
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 12, 2018

The SMH Algorithm : An Heuristic for Structural
Matrix Computation in the Partial Least Square Path

Modeling

Odilon Yapo M. Achiepo1
Agropastoral Management School

UPGC University of Korhogo
BP 1328 Korhogo, Cote d’Ivoire

Edoete Patrice Mensah2
Dpt. of Maths. and Computer Science

INPHB Institut of Yamoussoukro
BP 1093 Yamoussoukro, Cote d’Ivoire

Edi Kouassi Hilaire3
Lab. of Maths. and Computer Science

UNA University of Abidjan
02 BP 801 Abidjan 02, Cote d’Ivoire

Abstract—The Structural equations modeling with latent’s
variables (SEMLV) are a class of statistical methods for modeling
the relationships between unobservable concepts called latent
variables. In this type of model, each latent variable is described
by a number of observable variables called manifest variables.
The most used version of this category of statistical methods is
the partial least square path modeling (PLS Path Modeling). In
PLS Path Modeling, the specification of the relashonships between
the unobservable concepts, knows as structural relationships, is
the most important thing to know for practical purposes. In
general, this specification is obtained manually using a lower
triangular binary matrix. To obtain this lower triangular matrix,
the modeler must put the latent variables in a very precise order,
otherwise the matrix obtained will not be triangular inferior.
Indeed, the construction of such a matrix only reflects the links
of cause and effect between the latent variables. Thus, with each
ordering of the latent variables corresponds a precise matrix.The
real problem is that, the more the number of studied concepts
increases, the more the search for a good order in which it is
necessary to put the latent variables to obtain a lower triangular
matrix becomes more and more tedious. For five concepts, the
modeler must test 5! = 120 possibilities. However, in practice, it
is easy to study more than ten variables, so that the manual
search for an adequate order to obtain a lower triangular
matrix extremely difficult work for the modeler. In this article,
we propose an heuristic way to make possible an automatic
computation of the structural matrix in order to avoid the usual
manual specifications and related subsequent errors.
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I. INTRODUCTION: PLS PATH MODELING IN R

The PLS Path Modeling in a structural equation modelling
with latent variables (SEMLV), is a method in which the
partial least square (PLS) algorithm is used to estimate the
model ([1], [2], [3]). Generally, the structural equation models
(SEM) are describe graphically by specifying the latent
variables (inobservable). For each latent variable, the manifest
variables (observable) that are related to it are also specified.
Latent variables represent concepts such as loyalty, quality,
poverty, abilities, etc. The manifest variables are indicators
that describe these latent variables and they are collected
in a dataset. An example of such model, called European
Customer Satisfaction Index (ECSI) Model, that can be found
in [4], is giving in the Figure 1 below:

Fig. 1. The European Customer Satisfaction Index Model.

The Figure 1 shows an example of the structural relation-
ship between latent variables. It is known as the European
Customer Satisfaction Index model (ECSI model) and is often
used in marketing studies. This article focuses on the speci-
fication of this kind of relations in practice. When we use a
computer to estimate the model, the graph is often specified
as binary low triangular matrix. The operation may be time-
consuming because one has to find the best order of the latent
variables in a table in order to get the lower triangular matrix.
The goal of this paper is to give a method which automatically
get the right order and automatically compute the structural
relationship matrix.

II. CONCEPTUALIZATION : MAIN IDEA BEHIND THE SMH
ALGORITHM

A square (lower triangular) boolean matrix representing the
inner model (i.e. the path relationships between latent vari-
ables) is a matrix of zeros and ones that indicates the structural
relationshipsbetween latent variables. This path matrix must be
a lower triangular matrix that has a 1 when column j affects
row i, and a 0 otherwise.

The latent variables can be classified in three categories
according to their roles in the structural equations in which
they appear. The SMH is based on the following classification:

• The exogenous variables : It’s the latent variables
which have no other latent variables related to them.

• The endogenous variables : It’s the latent variables
which are not related to any other latent variables.
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• The neutral variables : It’s the latent variables that
are related to others in both directions.

The main idea of this heuristic is to classify all the
latent variables within these differents groups (Exogenous,
Endogenous, Neutral) and find a way to order them to obtain
a lower triangular matrix. To find the rigth order of the
latents variables, we can remark than the exogenous latents
variables must be ordered first (left side), then the neutral
latents variables must follow them (middle), and finally, the
endogenous latent variables must be the last ones to use (right
side). This groups order is found by analyzing some simple
cases.

For a formal purpose, let consider the following mathmat-
ical notations :

• N the numbers of latent variables

• ξj the jth latent variable

• Θj the endogenous statut of the latent variable ξj

• Γj the exogenous statut of the latent variable ξj

• Ej the number of latents variables that the variable ξj
is related to

• Fj the number of latents variables that are related to
ξj

• Kj the numbers of exogenous, latent variables that are
related to the variable ξj

• µj the order score of the latent variable ξj

The variables Θj and Γj can be express using the kroneker
notation :

Θj =

{
1 if ξj is endogenous
0 if ξj is not endogenus

(1)

Γj =

{
1 if ξj is exogenous
0 if ξj is not exogenous

(2)

This conceptualisation, will be use to find an ordered metric
for each variable. The variables will be orderd according to the
value of this metric. Hight the metric’s value of a variable is,
hight will be it rank.

III. COMPUTING : THE ORDER METRIC OF THE SMH
ALGORITHM

The heuristic method is based on three general empirical
principles where it foundation can be seen.

A. About the Exogenous Variables

The exogenous latent variables are the only ones with
Γj = 1 and they must have the lowest values µj to be in
the first position in the structural matrix. Different exogenous
latent variables are distinguished according to the number
of latent variables Fj they are related to. The higher Fj is,
the lower the score µj has to be. Some variables that an

exogenous latent variable is related to can be endogenous.
Therefore, exogenous variables are to be characterized by the
number of endogenous variables they belongs to (Kj) they
are related to. The higher Kj is, the higher the score µj has
to be. To take into account these realities, the order score of
the endogenous latent variables is taken to be −104Fj +Kj .
In this case, the minimum score is obtained when all latent
variables are exogenous except for one which is exogeneous
(Fj = N − 1,Kj = 1) and the maximum score is ob-
tained when all the latent variables are endogenous except
for one which is endogenous (Fj = 1,Kj = N − 1). The
scores of the exogenous latent variables are in the interval
[−104(N − 1) + 1,−104 +N − 1] .

B. About the Endogenous Variables

The endogenous latent variables are the only ones with
Θj = 1 and they must have the highest values of µj to be in the
last position in structural matrix. Different endogenous latent
variables are distinguished according to the number of latent
variables (Ej) related to them. The higher Ej is, the higher the
score µj must be. To take into account this reality, the order
score of the endogenous latent variables is taken to be 104Ej .
In this case, the maximum score is obtained when all latent
variables are endogenous except for one (Ej = N − 1) which
is exogenous and the minimum score is obtained when all the
latent variables are exogenous except for one (Ej = 1) which
is endogenous. The scores of the exogenous latent variables
are in the interval [104,−104(N − 1)].

C. About the Neutral Latent Variables

The neutral latent variables are the ones with the Θj+Γj =
0 . They must have the values of µj which are higher than
the highest exogenous variable value and less than the lowest
endogenous variable value in order to be between exogenous
and endogenous latent variables in the structural matrix. Dif-
ferent neutral latent variables are distinguished according to
the number of latent variables(Fj) they are related to. The
higher Fj is, the lower the score µj must be. Some variables
that a neutral latent variable are related to can be endogenous.
Therefore, exogenous variables are to be characterized by the
number of neutral variables(Kj) they are related to. The higher
Kj is, the higher the score µj have to be. Neutral variables
are also distinguished according to the number of latent
variables(Ej) they are related to. The higher Ej is, the higher
the score µj have to be. To take into account all these realities,
the order score of the endogenous latent variables is taken to
be 103/2Ej − 10Fj +Kj . In this case, the maximum score is
obtained when all latent variables are endogenous except for
one (Ej = N − 1, Fj = 1,Kj = 1) which is exogenous and
the minimum score is obtained when all latent variables are ex-
ogenous except for (Ej = 1, Fj = N −1,Kj = N −1) which
is endogenous. The scores of the exogenous latent variables
are in the interval [103/2(N − 1)− 9, 103/2 − 9(N − 1)].

D. Order Score Computation

To compute the structural matrix, the latent variables must
be ordered properly. The correct order give a lower triangular
matrix. As it has been said before the main objective of the
heuristic is to find the best set of ordered variables to compute
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the correct structural matrix. This order is based on the score
that can be defined by

µj =


104Ej if ξj is endogenous
103/2Ej − 10Fj +Kj if ξj is neutral
−104Fj +Kj if ξj is exogenous

(3)

Mathematically, these descriptions can be summarize in the
single function defined as :

µj = 104EjΘj + (103/2Ej − 10Fj +Kj)

∗(1−Θj − Γj)− (104Fj −Kj)Γj (4)

The latent variables are then ordered based on their µ
scores. For two latent variables ξi and ξj , the position of
ξi in the structural matrix is before ξj if µi 6 µj .

The problem solved by our method is a similar problem
to that of the well-known traveling salesman problem in
operations research ([5], [6]). However, the metaheuristics
used in operational research, such as tabu search, simulated
annealing, genetic algorithms, etc. have the disadvantage of
requiring significant resources in terms of calculation. In addi-
tion, the implementation of these algorithms is very complex
and require a good mastery of their operating principles.
Compared to these methods, the approach developed in this
article is very easy to use. The method is limited to a simple
classification of latent variables and manifests variables, to
their enumeration and to the application of a simple arithmetic
formula to obtain scores for ordering latent variables. The
computation time is more than one hundred lower than that
of conventional optimization metaheuristics. Our approach is
therefore an optimization metaheuristic that applies to a very
particular problem, namely, the search for a structural matrix
in the PLS Path Modeling.This heuristic is the core method
of used in the R package plspm.formula ([7]) we have already
developed and which is available for free download on the
mirror sites of the R software. The following Figure 2 shows
the performance of the heuristic when the number of latent
variables is growing :

Fig. 2. The exogeneous minimum and maximum

According to the figure, the heuristic is able to give correct
response with more than 100 latent variables.Based on this
result, we can state that the heuristic method is very robust
since the reasonable numbers of latent variables one can use
in practice is generally less than twenty.

IV. PROGRAMMING : THE SMH ALGORITHM CODE IN R

A. The plspm.shm R Function

This section present the implementation of the SMH al-
gorithm in R language [8]. The fonction is based on the R
Package plsmp ([9]) basis of this scientific computing language
can be found in . The SMH algorithm in R is as follows:

require(plspm)
plspm.shm <- function(latents,latlist,

mat=TRUE,iplot=TRUE)
{

N <- length(latents)
vldroite <- unique(unlist(latlist[[2]]))
vlgauche <- latlist[[1]]
calc.nfois.exo <- function(vlat) {

nbfois.exo <- function(vtot) {
return(sum(vlat %in% vtot))

}
return(sum(sapply(latlist[[2]],

nbfois.exo)))
}
calc.nfois.exo <- Vectorize(calc.nfois.exo)
vlexo <- latents[1-as.numeric(

latents %in% vldroite)]
calc.equ.exo <- function(vlat){

indx <- which(latlist[[1]] == vlat)
if(length(indx) < 1){res <- 0}
else {

res <- sum(as.numeric(
vlexo %in% latlist[[2]][[indx]]))

}
return(res)

}
calc.equ.exo <- Vectorize(calc.equ.exo)
ntotF <- sapply(latlist[[2]], length)
calc.nbequ <- function(vlat){

indx <- which(latlist[[1]] == vlat)
if (length(indx) < 1) {res <- 0}
else {res <- ntotF[indx]}
return(res)

}
calc.nbequ <- Vectorize(calc.nbequ)
Thetaj <- 1-as.numeric(latents %in% vldroite)
Ej <- as.vector(calc.nbequ(latents))
Gammaj <- 1-as.numeric(latents %in% vlgauche)
Fj <- as.vector(calc.nfois.exo(latents))
Kj <- as.vector(calc.equ.exo(latents))
muj <- 10ˆ4*Ej*Thetaj+(10ˆ(3/2))*Ej-10*Fj+Kj)

*(1-Thetaj-Gammaj)-(10ˆ4*Fj-Kj)*Gammaj
olatents <- latents[order(muj)]
reslist <- list(mu = muj, ordre = olatents)
if(mat){
matlist <- function(vect){

return(as.numeric(olatents %in% vect))
}
Mlist <- lapply(latlist[[2]], matlist)
mat.vect <- function(j){

indj <- which(
latlist[[1]] == olatents[j])

if (length(indj) < 1){
return(rep(0, N))

}
else {return(unlist(Mlist[indj]))}

}
mat.vect <- Vectorize(mat.vect)
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Mat <- t(mat.vect(1:N))
rownames(Mat) <- olatents
reslist <- c(reslist, list(matrice = Mat))

}
if (iplot) {innerplot(Mat)}
return(reslist)

}

B. The Parameters and Results of the plspm.shm Function

The algorithm take essentially two inputs:

latent : a character vector containing the latent variable
names

latlist : a list to specify which latents variables explain
another

The parameter latlist is a R list structure and must contain
two R objects:

1) a vector of the endogenous latent variables.
2) a list of vector objects for each endogenous vari-

able. For an endogenous variable, the vector contains
exogenous latent variables which are related to it.
The order of vector objects in the internal list must
correspond to the one of the endogenous variable.

The main output of the plspm.shm function is an ordered
vector of all the latent variables. This order is the one one can
use to have a structural matrix in the form of lower trianguler
binary matrix needed to estimate PLS Path Model, for example
the plspm() function in the plspm R package (plspm). But,
the functions have the logical parameter mat that permits to
compute the corresponding inner matrix (mat=TRUE) or not
(mat=FALSE). This prevents from using a manual ordered la-
tent variables vector to find the matrix. By default, the function
compute that matrix. The function also have an other logical
parameter name igraph that specifies if the relationship graph
must be compute (igraph=TRUE) or not (igraph=FALSE).

V. ILLUSTRATION: TEST OF THE SMH ALGORITHM IN R

A. Applications on a Relative Simple Problem

To show the simple usage of SMH algorithm, we generate
four (4) latent variables ”A1”, ”A2”, ”A3” and ”A4”. Weas-
sume that the relations between these latent variables can be
described by two rules :

• First: ”A1” and ”A4” have an impact on ”A2”

• Secondly: ”A3” have an impact on ”A1” and ”A2”.

The implementation in R is giving by the code below :

R> lvect <- paste("A",1:4,sep="")

R> lvlist <- list(
paste("A",1:3,sep=""),
list("A3", c("A1","A3","A4"),"A4")
)

R> res <- plspm.shm(lvect,lvlist,
mat=TRUE,iplot=TRUE)

The different results obtained in R concerning the latent
variables vector, the latent variables list and the structural
matrix are :

R> print(lvect)
[1] "A1" "A2" "A3" "A4"

R > print(lvlist)
[[1]]
[1] "A1" "A2" "A3"
[[2]]
[[2]][[1]]
[1] "A3"
[[2]][[2]]
[1] "A1" "A3" "A4"
[[2]][[3]]
[1] "A4"

R> print(round(res,2))
$mu
[1] 21.63 30000.00 11.62 -20000.00
$ordre
[1] "A4" "A3" "A1" "A2"
$matrice

[,1] [,2] [,3] [,4]
A4 0 0 0 0
A3 1 0 0 0
A1 0 1 0 0
A2 1 1 1 0

We can then see that the algorithm is capable of finding
the correct order of the latent variables and capable of giving
the correct structural matrix (triangular inferior). The graph
Figure 3 given by the algorithm is :

Fig. 3. The inner graph of the simple example

This graph is the graphical version of the structural matrix
and it use makes easier the understanding of the structural
relationships. Notice that in this example, we have four latent
variables. The next example will use six latent variables and is
concerned with a real example of the ECSI model as presented
in the plspm package on the satisfaction dataset.

B. Application on a More Complex Problem

In this second example, the latent variables are denoted :
image (”IMAG”), expectations (”EXPE”), quality (”QUAL”),
value (”VAL”), satisfaction (”SAT”) and loyalty (”LOY”). The
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relations between the latent variables are more complex and
can be described by the following five rules :

• Image have an influence on expectations, satisfaction
and loyalty

• Expectation have an influence on quality, value and
satisfaction

• Quality have an influence on value and satisfaction

• Value have influence on satisfaction

• Satisfaction have influence on loyalty.

The implementation of these different rules and the
application of the RSH algorithm in R are given by the
following code :

R> satvect <- c("IMAG", "EXPE", "QUAL",
"VAL", "SAT", "LOY")

R> satlist <- list(
c("EXPE","QUAL", "VAL","SAT", "LOY"),
list(
c("IMAG"),
c("EXPE"),
c("EXPE","QUAL"),
c("IMAG", "EXPE", "QUAL", "VAL"),
c("IMAG", "SAT"))

)

R> satres <- plspm.shm(satvect,satlist,
mat=TRUE,iplot=TRUE)

The different results obtained in R and concerning the
latent variables vector, the latent variables list and the structural
matrix are :

R> print(satvect)
[1] "IMAG" "EXPE" "QUAL" "VAL" "SAT" "LOY"

R> print(satlist)
[[1]]
[1] "EXPE" "QUAL" "VAL" "SAT" "LOY"
[[2]]
[[2]][[1]]
[1] "IMAG"
[[2]][[2]]
[1] "EXPE"
[[2]][[3]]
[1] "EXPE" "QUAL"
[[2]][[4]]
[1] "IMAG" "EXPE" "QUAL" "VAL"
[[2]][[5]]
[1] "IMAG" "SAT"

R> print(satres)
$mu
[1] -30000.0 2.6 11.6 53.2 117.5 20000.0
$ordre
[1] "IMAG" "EXPE" "QUAL" "VAL" "SAT" "LOY"
$matrice

[,1] [,2] [,3] [,4] [,5] [,6]
IMAG 0 0 0 0 0 0
EXPE 1 0 0 0 0 0
QUAL 0 1 0 0 0 0
VAL 0 1 1 0 0 0
SAT 1 1 1 1 0 0
LOY 1 0 0 0 1 0

We can again see that the algorithm is capable of finding
the correct order of the latent variables and capable of giving
the correct structural matrix (triangular inferior). The graph
Figure 4 given by the algorithm is :

Fig. 4. The inner graph of the complex example

This graph is the graphical version of the structural matrix.
It confirms the fact that the heuristic is able to handle problems
with large variables.

VI. CONCLUSION

In the field of PLS Path modeling, the task of specifying
structural matrices has always been tedious because of its
purely manual nature. The method proposed in this article
freed the modeler of this constraint by providing a means
of automatic search of the correct order in which the latent
variables must be placed in order to obtain a lower triangular
matrix. The algorithm even calculates this matrix directly,
which saves time and avoids errors related to the manual
specification of such matrices. The heuristic described in this
paper makes easier the process of finding automatically the
PLS Path Modeling specifications. The simulations carried out
show that, theoretically, this heuristic can easily be used for
models involving more than one hundred latent variables. This
possibility increases the scope of the PLS Path Modeling that
was, until now, used on a limited number of latent variables
because of the difficulties related to the manual specification
of the structural relationships. However, one must take care
of the fact that the structural relation rules are not circular
because the matrix, in this case, is not triangular and that the
problem can be misspecified in practice. The SMH heuristic
also avoids the need of exploring all of the possible ordered
latent variables configurations. It is an elegant solution to this
combinatory problem. The use of this heuristic avoids the test
of all arrangements of latent variables in order to find the best
which gives the correct structural matrix. Future work will
focus on the generalization of the principle of our method
on the traveling salesman problem. Such a generalization will
allow the algorithm to apply a much larger set of problems.
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In this case, the study of the algorithmic complexity of the
method and its comparison with the existing heuristics will
make it possible to better understand its advantages over the
optimization metaheuristics known to deal with the traveling
salesman problem.
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