
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

148 | P a g e

www.ijacsa.thesai.org

LeafPopDown: Leaf Popular Down Caching Strategy

for Information-Centric Networking

*
1
Hizbullah Khattak,

2
Noor Ul Amin,

3
Ikram ud Din,

4
Insafullah,

5
Jawaid Iqbal

Department of Information Technology
1,2,5

Hazara University Mansehra,
3
University of Haripur,

4
Abbotabad University of Sciences & Technology

K-P, Pakistan

Abstract—Information-Centric Networking is a name based

internet architecture and is considered as an alternate of IP base

internet architecture. The in-network caching feature used in

ICN has attracted research interests as it reduces network traffic,

server overload and minimizes latency experienced by end users.

Researchers have proposed different caching policies for ICN

aiming to optimize performance metrics, such as cache hits,

diversity and eviction operations. In this paper, we propose a

novel caching strategy of LeafPopDown for ICN that

significantly reduces eviction operation and enhances cache hits

and diversity in ICN.

Keywords—Component; information-centric networking;

caching; popularity; least recently used

I. INTRODUCTION

The data traffic and number of users of internet are
growing rapidly during the last few years. Global IP video
traffic will reach to 82% of all internet users’ traffic by
2021 [1].

The ICN is an alternate network paradigm of traditional
host based network communication model of internet [2]. The
information in ICN is retrieved by name instead of its host
locality identifier to provide data to the users with minimum
delay. In order to achieve this aim, in-network caching is used
in ICN to store the contents for easily access by the end users.
The other features of multicast, routing by name and
encryption support are included in ICN. The researchers have
presented some ICN architectures such as Content Centric
Networks [3], NetInf [4] and PURSUIT [5]. However, CCN
have received more attention in the research community. Most
of the research community focuses on designing efficient
caching strategy for ICN as caching is the main characteristic
of ICN.

The in-network caches are used in CCN storing several
replicas of information in the network. The requests made in
the future for these data can be served from these storages
reducing access delay to the users and load on server and
helps in minimizing the congestion in network. Researchers
have proposed novel caching strategies for improving
performance of CCN. Recent research work in ICN have
identified that content popularity is an important factor in
improving performance of ICN [6]. However, the existing
policies fail to cache the content effectively so that these
caches could be efficiently utilized in order to increase cache

hit, diversity and reduce cache eviction operations. It is
therefore very important to design caching policy that can
enhance the cache utilization and avoid the content
redundancy.

We proposed a LeafPopDown caching policy for ICN that
cache the unpopular content near the end users and popular
content on downward node and on leaf node. LeafPopDown
calculate the popularity of content at each node and when
content popularity increases from a specific threshold, it then
caches the content on downward node and leaf node
otherwise, only on leaf node. In this way, load on server or
any specific node does not increase from a threshold level and
redundancy in the networks is avoided.

This paper is organized as such: Section II discuss related
work to our proposed caching policy. Section III discusses our
proposed caching policy of LeafPopDown and its algorithm.
In Section IV, we discuss the analysis and evaluation of
LeafPopDown caching policy and Section V, we conclude our
paper.

II. RELATED WORK

Here, we discuss caching strategies related to our proposed
caching strategy.

The simplest and default caching strategy for all the
architectures of ICN are Leave Copy Everywhere [7], which
cache object on each node of a data delivery path. Though this
caching policy has an advantage of faster data dissemination
however, it causes a huge redundancy and resource
consumption to its alternatives.

In MPC [8], the authors calculate popularity of content in
content popularity table locally at each node. When content
popularity increases from specific threshold; content is cached
on the neighbors’ node. This caching policy has a drawback of
storing content on the neighbor nodes of a serving node away
from the nodes near the users.

The authors in [9] proposed a progressive caching policy,
in which object is stored on one downstream node of hit node
and on intermediate node of incoming links greater than
threshold. This caching policy avoids storing the unpopular
content. However, it shares the shortcoming of Leave Copy
Down and fixed popularity caching because of its reliance on
their functionality.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

149 | P a g e

www.ijacsa.thesai.org

The caching policy of Breadcrumbs [10] is proposed to
efficiently utilize off-path caches. After the arrival of content
requests to the server, each router stores a pointer called
breadcrumbs along the downloading path. This pointer shows
the direction of the sent contents. When requests arrive for
content, it encounters a breadcrumb and that breadcrumb
redirects the request in that direction.

Cho et al. [11] proposed to segment the content and
caching the chunks exponentially based on popularity of the
content. The idea is to store the content progressively near
users with increasing requests. In WAVE, the upstream node
recommends its downward node to store the number of chunks
by using caching suggestion flag bit in content reply’s packet.
If the flag bit is 1, chunk is cached otherwise not. WAVE has
some limitation. It focuses on accessing the object request and
hence it does not enhance the performances of network if the
users are requesting a part of an object rather than full objects.

Badov et al. [12] proposed the caching-awareness to in-
network caching. The aim of this caching policy is to reduce
the download times to the users. CAC avoids using the
congested links and storing the object on downstream end of
congested link. This caching strategy is based on two factors,
i.e., download time to the users and the content popularity and
it is performed on every node of a delivery path. The caching
capacity of network is considered 5% of the total content
population and the Zipf popularity distribution (α = 0.8) is
used. This caching policy outperforms in terms of average
retrieval delay as compared to other caching policies.
However, in case of average hit rate metric; it does not.

III. PROPOSED CACHING STRATEGY

We assume ICN is a graph of . In this
graph, is a group of nodes where each node
is having limited storing capability and
represent links between these nodes.

We further assume that request for data follows design of
Name Data Networking [2]. An INTEREST packet is
forwarded for the desired content and that request is
forwarded towards server till it finds the copy of the required
content. The routing table is created in Forwarding
Information Base (FIB) by OSPFN protocol. We further
consider that routing nodes advertise fair information. In
response of an INTEREST packet, data packet is delivered on
the request traversing path by using the Pending Interest Table
(PIT). For simplicity we assume here that the node have same
cache size. For calculation of content popularity, we consider
that each router count the number of request for content in
particular time T.

We illustrate and compare workflow of our proposed
caching strategy of LeafPopDown and LCE through an
example.

The example is explained in Fig. 1.

Fig. 1(a) represents the general scenario of networks. The
content in the network is stored in node N4. Fig. 1(b)
indicates the working of Leave Copy Everywhere (LCE)
where content replica is caches on each node of a requesting

path. The same content is cached on three nodes N1, N2 and
N3 causing redundancy in the network.

Fig. 1(c) represents the first part of LeafPopDown caching
strategy. When an INTEREST packet is received from the
users for the desired content at node N4, it first checks the
popularity of that content in its popularity table. If this content
is requested for the first time it is cached on the leaf node near
the subscriber. In the given Fig. 1(c), copy of the content is
cached on node N1. We can clearly see that copy of the
content is cached only on single node N1 as compared to LCE
that cached the content on three nodes.

Fig. 1. LeafPopDown caching strategy.

Fig. 1(d) illustrates second part of LeafPopDown. When an
INTEREST packet is received for a desired content;
popularity of that content is checked if its popularity is greater
than or equal to 2, it is cached on downward node of a hit
node which is node N3 and on a leaf node that is N1 in the
given Fig. 1(d). By comparing it with LCE, number of stored
copies is less in our proposed LeafPoPDown caching policy
i.e., 2 as compared to LCE that are 3. Similarly, when number
of nodes increases in the request path of networks, LCE
caches more copies of content causing huge redundancy in the
network while LeafPopDown caching strategy cache less
copies of content in the networks.

In order to conclude, we proved in the given example that
our proposed caching strategy of LeafPopDown creates less
redundancy as compared to LCE.

We use the following notations in algorithm of
LeafPopDown caching strategy:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

150 | P a g e

www.ijacsa.thesai.org

Symbol Notations Description

 The set of nodes ,
 where is the number of nodes

 Links set , Here

 is the number of links

 Total contents at cache i

 Content j at cache i

 Interest for content j

 Number of INTERESTS at node v

 for content j
 User k

Algorithm

for each

 if

 then

 if

 then

 Cache at &

 else

 Cache

 else

 forward to vi+1

IV. EVALUATION AND ANALYSIS

Here, we discuss simulation environment and performance
evaluation of LeafPopDown, LCE and MAGIC caching
strategies.

A. Simulation Environment

We use SocialCCNSim [8] simulator for the evaluation of
LeafPopDown, LCE and MAGIC caching strategies. This
simulator is used to evaluate performance metrics of caching
strategies for CCN. We conducted the simulation in chosen
simulator with its inherited parameters and network
topologies.

Table I shows the configured parameters for our
simulations. The popularity of files has been formed following
MZipf distribution in SocialCCNSim. For simulation and
evaluation of LeafPopDown with LCE and MAGIC, we have
selected Abilene and Tiger topologies. We set the cache size
of 1 GB and catalog size to 10

6
. The simulations are

conducted for 86400 s. We have chosen the LRU replacement
policy in the simulation. The facebook is used as a social
graph for simulation. SONETOR is used as a network traffic
generator.

TABLE I. SIMULATION PARAMETERS

Parameters

Popularity Model MZipf (α = 0.88, 1.1, 1.5, 2.0)

Cache Size 1 GB

Catalog Size 106

Topologies Abilene, Tiger

Repacement Policy LRU

Traffic SONETOR

B. Performance Evaluation

In order to have fair evaluation result, we have simulated
LeafPopDown, LCE and MAGIC caching strategies in the
same simulation environments for time period of one day. For
evaluating performance metrics of cache hits, diversity and
eviction operations, these caching strategies are simulated on
two topologies of Abilene and Tiger topologies. We have
taken MZipf (α = 0.88, 1.1, 1.5 and 2.0).

To summarize simulation parameters, we have taken two
topologies of Abilene and Tiger, cache size of 1 GB,
popularity distribution values (α = 0.88, 1.1, 1.5 and 2.0).

The simulation results of cache hits of LeafPopDown,
LCE and MAGIC caching strategies are shown in Fig. 2 and
3, respectively. The results of diversity of these caching
strategies are shown in Fig. 4 and 5 while results of eviction
operations of these three caching strategies are shown in Fig. 6
and 7.

Fig. 2. Cache hits on Abilene Topology.

Fig. 3. Cache hits on Tiger Topology.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 2, 2018

151 | P a g e

www.ijacsa.thesai.org

Fig. 4. Diversity on Abilene Topology.

Fig. 5. Diversity on Tiger Topology.

Fig. 6. Eviction operations on Abilene Topology.

Fig. 7. Eviction operations on Tiger Topology.

By comparing the proposed caching strategy of
LeafPopDown with LCE, MAGIC, we can conclude that
LeafPopDown receives more cache hits as compared to other
two and diversity increase significantly on our designed
caching strategy. Moreover, LeafPopDown decreases eviction
operations significantly as compared to LCE and MAGIC
caching strategies.

V. CONCLUSION

In this paper, we have proposed a LeafPopDown caching
strategy for ICN. LeafPopDown caches content on the leaf
node near the user when it is requested in the networks. When
its popularity increases to 2 or more in the popularity table and
if it is requested again it leave copy of content on downward
node of hit node and on leaf node near user. The simulations
results show that LeafPopDown performs better than LCE and
MAGIC caching policies in terms of cache hits, diversity and
eviction operations. Our proposed caching strategy decrease
redundancy and eviction operations while enhance the cache
hits.

REFERENCES

[1] Cisco, Visual networking index: Forecast and methodology, 2016-2021,
Jun. 2017, White Paper

[2] G. Xylomenos, C. N. Ververidis, V. A. Siris, N. Fotiou, C. Tsilopoulos,
X. Vasilakos, K. V. Katsaros, and G. C. Polyzos, “A Survey of
Information-Centric Networking Research,” IEEE
 Communications Surveys & Tutorials, vol. 16, Iss. 12, pp. 1024-
1049.

[3] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs,
and R. L. Braynard, “Networking named content,” ACM CoNEXT
2009.

[4] “SAIL NetInf,” http://www.netinf.org.

[5] N. Fotiou, P. Nikander, D. Trossen, and G. C. Polyzos, “Developing
Information Networking Further: From PSIRP to PURSUIT,” Oct. 2010.

[6] M. Zhang, H. Luo, and H. Zhang, “A survey of caching mechanisms in
Information-Centric Networking,” IEEE Communications Surveys &
Tutorials, vol. 17, no. 3, pp. 1473 – 1499, 2015.

[7] V. Jacobson et al., “Networking named content,” in Proc. 5th Int. Conf.
Emerg. Netw. Exp. Technol. (CoNEXT), Rome, Italy, Dec. 2009, pp. 1–
12.

[8] C. Bernardini, T. Silverston, and O. Festor, “MPC: Popularity based
caching strategy for content centric networks,” in IEEE ICC, Jun. 2013,
pp.3619–3623.

[9] J. M. Wang and B. Bensaou, “Progressive caching in CCN,” in Proc.
31st IEEE Glob. Commun. Conf. (GLOBECOM), Anaheim, CA, USA,
Dec. 2012, pp. 2727–2732.

[10] E.J. Rosensweig and J. Kurose, “Breadcrumbs: efficient, best-effort
contnet location in cache networks” IEEE INFOCOM, 2009, pp. 2631-
2635.

[11] K, Lee M, Park K, Kwon T. T, Choi Y, Pack S, “WAVE: Popularity-
based and Collaborative In-network caching for content-oriented
networks”, In Proc. IEEE Conf. Comput. Commun. Workshops
(INFOCOM WKSHPS), Orlando, FL, USA, Mar. 2012, pp. 316-321.

[12] Badov M, Seetharam A, Kurose J, Firoiu V, Nanda S, “Congestion-
aware caching and search in Information-Centric Networks”, in Proc.
1st ACM Int. Conf. Inf. Centric Netw. (ICN), Paris, France, 2014;
37–46.

