
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

46 | P a g e

www.ijacsa.thesai.org

A Two-Level Fault-Tolerance Technique for High

Performance Computing Applications

Aishah M. Aseeri
1
, Mai A. Fadel

2

Faculty of Computing and Information Technology

King Abdulaziz University, KSA

Abstract—Reliability is the biggest concern facing future

extreme-scale, high performance computing (HPC) systems.

Within the current generation of HPC systems, projections

suggest that errors will occur with very high rates in future

systems. Thus, it is fundamental that we detect errors that can

cause the failure of important applications, such as scientific

ones. In this paper, we have presented a two-level fault-tolerance

approach for the detection and classification of errors for

Compute United Device Architecture (CUDA)-based Graphics

Processing Units (GPUs). In the first level, it detects the existence

of errors by using software redundancy that applies design

diversity. In the second level, it investigates the problematic

software version and re-executes it on a different hardware

component to classify whether the error is a permanent

hardware error or a software error. We implemented our

approach to run on GPUs and conducted proof of concept

experiments by running three versions of matrix multiplications

with different error scenarios and results show the feasibility of

the proposed approach.

Keywords—High performance computing; fault tolerance;

graphics processing units (GPUS); error detection; n-version

programming (NVP); multi-GPU; reliability

I. INTRODUCTION

High performance computing (HPC) is a term used in
reference to integrated computing environments that rely on
parallel processing in the running of applications. This boosts
efficiency, speed, and reliability, while ensuring that complex
scientific problems can be solver faster than if they were
performed serially.

HPC systems are used to resolve complex scientific
problems that, because of memory or computer performance
limitations, either cannot be solved or are impractical to solve
using traditional computing systems.

These systems promise to push the boundaries for
scientists by augmenting their research across a range of
disciplines, including: chemistry, nuclear physics, high
energy, astrophysics, nanotechnology, biology, medicine, and
material sciences [1]. However, to realize the full potential
and reach the breakthroughs of this technology, software
development tools are of great importance, such as compilers
and debuggers; to be more specific test frameworks are among
tools that should be part of the HPC infrastructure [2]. Test
frameworks are becoming increasingly important as resilience
is one of the major challenges to the growth of the complex
systems mentioned above. System resilience is substantially
reduced due to the increase in the number of components,

regardless of the reliability and efficiency of individual
components. Besides the addition of more components, many
other factors increase the rate of failure for future HPC
applications, including: number of components both memory
and processors, smaller circuit sizes, heterogeneous systems,
the number of operations, and increasing system and
algorithm complexity [3]. This leads to the fact that hardware
faults are becoming inevitable [4, 5] and the way is to be
aware of and handle its effects [6]. From another point of
view, as HPC power is targeting applications beyond the
graphics domain, such as scientific applications and stock
markets, it faces the challenge of addressing the need to
generate accurate results that should be free of errors, as these
applications cannot tolerate the existence of errors as graphical
applications [7]. Hard errors are not the only concern of the
HPC community, soft errors are a concern as well [8]. In [9] a
study done on the data of two large-scale sites of a set of
systems showed that hardware and software errors covering a
considerable large proportion of root causes of failures.
Hence, it is imperative to provide effective fault-tolerance
capabilities, both at hardware and software levels as part of
the test framework. HPC community has developed various
solutions to generally tolerate faults, and more specifically to
mitigate faults caused by hardware defects [10] and to detect
and recover from errors [5, 11]. We will elaborate more on
some of the relevant approaches in Section 2. Some of the
used approaches depend on using checkpoints/reset [12],
redundancy and Algorithm-Based Fault Tolerance ABFT [13,
14]. In our research, we have applied redundancy-based fault
tolerance, as checkpointing has high communication overhead
and ABFT is customized to fit the algorithm under analysis,
thus, it is very difficult to generalize the solution to other
applications without addressing the specifics of the new
algorithm. In particular, we use software-based redundancy
with design diversity; that is, we provide several versions of
the same application that differ in their design to check for
errors during execution time. Design diversity lessens the
likelihood of having all versions fail exactly the same way in
the same time. We use this technique in a broader view, as we
aim to support the need to detect not only software errors but
through these errors we can detect if the actual cause is a
hardware error. This two-level approach starts by applying
software-based redundancy with design diversity to identify
the existence of a problematic copy of the software, then re-
execute this copy on a different hardware to determine if the
original hardware was the cause of the error or the software
itself has an error.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

47 | P a g e

www.ijacsa.thesai.org

In the following section, we present some of the research
related to our work. In Section 3, we briefly describe some of
the basics of CUDA-based GPU Architecture and Open MP
programming, as they are the main tools of the infrastructure
that we used to implement our system. In Section 4, we
present our proposed methodology. In Section 5, we present
the experimental results, and finally we conclude our paper in
Section 6 and highlight some of future research directions.

II. RELATED WORK

This section presents existing error detection techniques
based on redundancy that are considered one of the protective
techniques that provide resilient computing in the HPC
domain. Many approaches based on hardware redundancy
have been used successfully in mission-critical systems such
as triple-modular redundancy (TMR) and dual-modular
redundancy (DMR) [15]. The latter approach is achieved by
supplying two similar physical components that can execute
the same task. When an error occurs, the extra component
transparently recovers from the peer one [16]. A TMR
approach is based on three fully redundant components which
perform the same process. The result is processed by a voting
system to ensure the results are the same. If one component
fails, the other two can correct and mask the fault. This
approach causes performance overhead because of the need to
synchronize original hardware and its replica and also doubles
the hardware cost. In addition, running the same copy of the
software on all components will not reveal an actual error, as
all copies will generate the same incorrect result.

Design diversity among the software replicas is
implemented as a solution for this problem. Thus, lessens the
likelihood of having all copies failing on the same set of input
data. In [17], this approach is categorized as software
redundancy. This method has been widely exploited in
targeting software errors, i.e., design faults or software bugs
[18].

There are several approaches to software redundancy
techniques, such as N-version programming [19], recovery
blocks [20] and N self-checking [21]. Faults can be detected in
these approaches by consistency checking/self-checking or
time redundancy. Time redundancy is defined as running the
same program several times and compare the results. All the
above approaches target sequential applications, as for
redundancy-based fault detection approaches that target
concurrent applications running on GPUs can be found in [11,
22, 23, 24]. These approaches detect software errors whether
they use software or hardware redundancy. In [25], the
proposed system detects hardware errors using different types
of redundancy.

From a different perspective, part or our method is to
execute the problematic version of the software on different
hardware to classify whether the error is caused by hardware
or software. This idea has been applied in the SWAT tool [26]
which will be discussed further in Section VI.

It is noticed that benefiting from software redundancy with
design diversity is applied in several researches, to either
detect software or hardware errors. However, its power has
not been integrated with the step of classifying the error. Up to

our knowledge no one applied design diversity in HPC for
detecting errors and also no one used software redundancy for
detecting hardware errors on GPUs.

III. BASIC CONCEPTS OF DEPENDABILITY

We now briefly present basic ideas and terminology used
in the field of fault tolerance. A detailed background and
taxonomy of the related terms can be found in [27, 28].

A. Fault-Error-Failure

A system is an entity that interacts with other entities. A
system can be hardware based, for example a processor, or
software based, such as a running application. A system
consists of components which can be systems themselves. A
system failure is defined as the deviation of the system
behavior that is inconsistent with the system’s specification.
When the observed behavior differs from the specified
behavior, we call it a failure. A failure occurs because of an
error that is caused by a fault. An error is the part of the
system state which results from the activation of a fault and
causes the system to be in an illegal state. Errors are liable to
lead to a failure. Fault propagation chain from faults to
failures in a system is illustrated in Fig 1.

Fig. 1. Relationship between Fault, Error and Failure.

There are numerous sources of a fault that can be either
software or hardware [29] as shown in Fig. 2.

Fig. 2. Classification of the Sources of Faults [29].

Software faults are most often caused by design faults and
operational faults [29]. Design faults occur when a designer,
either misunderstands a specification or simply makes a
mistake. Hardware faults are most often caused by incorrect
specification, incorrect implementation, manufacturing
imperfections or external factors.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

48 | P a g e

www.ijacsa.thesai.org

System errors that impact the application’s and
supercomputer’s reliability can be classified as “soft” or
“hard”: soft errors are usually caused by a transient fault and
temporary environmental factors. Soft errors, unlike
manufacturing or design faults, do not occur consistently.
Some of the factors that can cause this type of faults are
radiation-induced upsets in electronic circuits [27, 30],
leakage from adjacent circuits, timing violations, and
improper signal routing or power design [31]. These events do
not cause permanent physical damage to the processor but can
alter signal transfers or stored values and thus cause incorrect
program execution.

By contrast, hard errors are caused by a permanent fault in
the system and are usually caused by design faults or inherent
manufacturing defects, thermal stress, wear out, and process
variation. Permanent hard errors are easier to detect, because
hardware deterioration is often irreversible, and their
symptoms tend to be predictable and persistent over time.
However, they must be detected because they present a threat
to the application stability in a well-maintained environment
[32]. Permanent faults usually require that the faulty
component be avoided until it is repaired or replaced to avoid
errors in system behavior. On the other hand, transient faults
do not require repair/replacement of the component, but the
impact of the resulting soft error needs to be masked.

B. Fault Tolerance

Fault-tolerance means the ability of a system to continue
correct performance of its intended tasks and the ability to
avoid failure after the occurrence of hardware and software
errors. When a system is said to be fault-tolerant this means
that the behavior of the external system is not affected by
faults. A fault- tolerant system must be able to detect errors
and recover from them.

IV. OVERVIEW THE CUDA-BASED GPU ARCHITECTURE

AND OPENMP PROGRAMMING

In this section, we give a brief description of the GPU
architecture and CUDA, as the target applications that our tool
analyzes are implemented using CUDA and Open MP and run
on GPUs.

A. GPU Architecture

Fig. 3 illustrates a simplified overview of the GPU
architecture. Modern GPU architecture is composed of an
array of Streaming Multiprocessors (SM) [33]. The SMs are
the main building blocks of a GPU. SMs consist of a set of
Stream Processors (SPs) or CUDA cores, in which each core
executes several threads in parallel at a specific time. SPs
share control logic and an instruction cache, while SMs allow
access to the global memory. In modern GPU devices, there
are thousands of such SPs; this indicates that each GPU has
the potential of executing thousands of threads at any moment.
Moreover, each SM has shared memory and the L1 cache that
is designed to improve the computational performance by
storing the data common to the threads running on the SM.

Fig. 3. An Overview of the GPU Architecture [33].

GPUs use this architecture in SIMT (Single Instruction
Multiple Threads) [34], in which a group of (currently 32)
threads known as a warp performs the same instruction. All
the threads in one block are performed on one SM, or they can
be implemented as multiple concurrently running blocks. The
number of blocks that can be processed concurrently on one
SM depends on the resource requirements of each block like
shared memory usage and the number of registers.

There are many GPU programming languages that aim to
provide an environment in which GPU and CPU programs can
exist with each other. The main goal of these programming
languages is to offload the GPU friendly portion of the
program into the GPU memory. In this work, we use the
CUDA programming language that is specifically employed
for NVidia GPUs.

B. CUDA

CUDA (Compute United Device Architecture) is a parallel
computing architecture developed by NVidia for massively
parallel high-performance computing [35]. It can be accessible
through CUDA-accelerated libraries, compiler directives,
application programming interfaces, and standard
programming languages including C, C++, Fortran, and
Python. There are several programming models accessible to
create program for GPU but CUDA by NVidia is the best
option to accomplish parallelism through GPU processing.

Recently, this platform has proven successful in parallel
computing architecture at programming multi-threaded on
many-core GPUs .The GPU acts as a coprocessor that
performs data-parallel kernel functions. CUDA has a
hierarchy of thread groups. Threads are composed of a three
level hierarchy. A grid consists of set of thread blocks that are
responsible for executing a kernel function. Each block is
composed of hundreds of threads. Threads inside one block
have shared memory that allows sharing data. All threads
within a block are executed concurrently on a multithreaded
model.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

49 | P a g e

www.ijacsa.thesai.org

Fig. 4. A Representative CUDA-based GPU Architecture [36].

A CUDA-based system is a type of heterogeneous
programming, since a program is usually running on two
different platforms: a host and a device. The host system
usually consists primarily of the CPU, main memory and its
supporting architecture. The device generally includes the
video card consisting of a CUDA-enabled GPU and its
supporting architecture. The CPU begins to execute a CUDA
program in order to provide inputs for the kernel and to start
its implantation; this means providing a kernel grid to the
GPU. The CUDA GPU begins the implantation of the kernel.
Upon completion of a kernel implantation, the CPU can
acquire the output data by accessing the contents of the GPU
memory. The software organization of a kernel is related to
the GPU architecture, since the threads hierarchy assigns
immediately into the GPU internal components.

Fig. 4 illustrates CUDA GPU internal architecture. When
the CPU starts to invoke a kernel grid, each thread block is
assigned a Thread Block ID and dispatched to a SM that
ensures enough available resources. Each thread of a thread
block is executed on a CUDA core.

The programmer can specify the number of threads per
block, and the number of blocks per grid. A thread in the
CUDA programming language is characterized as much
lighter weight than in traditional operating systems.

C. OpenMP Programming

Open multi-processing (OpenMP) is a programming model
that has the ability to handle multithreading by computing in
parallel modules. The basic idea of this programming model is
that data are processed in parallel. It consists of a number of
directives and libraries that are called runtime libraries [37].
The code inserted in these directives executes in parallel on
multi-cores in the form of a basic OpenMP unit called
“Thread” [38]. It also has the ability to process the looping
region in a parallel way by adding compiler directives in the
starting region of the OpenMP module that improve the
efficiency of the program and overall application performance
[39].

V. PROPOSED METHOD

In this research, we aim to detect hardware and software
errors in CUDA applications that run on GPUs. Our proposed
method consists of two levels of detection. The first level

detects the presence of error in the results generated by the
running software. The second level classifies the source of the
error whether it caused by a hardware error or software error.
We used multi-version programming at the first level of
detection, where several versions having diverse designs of
the same application are used. All versions of the software are
executing in parallel. The correctness of the results is
determined by running a voter in which common answers by
the majority are considered the rightful result. In case the
voter indicated the presence of an error in one of the versions
for example, then the second level of detection is conducted.
In this level, we reinvestigate the version that produced the
incorrect result, by running it on a different set of cores or a
different GPU with the same input data. The cause of the error
is classified as hardware error in case the result is correct as
stated by the majority and software error otherwise. The steps
of the methods are illustrated in Fig. 5.

Fig. 5. Proposed Approach.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

50 | P a g e

www.ijacsa.thesai.org

As can be seen, the different versions of the application,
referred to as kernels, are executed on the GPU, whereas the
control of the method steps are mainly done in the CPU,
which are: launching the kernel, running the decision
mechanism – the voter – and starting level two of the
detection by re-executing the problematic kernel in case the
voter’s output indicates there is partial failure. Other possible
output of the voter is that the software is error-free; i.e. all
versions generated the same results, and complete failure; i.e.
there is no agreement on the results among any of the
versions. The figure also shows that partial failure can have
the form of problematic interrupt of execution; i.e. a version of
the application hangs, or the form of generating incorrect
results by one of the versions.

VI. EXPERIMENTAL RESULTS

In this section, we describe the experiments conducted to
test the applicability of our method. First, we describe the
system specifications on which the experiments are conducted
and then we describe the application chosen to conduct the
experiments. After that, we present the techniques used to
inject faults in systems. In the following section, we describe
the design of the experiments and show the results. Finally, we
discuss the findings derived from our experiments.

A. System Specification

First, the hardware specifications of the system on which
the experiments are conducted are listed. The machine
contains a single Intel (R) Core (TM) i7-7700K CPU @4.20
GHz , equipped with three Nvidia GeForce GPUs: two of
them are of the model GTX 1070 and the third GPU is of the
model GTX1060. More details of the different GPUs are
shown in Table I.

TABLE I. AN OVERVIEW OF THE GPUS USED. SM DENOTES STREAMING

MULTI-PROCESSOR

GPU Name GTX 1060 2x GTX 1070

Architecture Pascal Pascal

SMs 10 15

cores/SM 1280 1920

Next, the software specifications are described. The
machine runs Windows 10 as an operating system, and the
development environment used is Microsoft Visual Studio
community 2015 which as it is compatible with CUDA
Toolkit 8.0 that we used to develop the different versions of
the application – that is described in the next section. Simple
visual studio C++, and OpenMP are also needed to develop
the application and our tool.

B. The Application used for Testing

In this section, we describe the application we used to
conduct our experiments on. We chose Matrix Multiplication
as it is a computational mathematical operation that is widely
used in the computational sciences in general, and scientific
modeling in high performance computing domain as well [14,
22].

Several algorithms and mathematical formulas have been
proposed to solve matrix multiplication, one of the proposed
approaches exploits the massive parallelism of GPUs to speed
up computations. Our method detects errors in parallel
applications, thus, we have chosen three different parallel
algorithms for solving matrix multiplication to conduct our
experiments. The chosen algorithms show the design diversity
required by the multi-version programming system. Next, we
present the mathematical formula of matrix multiplication and
then describe the three different algorithms used to solve this
mathematical problem.

The mathematical formula for matrix multiplication is
given in equation 1.

 ∑

 (1)

Equation 1: general formula of Matrix Multiplication

Where A and B are matrixes of the sizes n×m and m×w
respectively. C is a matrix of the size n×w that stores the
product of matrix A and matrix B. For simplicity, we only
created square matrices during our experiments.

The different algorithms chosen for matrix multiplications
differ in the kind of memory being used, thus causing
adequate changes in the design of each algorithm that are
enough to introduce the design diversity required by our
method – using different set of steps in each algorithm. The
first algorithm used one thread to compute the result of an
element of the matrix C. It depends on using global memory
causing the performance to become relatively slow. The
second algorithm uses shared memory to avoid unnecessarily
accessing global memory multiple of times. The third
algorithm is different from the second algorithm in that it
transposes the second matrix, which is referred to as matrix B
in (1).

C. Fault Injection

In our experiments, we need a procedure to inject faults
and monitor the effect of these faults on system’s behavior
[40]. Fault injection is a widely used method for improving
the reliability of applications. Reviews of fault injection
techniques and methodologies in electronic and computer
systems can be found in [18, 41]. Research has also been done
to provide a framework to allow fault injection in HPC
applications with the focus of facilitating designing complex
experiments by defining workloads [42]. This framework,
called FINJI, allows the integration of existing fault injection
tools for heterogenous types of errors. Testing the detection of
hardware and software errors requires fault injection of both
types. Hardware errors will result in Silent Data Corruption
(SDC) which is a kind of soft error that can simply be
described as the flip of a bit or two in both kind of storage
volatile and non-volatile [43]. Some of the approaches used to
inject hardware errors are FPGA-based fault injection [44] and
simulations to conduct microarchitecture-level fault injection
[26]. The latter has been applied in a multicore environment
called mSWAT for detecting hardware errors [45]. The idea is
to detect hardware errors via software anomalies such as fatal-
traps and system hangs, these detected errors are then
diagnosed to identify which part pf the micro-architectural of
the system is the source of the error as described in [46].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

51 | P a g e

www.ijacsa.thesai.org

FPGA-based fault injections are performed on gate-level
models and accelerated by FPGA-based hardware emulation.
This approach injects errors at gates based on a user-provided
model of hardware design. Another tool that injects errors at
gates is Argus [47]. In our tool, there is no need to follow any
of the above-mentioned hardware fault injection approaches,
as our tool satisfies the objective of the research by reporting
back the faulty core without specifying the kind of hardware
error. Whereas the other approaches aim to identify the source
of the error, for example, Argus, based on running certain
instruction, it identifies the source of the error in a simple
core. The research applying FPGA-based fault injection is
measuring the accuracy of detecting the SDC that results from
the specific types of hardware errors.

As for software fault injection, we have performed fault
injection at the source code level, by conducting mutation of
the source code of the application being analyzed and
observing the outcomes. This kind of injection has been
applied in other research such as [40, 48, 49].

D. Experiments Design and Results

In order to test the applicability of our method, we need to
ensure that the method is able to report back error-free, partial
failure and complete failure cases. In this section, we focus on
the error-free and partial failure cases as the complete failure
case can be tested in the same way we test partial failure. In
addition, to summarize the results, we report back the partial
failure case in which the problematic version of the
application generates in correct results. In addition, for the
partial failure case, we conduct an experiment to detect
hardware errors and another experiment to detect software
errors. Soft errors are injected by changing the one or more of
the code instructions to generate incorrect result. Hard errors
are assumed they exist in one of the GPUs and we designed a
method that returns an incorrect result in both levels of our
detection method. In the following, we present the result of
each experiment, and then present a table showing relevant
measurements:

Fig. 6 shows the result of executing the three algorithms in
which all are error-free, consequently depicting the error-free
case:

Fig.7 shows the result of executing the three algorithms,
where one of the algorithms has an injected soft error, thus
generating incorrect results. This depicts the case of partial
failure caused by a soft error. In this case, the second level of
the detection method is used to determine that it type of error
is a soft error, since re-executing the algorithm on a different
GPU generated an incorrect result as well.

Fig.8 shows the result of executing the three algorithms,
where one of the algorithms generates in correct results (as
returned by our designed method that mimics hard errors as
described in the fault injection section). This depicts the case
of partial failure caused by a hard error. In this case, the
second level of the detection method is used to determine that
the type of error is a hard error, since the algorithm generated
a correct result when run on a different GPU.

Fig. 6. A Screenshot of the Result in the Case of Failure-Free.

Fig. 7. A Screenshot of the Result in the Case of Partial Failure (Software

Error).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

52 | P a g e

www.ijacsa.thesai.org

Fig. 8. A Screenshot of the Result in the Case of Partial Failure (Hardware

Error).

E. Discussion

This section aims to give insights into our proposed
method and to compare it with other approaches in terms of
detecting faults and ability to distinguish them. As explained
in the previous section, our proposed method was designed as
a two-level technique, in which the first level based on design
diversity that applies N-Version Programming technique.
Whereas the second level is designed to distinguish the type of
error that is detected.

In [30, 50], NVP is used for detecting hardware and
software faults, however, they do not address concurrent
applications. It is noteworthy to mention that in [30] the
system detects transient faults either software or hardware and
permanent hardware faults. More specifically, it can detect
errors that cause one of the components become disabled or
cause the generation of incorrect results.

The most relevant tool to our work is mSWAT [45]. It
applies the two-level approach for detecting permanent
hardware and software errors, in a similar manner to our work.
However, they use TMR approach in the first level, whereas
we use NVP. In the second level, mSWAT stores traces of
execution for each core, then checks if there is divergence in
the execution of one of the cores then it will be considered as
a faulty core. In addition, they conduct further analysis to
identify the faulty micro-architectural component for repair. In
our work, we only report back that there is a permanent
hardware error or a software error.

mSWAT also addresses transient errors at the beginning
by re-executing the process on all cores in a similar manner of
rollback/replay. If the error is not repeated, then it is
considered a transient software bug. In our work, we have not
included the detection of transient errors.

We detect the existence of errors in the first phase by
identifying that one of the software versions are producing in
correct results or experiencing application hang. In mSWAT,
they have addressed four kinds of software anomalies,
including hangs, fatal traps, panic, etc.

It is also worth mentioning that using NVP in our work has
the difficulty of designing and implementing three versions of
the software, however, it needs no tracing of execution and it
only re-executes the problematic version once unlike
mSWAT. We also do not need to store the re-execution and do
comparisons for divergence checking, we only compare the
results in case the application do not hang.

mSWAT, addresses more error types and faulty micro-
architectural components identification. However, in our work
we investigated the possibility of benefiting from NVP that
up-to-our knowledge has not been previously investigated for
HPC applications.

VII. CONCLUSION

Faults are becoming more frequent in large
supercomputers, and their impact is higher in the case of long-
duration applications. This research seeks to address resilience
challenges by presenting an innovative method to detect
software and hardware errors that can be become a concern for
the performance of scientific applications running on these
future systems.

We have investigated an approach to detect and classify
faults for CUDA applications using multiple GPUs. Our
approach benefits from NVP for detecting errors then carrying
another analysis by running the problematic software version
on a different GPU to classify the type of error. Our proposed
approach is flexible in the sense that it can be applied to
different applications not just matrix multiplication.
Experimental results indicate the capability of the proposed
method to detect errors and classify whether they are
permanent hardware errors or software errors. Hence, assisting
in improving reliability. We plan to integrate this detection
algorithm in a more comprehensive framework that includes
error recovery and sophisticated fault injection techniques and
test our approach on other types of applications to collect
further measurements of the coverage and overhead of our
approach.

ACKNOWLEDGMENT

We would like to express our gratitude and appreciation to
Prof. Fathy Eassa the head of our research group in the
department of Computer Science at KAU. He always provides
us with promising research directions and continuous
guidance.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

53 | P a g e

www.ijacsa.thesai.org

REFERENCES

[1] Ashby, Steve, et al. "The opportunities and challenges of exascale
computing–Summary report of the advanced scientific computing
advisory committee (ASCAC) subcommittee." US Department of
Energy Office of Science ,2010.‏

[2] Van De Vanter, Michael L., D. E. Post, and Mary E. Zosel. "HPC needs
a tool strategy." Proceedings of the second international workshop on
Software engineering for high performance computing system
applications. ACM, 2005.‏

[3] G.Rinku, et al. "Introspective fault tolerance for exascale systems." US
Department of Energy Advanced Scientific Computing Research, OS
and Runtime Technical Council Workshop. 2012 .

[4] Constantinescu, Cristian. "Trends and challenges in VLSI circuit
reliability." IEEE micro 4 (2003): 14-19.‏

[5] Gizopoulos, Dimitris, et al. "Architectures for online error detection and
recovery in multicore processors." Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2011. IEEE, 2011.‏

[6] Tselonis, Sotiris, Vasilis Dimitsas, and Dimitris Gizopoulos. "The
functional and performance tolerance of gpus to permanent faults in
registers." On-Line Testing Symposium (IOLTS), 2013 IEEE 19th
International. IEEE, 2013.‏

[7] Wunderlich, Hans-Joachim, Claus Braun, and Sebastian Halder.
"Efficacy and efficiency of algorithm-based fault-tolerance on GPUs."
On-Line Testing Symposium (IOLTS), 2013 IEEE 19th International.
IEEE, 2013.‏

[8] Guan, Qiang, et al. "Empirical studies of the soft error susceptibility
ofsorting algorithms to statistical fault injection." Proceedings of the 5th
Workshop on Fault Tolerance for HPC at eXtreme Scale. ACM, 2015.‏

[9] Schroeder, Bianca, and Garth Gibson. "A large-scale study of failures in
high-performance computing systems." IEEE Transactions on
Dependable and Secure Computing 7.4 (2010): 337-350.‏

[10] Di Carlo, Stefano, et al. "Fault mitigation strategies for CUDA GPUs."
Test Conference (ITC), 2013 IEEE International. IEEE, 2013.‏

[11] Dimitrov, Martin, Mike Mantor, and Huiyang Zhou. "Understanding
software approaches for GPGPU reliability." Proceedings of 2nd
Workshop on General Purpose Processing on Graphics Processing
Units. ACM, 2009.‏

[12] X. Xu, et. Al. HiAL-Ckpt: A hierarchical application-level
checkpointing for cpu-gpu hybrid systems, 2010

[13] K.-H Huang and Abraham, “Algorithm-based fault tolerance for matrix
operations, 1984

[14] C. Ding. Et. Al. “Matrix multiplication on GPUs with on-line fault
tolerance” 2011

[15] Lyons, Robert E., and Wouter Vanderkulk. "The use of triple-modular
redundancy to improve computer reliability." IBM Journal of Research
and Development 6.2 (1962): 200-209.‏

[16] Bartlett, Wendy, and Lisa Spainhower. "Commercial fault tolerance: A
tale of two systems." IEEE Transactions on Dependable Secure
Computing, 1(1):87–96, 2004.

[17] Pullum, Laura L. Software fault tolerance techniques and
implementation. Artech House, 2001.

[18] Ziade, Haissam, Rafic A. Ayoubi, and Raoul Velazco. "A survey on
fault injection techniques." Int. Arab J. Inf. Technol. 1.2 (2004): 171-
 ‏.186

[19] Chen, L. (1978). V-version programming: A fault-tolerance approach to
reliability of software operation. FTCS-8, 1978, 6.‏

[20] B. Randell, "System Structure for Software Fault Tolerance," IEEE
Trans, on Software Engineering, Vol. 1, No. 2, June 1975, pp.220-232

[21] Laprie, J. C., Arlat, J., Beounes, C., & Kanoun, K."Definition and
analysis of hardware-and software-fault-tolerant
architectures". Computer, 1990, 23.7: 39-51.‏

[22] Sabena, Davide, et al. "On the evaluation of soft-errors detection
techniques for GPGPUs." Design and Test Symposium (IDT), 2013 8th
International. IEEE, 2013.‏

[23] Sheaffer, Jeremy W., David P. Luebke, and Kevin Skadron. "A
hardware redundancy and recovery mechanism for reliable scientific
computation on graphics processors." Graphics Hardware. Vol. 2007.

[24] K.S. Yim, C. Pham, M. Saleheen, Z. Kalbarczyk, R. Iyer "Hauberk:
Lightweight silent data corruption error detector for gpgpu "
,Proceedings of the 2011 IEEE International Parallel & Distributed
Processing Symposium, IPDPS ’11, IEEE Computer
Society, Washington, DC, USA (2011), pp. 287-300.

[25] Lei Zhang, Yinhe Han, Qiang Xu, and Xiaowei Li. Defect tolerance in
homogeneous manycore processors using core-level redundancy with
unified topology. In DATE ’08: Proceedings of the conference on
Design, automation and test in Europe, pages 891–896. ACM, 2008.

[26] M.-L.Li, et al., “Understanding the Propagation of Hard Errors to
Software and Implications for Resilient System Design”, ASPLOS 2008.

[27] J.-C. Laprie, Dependability: Basic Concepts and Terminology, 1992.

[28] Pradhan, Dhiraj K. Fault-tolerant computer system design. Vol. 132.
Englewood Cliffs: Prentice-Hall, 1996.‏

[29] Dubrova, Elena. Fault-tolerant design. New York: Springer, 2013.‏

[30] DUGAN, J. Bechta; LYU, Michael R. System reliability analysis of an
N-version programming application. IEEE Transactions on Reliability,
 ‏.513-519 :43.4 ,1994

[31] B.Schroeder and Garth A Gibson. Understanding failures in petascale
computers. Journal of Physics: Conference Series, 78, 2007

[32] Navarro, Cristobal A., Nancy Hitschfeld-Kahler, and Luis Mateu. "A
survey on parallel computing and its applications in data-parallel
problems using GPU architectures." Communications in Computational
Physics 15.02 (2014): 285-329.

[33] D. B. Kirk and W. H. Wen-Mei. Programming massively parallel
processors: a hands-on approach, 3rd edition. Morgan Kaufmann, 2016.

[34] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. NVIDIA Tesla:
A unified graphics and computing architecture. IEEE micro, 28(2),
2008.

[35] D. Göddeke, R. Strzodka, J. Mohd-Yusof, P. McCormick, S. Buijssen,
M. Grajewski, S. Tureka, Exploring weak scalability for FEM
calculations on a GPU-enhanced cluster, Parallel Comput. 33 (Nov.
2007) 685–699.

[36] NVIDIA, “NVIDIA kepler K20 GPU datasheet,” 2012.

[37] J. M. Yusof et al, “Exploring weak scalability for FEM calculations on a
GPU-Enhanced cluster”, 33.685–699. Nov, 2007.

[38] Yang, Chao-Tung, Chih-Lin Huang, and Cheng-Fang Lin. "Hybrid
CUDA, OpenMP, and MPI parallel programming on multicore GPU
clusters." Computer Physics Communications 182.1 (2011): 266-269.

[39] C.T. Yang, C.L. Huang and C.F. Lin, “Hybrid CUDA, OpenMP, and
MPI parallel programming on multicore GPU”. Computer Physics
Communications. Pp. 266-269. 2011.

[40] M.-C. Hsueh, T. Tsai, and R. Iyer, “Fault injection techniques and
tools,” Computer, vol. 30, no. 4, pp. 75–82, 1997.

[41] Song, Ningfang, et al. "Fault injection methodology and tools."
Electronics and Optoelectronics (ICEOE), 2011 International
Conference on. Vol. 1. IEEE, 2011.‏

[42] Netti, Alessio, et al. "FINJ: A Fault Injection Tool for HPC Systems."
arXiv preprint arXiv:1807.10056 (2018).‏

[43] Fiala, David, et al. "Detection and correction of silent data corruption for
large-scale high-performance computing." Proceedings of the
International Conference on High Performance Computing, Networking,
Storage and Analysis. IEEE Computer Society Press, 2012.‏

[44] Pellegrini, Andrea, et al. "CrashTest: A fast high-fidelity FPGA-based
resiliency analysis framework." Computer Design, 2008. ICCD 2008.
IEEE International Conference on. IEEE, 2008.‏

[45] Hari, Siva Kumar Sastry, et al. "mSWAT: low-cost hardware fault
detection and diagnosis for multicore systems." Microarchitecture, 2009.
MICRO-42. 42nd Annual IEEE/ACM International Symposium on.
IEEE, 2009.‏

[46] Li, Man-Lap, et al. "Trace-based microarchitecture-level diagnosis of
permanent hardware faults." Dependable Systems and Networks With
FTCS and DCC, 2008. DSN 2008. IEEE International Conference on.
IEEE, 2008.‏

[47] Meixner, Albert, Michael E. Bauer, and Daniel Sorin. "Argus: Low-cost,
comprehensive error detection in simple cores." Microarchitecture,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 12, 2018

54 | P a g e

www.ijacsa.thesai.org

2007. MICRO 2007. 40th Annual IEEE/ACM International Symposium
on. IEEE, 2007.‏

[48] K.S. Yim, C. Pham, M. Saleheen, Z. Kalbarczyk, R. Iyer Hauberk:
Lightweight silent data corruption error detector for gpgpu Proceedings
of the 2011 IEEE International Parallel & Distributed Processing
Symposium, IPDPS ’11, IEEE Computer Society, Washington, DC,
USA (2011), pp. 287-300.

[49] M. Hiller, A. Jhumka, and N. Suri, “Propane: an environment for
examining the propagation of errors in software,” ACM SIGSOFT
Software Engineering Notes, vol. 27, no. 4, pp. 81–85, 2002.

[50] FUHRMAN, Christopher P.; CHUTANI, Sailesh; NUSSBAUMER,
Henri J. Hardware/software fault tolerance with multiple task modular
redundancy. In: Computers and Communications, 1995. Proceedings.,
IEEE Symposium on. IEEE, 1995. p. 171-177.‏

