveness of the 
new proposed controlled design schemes, consider the 
following nominal model of a submarine from [32]. 

 

0 1 0 0

( ) 0.0071 0.111 0.12 ( ) 0.095 ( )

0 0.07 0.3 0.072

( ) 0 0 1 ( )

x t x t u t
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       
        (58) 

where the state vector is defined by ( )

T
d

x t
dt


 
 

  
 

with is the inclination of the submarine and is the angle of 

attack. It’s assumed that can only measure 
d

dt


 and suppose 

that 
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Consider the following periodic reference input: 

 
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0.5sin 0.5sinr t t t
T T
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    
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          (59) 

Therefore, a feasible solution of the LMI (25) is defined as 
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For 0.1i  , 1,...,3i  , we get 

          -0.0047 -0.1097 0.2322mA  , 0.2569mA   

         0.1000mB   , 0.1000mB  , 8.3892B   
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
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Then, using assumption 1, we get 0.3569ma  ,

0.2000mb  , 0.0010m  , 0.0283m  and 0.1000  . In 

addition, using (48), let 1 0.1i  ,
1 0.1  , 2 0.1i  and

2 0.1  .  

The simulation results are given for the fundamental 
repetition period 10T s  and the initial state vector 

 1(0) 0.1 0.2 0.3
T

x  . 

Figures 2 and 3 show the evolution of modulation gain  , 

switching function  S t , reference  r t  and output  y t , 

tracking error  e t , and controller  u t  using the proposed 

RISMC (33-34) and ARISMC (49-50), respectively. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 2. Simulation Results using RISMC: Modulation Gain   (a), 

Switching Function ( )S t  (b), Reference ( )r t and Output ( )y t  (c), Tracking 

Error ( )e t  (d), Controller ( )u t  (e). 

 
(a) 

 
(b) 
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(c) 

 
(d) 

 
(e) 

Fig. 3. Simulation results using ARISMC: modulation gain   (a), switching 

function ( )S t  (b), reference ( )r t and output ( )y t  (c), tracking error ( )e t  (d), 

controller ( )u t  (e). 

Thus, it is easy to remark that the proposed control laws 
ensure the stability along the pass of the closed-loop system. 
However, the chattering phenomenon appears in the evolution 
of the controller for the RISMC approach. So, the ARISMC 
approach has overcome this problem and the controller 
evolution confirms the elimination of discontinuities in high 
frequency. 

 

Fig. 4. Output Evolution According to RISMC and ARISMC. 

 
Fig. 5. Output Evolution According to ARISMC for the Uncertain and 

Nominal System. 

Figure 4 shows the evolution of the output  y t for both 

RISMC and ARISMC methods, and the evolution of  y t for 

both uncertain and nominal systems are presented in Fig. 5. It 
is obvious from Fig. 4 that the ARISMC approach almost 
gives the same performances as the RISMC approach. In 
addition, evolution outputs from the uncertain and nominal 
systems are superposed (see Fig. 5). Then, simulation results 
confirm the robustness of the proposed methods. 

VII. CONCLUSION 

In this paper, the problem of integral sliding mode control 
of uncertain repetitive processes in the presence of matched 
uncertainties, external disturbances and norm-bounded 
nonlinearities was studied.  

A combination of repetitive control and sliding mode 
approach was exploited to reject the effect of uncertainties, 
nonlinearities and disturbances and a sufficient condition of 
the existence of sliding mode was studied based on basic 
repetitive control and a sliding mode controller which was 
synthesized by means of linear matrix inequalities, that 
guarantees the stability along the periods of the controlled 
closed-loop process. An adaptive integral sliding mode 
controller based on repetitive control was also proposed to 
improve performances of the synthesized control scheme.  

The simulation results using the new approaches have 
given good performances and confirm the efficiency of the 
new proposed controlled design schemes. In addition, the 
RISMC problem for linear repetitive processes with 
mismatched uncertainties can be examined as our future work. 
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