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Abstract—In this paper, we show the effectiveness of a pipeline
implementation of Dynamic Programming (DP) on GPU. As an
example, we explain how to solve a matrix-chain multiplication
(MCM) problem by DP on GPU. This problem can be sequentially
solved in O(n3) steps by DP where n is the number of matrices,
because its solution table is of size n × n and each element of
the table can be computed in O(n) steps. A typical speedup
strategy for this is to parallelize the O(n) step computation of
each element, which can be easily achieved by parallel prefix
computation, i.e., an O(logn) step computation with n threads in
a tournament fashion. By such a standard parallelizing method,
we can solve the MCM problem in O(n2 logn) steps with n
threads. In our approach, we solve the MCM problem on GPU in
a pipeline fashion, i.e., we use GPU cores for supporting pipeline-
stages so that many elements of the solution table are partially
computed in parallel at one time. Our implementation determines
one output value per one computational step with n threads in a
pipeline fashion and constructs the solution table totally in O(n2)
steps with n threads.
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I. INTRODUCTION

In this paper, we show the effectiveness of a pipeline
implementation of Dynamic Programming (DP) on GPU. As
an example, we explain how to solve a matrix-chain multi-
plication (MCM) problem [1] by DP on GPU. This problem
can be sequentially solved in O(n3) steps by DP where n is
the number of matrices, because its solution table is of size
n×n and each element of the table can be computed in O(n)
steps. A typical speedup strategy for this is to parallelize the
O(n) step computation of each element, which can be easily
achieved by parallel prefix computation, i.e., an O(log n) step
computation with n threads in a tournament fashion. By such a
standard parallelizing method, we can solve the MCM problem
in O(n2 log n) steps with n threads.

It has been studied well to speed up DP programs using
GPU (e.g. [2], [3]), where they mainly focus on optimizing the
order of accessing data by proposing novel techniques avoiding
memory access conflicts. In this study, we consider adopting
a pipeline technique and implementing the DP program on
GPU in a pipeline fashion. The pipeline computation technique
[4] can be used in situations in which we perform several
operations {OP1, OP2, . . . , OPn} in a sequence, where some
steps of each OPi+1 can be carried out before operation OPi

is finished. In parallel algorithms, it is often possible to overlap
those steps and improve total execution time.

In our approach, we solve the MCM problem on GPU
in a pipeline fashion, i.e., we use GPU cores for supporting
pipeline-stages so that many elements of the solution table are
partially computed in parallel at one time. Our implementation
determines one output value per one computational step with n
threads in a pipeline fashion and constructs the solution table
totally in O(n2) steps with n threads. This paper is an extended
version of our conference paper [5].

The rest of this paper is organized as follows. Section II
introduces problem definitions and base algorithms. Section
III explains our pipeline implementations for DP on GPU
and offers some experimental results. Section IV explains how
to apply the pipeline implementation technique to the MCM
problem, and finally Section V offers concluding remarks.

II. PRELIMINARIES

In this section, we introduce some preliminary definitions
and base algorithms. We first define a simplified DP problem to
be solved on GPU, and then explain our GPU implementations
of programs.

A. Simplified DP Problem

In this study, we implement a typical DP program on GPU.
To simplify the exposition, we focus on programs that solve
such a simplified DP problem defined as follows:

Definition 1: (Simplified DP Problem) A one-dimensional
array ST[0, . . . , n− 1] of size n as a solution table, a set A =
{a1, a2, . . . , ak} of k integers representing offset numbers, and
a semi-group binary operator ⊗ over integers are given. Every
element of set A satisfies the following inequality:

a1 > a2 > · · · > ak > 0.

Then, a simplified DP problem (S-DP problem) is to fill
all the elements of array ST in such a way that each ST[i] is
computed by the following equation:

ST[i] = ⊗1≤j≤k ST[i− aj ] (1)

where

ST[0], ST[1],. . . ,ST[a1 − 1] are preset with initial values.
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For example, Fibonacci number problem is equal to the
S-DP problem where k = 2, a1 = 2, a2 = 1, ⊗ = +, and
ST[0]=ST[1]=1.

B. Conventional Approach to S-DP Problem

To begin with, we show a straightforward sequential
algorithm that solves the S-DP problem. Fig. 1 shows the
algorithm.

A Sequential Algorithm for S-DP Problem

for i = a1 to n− 1 do
ST[i] = ST[i−a1];
for j = 2 to k do
ST[i] = ST[i] ⊗ ST[i−aj];

Fig. 1. A sequential algorithm for S-DP problem

The outer loop computes values from ST[a1] to ST[n− 1]
in order, and the inner loop computes ST[i] for each i by
equation (1). Since the outer loop takes n − a1 + 1 = O(n)
steps and the inner loop requires O(k−1) steps, this algorithm
takes O(nk) steps in total.

Next, we consider parallelizing the algorithm for S-DP
problem. The straightforward approach is to parallelize the
inner loop by using GPU cores. We can easily write a multi-
thread program that executes the inner loop-body, ST[i] =
ST[i] ⊗ ST[i−aj], for each j in parallel using k−1 threads at
one time. Such an implementation, however, does not improve
the time cost, because every thread has access to the same
ST[i] and thus memory access conflicts occur. As a result,
those memory conflicts should be automatically solved at run-
time by the serializing mechanism of GPU, and consequently
the whole time cost stays in O(nk) steps, which is the same
time cost as that of the sequential implementation.

To avoid the memory access conflicts, we can use a well-
known standard parallel prefix computation algorithm [6], [7],
in which the computations of ⊗ over k values are executed
in a tournament fashion. Since the parallel prefix computation
runs in O(log k) steps for k values, obviously the entire time
cost can be improved to O(n log k) steps by using k threads.

Although we can successfully reduce the time cost from
O(nk) to O(n log k) by using the parallel prefix computation,
it is not work-time optimal because there are many idle threads
during the computations in a tournament fashion. In the next
section we propose other parallel implementation strategy and
show that we can improve the time cost further.

III. PIPELINE IMPLEMENTATION ON GPU

In this section, we explain our proposed parallel imple-
mentations for S-DP problem on GPU. Our program runs in a
pipeline fashion.

A. Pipeline Implementation for S-DP Problem

In our implementation, we use a group of k threads to
establish k-stage pipeline, and this thread group treats k con-
secutive elements at one time in parallel. Fig. 2 describes our
pipeline algorithm for the S-DP problem. The index variable
i of the outer loop stands for the head position of the k-
thread group. The inner loop controls each thread’s behaviour
in such a way that the j-th thread executes computation for
ST[i-j+1] using the value stored in ST[i-j+1-aj].

A Pipeline Algorithm for S-DP Problem

for i = a1 to n+ k − 2 do
for j = 1 to k do in parallel

Thread j executes the following operation if
a1 ≤ ij < n where ij = i− j+ 1:

ST[ij] =

{
ST[ij − aj]; (j = 1)

ST[ij] ⊗ ST[ij − aj]; (j > 1)

Fig. 2. A pipeline algorithm for S-DP problem

An execution example is shown in Fig. 3, where k = 3,
a1 = 5, a2 = 3, and a3 = 1 hold and the initial values are
already stored in ST[0], ST[1],. . . , ST[4]. In Step 1, the head
position i of the thread group is 5. In this step the only one
thread is activated and executes ST[5] ← ST[0]. In Step 2,
the head position is incremented to 6, and two threads are
activated. The first thread treats ST[6] and the second thread
works on ST[5]. In Step 3, the head position becomes 7, and
now all k = 3 threads actively execute operations for ST[7],
ST[6], and ST[5] respectively. It should be noted that finally
in Step 3 the content of ST[5] is completely determined while
those of ST[7] and ST[6] are partially computed and not yet
determined. From Step 3, all the k = 3 threads are active until
Step n−a1 when the head position i of thread group reaches
n−1, and after that step the number of active threads decreases
one by each step. As you can see there is no memory access
conflict in this example.

As for the time-complexity of our pipeline implementation,
from a theoretical viewpoint, it takes only O(n) steps, because
the outer loop takes n + k − a1 − 1 = O(n) cycles and the
inner loop requires O(1) time if there is no adjacent offset pair
(am, am+1) such that am = am+1 + 1.

However, from a practical viewpoint, because of the mem-
ory access conflicts, the inner loop may take more time steps.
Actually, in the worst case when consecutive offset numbers
are given, those ST[ij − aj], in the right hand side of the
assignment statement, coincidentally become the same element
of array ST and hence the worst memory access conflicts
occur. In such a case, all threads in the inner loop are serialized
and it takes time proportional to k. See Fig. 4 for such a worst
case example. In this example, all four threads try to have
access to ST[i− 4] at the same time in the inner loop.

Let seq = (ap, ap+1, . . . , aq) be one of the longest sub-
sequences of given offset numbers (a1, a2, . . . , ak) satisfying
ar = ar+1+1 for all p ≤ r < q. Then, it is easy to check that
in the inner loop every thread r (p ≤ r < q) has access to the
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Fig. 3. An execution example for the case where k = 3, a1 = 5, a2 = 3, and a3 = 1 hold and initial values are preset to ST[0], ST[1], . . ., and ST[4].

same element of array ST, and as a result those conflicts are
serialized at run time by GPU’s serializing mechanism and
hence the memory access time becomes (q − p + 1) times
slower than that of conflict-free case. For such a case, in
[5], we proposed a 2-by-2 pipeline implementation technique
where each thread invoked in the inner loop executes two
computations for each element of array ST. The details can
be found in [5].

Fig. 4. An example for the worst case where the offset numbers are
consecutively given. In this example, we have k = 4, a1 = 4, a2 = 3,
a3 = 2, and a4 = 1.

B. Experimental Results

Before going to the next section, we show the performance
of our pipeline implementation on GPU. We use a computer
with 3.40 [GHz] Intel Xeon CPU E3-1245 v3 and an NVIDIA
GeForce GTX TITAN Black. The OS is Ubuntu 17.10 and we
use g++ 7.2.0 for compiling cpp programs and CUDA 9.2 [8].
The experimental results are shown in TABLE I.

TABLE I shows the average execution time for each
implementation on GPU. In the table, SEQUENTIAL, NAIVE-
PARALLEL, and PIPELINE respectively stand for the sequen-
tial implementation, the naive multi-thread implementation,
and our pipeline implementation (for a general case). Here,
we use min operation for ⊗. The average is computed among
100 executions for each setting.

TABLE I. EXECUTION TIME OF SEQUENTIAL, NAIVE PARALLEL, AND
PIPELINE IMPLEMENTATIONS (MSEC)

SEQUENTIAL NAIVE-PARALLEL PIPELINE

214 ≤ n ≤ 215,
212 ≤ k ≤ 213 274 64 78
216 ≤ n ≤ 217,
214 ≤ k ≤ 215 4,288 368 386
218 ≤ n ≤ 219,
216 ≤ k ≤ 217 68,453 3,018 2,408

As for the comparison between the sequential implementa-
tion and the parallel ones, parallel implementations are much
faster even though it is NAIVE-PARALLEL. Although there
is no difference in time between NAIVE-PARALLEL and
PIPELINE until n ≤ 217, PIPELINE is faster than NAIVE-
PARALLEL when n ≥ 218.

IV. SOLVING MCM PROBLEM

In this section, we explain how to apply our pipeline
implementation technique to more general DP problems. As an
example, we deal with the matrix chain multiplication problem
(MCM problem) [1].

A. Outline of Pipeline Implementation for MCM Problem

It is well-known that the MCM problem can be efficiently
solved by DP with a two-dimensional solution table of tri-
angular shape, and that each element is computed along the
diagonal direction. See Fig. 5 for an example. In the figure,
each number represents the order of elements to be computed.
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Fig. 5. A solution table example for a matrix chain multiplication problem.

The content of each element is computed by a binary
operator ↓ returning a smaller operand and a binary function
f(∗, ∗) as in Fig. 6. The detailed definition of the MCM
problem can be found in [1]. In the figure, the element marked
13 is computed by the elements marked by 1, 6, 10, 11, 8,
and 4. If we write ST[x] for the element marked x here, the
computation is expressed as

ST[13]

= f(ST[1],ST[11]) ↓ f(ST[6],ST[8]) ↓ f(ST[10],ST[4]).

Fig. 6. An example of computing an element of solution table. Here, we
write ST[x] for the element marked x.

Since the elements of two-dimensional solution table are
computed in a total order (linear order), we can line up them
into a linear array according to that order. Once the solution
table is transformed into a linear array, we can apply the
pipeline technique to the MCM problem as well. An execution
example is shown in Fig. 7.

B. Detailed Pipeline Implementation for MCM Problem

Here, we explain how to solve the MCM problem by
pipeline implementation in details.

Firstly, we assume that the original two-dimensional so-
lution table of diagonal shape is already mapped to a one
dimensional solution table ST appropriately. That is, we line
up all the elements of the two-dimensional table into a linear
array ST according to the total (linear) order in which each
element is computed along the diagonal direction as in Fig. 5
and 7. Since the number of input matrices is n, the number of
elements in the solution table is n(n+ 1)/2. First n elements
of array ST are preset with initial values, those correspond
to the elements located in the diagonal line of the original
two-dimensional table.

Let each computation for ST[i] be represented as

ST[i] = ↓ 1≤j≤ki
f(l(i,j), r(i,j)). (2)

It should be noted that here each ki may differ from others and
that it is n−1 at largest. See Fig. 5 and 7 for an example. Here,
we have n = 5, and ST[13] and ST[12] can be represented as
follows:

ST[13]

= f(l(13,1), r(13,1)) ↓ f(l(13,2), r(13,2)) ↓ f(l(13,3), r(13,3))

= f(ST[1],ST[11]) ↓ f(ST[6],ST[8]) ↓ f(ST[10],ST[4])

and

ST[12]

= f(l(12,1), r(12,1)) ↓ f(l(12,2), r(12,2))

= f(ST[3],ST[9]) ↓ f(ST[8],ST[5]).

To solve such defined MCM problem by the pipeline
implementation on GPU, we have to modify the pipeline
algorithm designed for the S-DP problem, because the offset
numbers for each ST[i] may differ from others. Thus, for
the MCM problem, we propose a modified pipeline algorithm
in Fig. 8. In the MCM-pipeline algorithm, each element of
ST is computed by equation (2), and ST[1], ST[2],. . . ,ST[n]
are preset with initial values. In substep 1, 2, and 3, the
computation of f(l(i,j), r(i,j)) is executed, and in substep 4,
that obtained value is used for the computation by ↓ and the
result is stored to ST[i].

C. Conflict-Free Memory Access of MCM Algorithm

In this subsection, we prove that no memory access conflict
occurs during the execution of the MCM-pipeline algorithm
described in Fig. 8.

To begin with, we prove the following lemma.

Lemma 1: In substep 1 of an execution of the inner loop-
body of the MCM algorithm, each thread has access to a
distinct element of the array ST.

Proof: Assume that threads p and q try to read the same ele-
ment of ST in substep 1 and that p < q holds. Let (rowp, colp)
(resp. (rowq, colq)) be the pair of row and column indexes of
the elements in the original two-dimensional solution table of
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Fig. 7. An execution example of pipeline implementation for the matrix chain multiplication problem.

A Pipeline Algorithm for MCM Problem

for i = n+ 1 to n(n+ 1)/2 + n− 2 do
for j = 1 to (n− 1) do in parallel

Thread j executes the following operation if
ij ≤ kij where ij = i− j+ 1:

(substep 1)

vl = l(ij,j);

(substep 2)

vr = r(ij,j);

(substep 3)

vS = f(vl, vr);

(substep 4)

ST[ij] =

{
vS; (j = 1)

ST[ij] ↓ vS; (j > 1)

where vl, vr, and vS are local variables in a
thread.

Fig. 8. A pipeline algorithm for MCM problem

triangle shape of the MCM problem for which thread p (resp.
q) is now computing. Since threads p and q try to read the
same element of ST and in substep 1 they read the value for
the left argument of the function f , the relation rowp = rowq

must hold. Then, since threads p and q respectively read the
p-th and q-th elements from the left in the same row of the
original two-dimensional solution table, the relation p = q
must hold if the two threads read the same element of ST,
which contradicts the assumption p < q.

Next, we prove the following lemma, which can be proved
in a similar way to the proof of Lemma 1.

Lemma 2: In substep 2 of an execution of the inner loop-
body of the MCM algorithm, each thread has access to a
distinct element of the array ST.

Proof: Assume that threads p and q try to read the same ele-
ment of ST in substep 2 and that p < q holds. Let (rowp, colp)
(resp. (rowq, colq)) be the pair of row and column indexes of
the elements in the original two-dimensional solution table of
triangle shape of the MCM problem for which thread p (resp.
q) is now computing. Since threads p and q try to read the same
element of ST and in substep 2 they read the value for the right
argument of the function f , the relation colp = colq must hold.
On the other hand, thread p reads the p-th elements below of
the row rowp of the original two-dimensional solution table,
and thread q does the q-th elements below of the row rowq

of the table. Since threads p and q read row (rowp + p) and
row (rowq+q) respectively, the relation rowp+p = rowq+q
must hold if the two threads read the same element of ST.
Since p < q and colp = colq hold, the relation rowp < rowq

must hold from the way of mapping from the original two-
dimensional solution table to the linear array ST. This leads
to the relation rowp + p 6= rowq + q, which contradicts the
assumption that threads p and q read the same element of array
ST.

In substep 3, each thread simply executes computation
using local variables. In substep 4, it is obvious that each thread
has access to a distinct element of ST. Therefore, by Lemma
1 and Lemma 2, we obtain the following theorem.

Theorem 1: No memory access conflict occurs during the
execution of the MCM-pipeline algorithm described in Fig.
8.

As for the time-complexity of the MCM-pipeline imple-
mentation, from a theoretical viewpoint, it takes only O(n2)
steps with (n−1) threads, because the outer loop takes O(n2)
cycles and the inner loop requires O(1) time (Theorem 1).
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V. CONCLUDING REMARKS

In this study, we examined the effectiveness of pipeline
implementations of Dynamic Programming (DP) on GPU.
As an example, we explained how to solve a matrix-chain
multiplication (MCM) problem by DP on GPU. This problem
can be sequentially solved in O(n3) steps by DP where n is
the number of matrices. In our approach, we solve the MCM
problem on GPU in a pipeline fashion, i.e., we use GPU cores
for supporting pipeline-stages so that many elements of the
solution table are partially computed in parallel at one time.
Since our implementation determines one output value per one
computational step with O(n) threads, we can solve the MCM
problem in O(n2) steps using O(n) threads, which is an ideal
speedup from the O(n3)-step sequential DP algorithm.

For future work, we plan to evaluate the performance of
our pipeline implementations. From the experimental results
shown in Section III, it is obvious that the ideal speed up
is not attained here. This is mainly due to the limitations on
the bandwidth of memory on GPU. That is, as the problem
size becomes large, all threads cannot always have access to
the target memory at one time, because unavoidable access
conflicts occur. We also plan to study the relation between
the memory bandwidth and the performance of our pipeline
implementation on some theoretical GPU models (e.g., [9]).
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