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Abstract—In smart buildings, cooling load prediction is 

important and essential in the sense of energy efficiency 

especially in hot countries. Indeed, prediction is required in 

order to provide the occupant by his consumption and incite him 

to take right decisions that would potentially decrease his energy 

demand. In some existing models, prediction is based on a 

selected reference day. This selection depends on several 

conditions similarity. Such model needs deep analysis of big past 

data. Instead of a deep study to well select the reference day; this 

paper is focusing on a short sampling-rate for predicting the next 

state. So, this method requires less inputs and less stored data. 

Prediction results will be more close to the real state. In first 

phase, an hourly cooling load model is implemented. This model 

has as input current cooling load, current outside temperature 

and weather forecast to predict the next hour cooling 

consumption. To enhance model’s performance and reliability, 

the sampling period is decreasing to 30 minutes with respect to 

system dynamic. Lastly, prediction’s accuracy is improved by 

using previous errors between actual cooling load and prediction 

results. Simulations are realized in nodes located at a campus 

showing good adequacy with measurements. 

Keywords—Smart building; energy efficiency; prediction; short 

sampling-rate; less stored data 

I. INTRODUCTION  

Research and innovation in the design of technologies to 
make buildings smart and intelligent have increased 
enormously during past decade [1]-[6]. Integration of 
information technologies and computation in Building 
Management System is an inevitable option. Such system 
makes easy and possible the on line environmental monitoring 
[7] and control of many activities and services associated to the 
building. The role of decision support systems is significant 
since it contributes to the continuous energy management of a 
typical building’s daily operations, aiming to preserve 
occupants comfort conditions and minimize energy 
consumption and cost [8]. Indeed, energy and comfort trade-off 
in buildings is absorbing interest of many researches around 
the world. Various aspects of this research domain have been 
investigated so far [9]-[12]. Enormous attention should be paid 
to occupants’ comfort which is a main concern for building’s 
intelligence. Indeed, human beings spend most of their life in 
indoor areas (homes, schools, offices). Energy in building, in 
hot countries, is considered as among the main consumers. 
According to the Arab Union of Electricity, electricity 

consumption in residential sector represents 30% of total 
electricity consumption in Tunisia. The dominant energy 
consumption in hot countries is the cooling system especially 
during hot season. In this framework, the World Bank launched 
a study [13] in the context of a multi-donor trust fund for 
addressing climate change in the Middle East and the North 
Africa Region. According to this study, every year, about 2 
million air conditioners are added in the Maghreb countries. In 
Tunisia, in residential sector, the installed capacity of cooling 
systems is equal to 2156 MW. It represents 69% of maximum 
power demand equal to 3144 MW. This significant increase of 
air conditioners causes the appearance of electric consumption 
peak and a structural change of the load curve during summer. 
The peak demand has increased by 5.1% annually. Therefore, 
any saving applied to such equipment has a great potential of 
energy reductions. 

A large number of papers proposed various methods for 
cooling system’s energy management [14]-[16]. The main 
approach highlighted in these papers is the cooling load 
prediction. Generally, these methods are physical model [17] 
[18], [19], black box model [20], [21] and grey box model [22], 
[23]. The physical model demonstrates good results but 
requires big data set, various types of weather data, a deep 
analysis of past data and extensive complex model. For 
instance, the model, developed in [24], needs several physical 
parameters and a considerable amount of details (type of 
internal mass according to its thermal mass and type of 
radiation it absorbs, detailed parameters of layers, etc.) and site 
data for identification of parameters. Sometimes, in such 
physical model, there are data which are difficult to obtain or 
even missing. Indeed, the authors in [25] proposed a cooling 
energy prediction model using an enthalpy-based cooling 
degree days method. Enthalpy calculation is a complex issue 
and needs some parameters hard to be available. In black box 
model, several methods achieved acceptable prediction results. 
However, its major problem is that prediction’s reliability and 
accuracy depend on selected training data. Also, some black 
box models such as [26], [27] use sophisticated methods. The 
grey box model is known by its satisfactory reliability, low 
requirement of training data. However, this model should be 
improved in terms of computing power and error checking. 
Among these prediction models, cooling consumption is 
predicted by developing a method based on the selection of a 
reference day according to occupancy similarity principle. This 
prediction method depends also on a weather data which is the 
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most correlated to current measurements. Then prediction 
results are calibrated by using the average error of past two 
hours. This model necessities a deep study to well select the 
reference day. Also, it requires as input a considerable amount 
of historical data. This paper therefore proposes a simplified 
cooling prediction model based on using current hour data as a 
reference for predicting the next hour consumption. So, the 
deep analysis of big past daily data and the issue of selecting a 
reference day are not required. Other enhancement is to 
decrease sampling period while respecting system response.  

The content of this paper is organized as follows. Section 2 
elaborates the computing of actual cooling load. Section 3 
describes the analysis and modeling processes in this work. 
This section also discusses the simulations and the results. 
Section 4 presents the conclusion and the future work. 

II. COMPUTING OF ACTUAL COOLING LOAD 

Nowadays, several strategies and technologies aim to 
respect the trade-off between energy and comfort and introduce 
this concept inside buildings. This approach brings intelligence 
to buildings. To ensure occupant’s comfort, considered as a 
complicated problem, a new approach is highlighted in this 
paper. This approach is based on human decisions since a 
change in his behavior is a key in achieving sustained 
reductions in energy consumption. For these reasons, cooling 
consumption, considered as the dominant energy use especially 
in hot countries, must be predicted and provided to human with 
useful awareness tips. Indeed, if occupant will be aware of his 
predicted consumption, he will be able to take right decisions 
that respect energy management and his preference. Several 
papers developed various methods for cooling consumption 
prediction. Among these models, proposed in literature, we cite 
a load prediction method based on a selected reference day. 
Cooling consumption of this reference day is taken as the 
targeted day’s initial load prediction result. With respect to 
smart buildings, this paper proposes a predicted cooling model 
based on a short-sampling rate during the same day. This 
prediction method gives occupant fast analyses and drives his 
behavior in favor of his comfort and his consumption.  

The building, proposed as a case of study, is composed of 
identical rooms. These nodes are illustrated by Fig. 1. T1 and 
T2 are adjacent rooms’ temperatures. T0 is the concerned 
node’s temperature. They are given in degrees Celsius. 

 
Fig. 1. Node’s top view. 

Model’s simulations have been tested in one node located 
between two other similar rooms, exposed to solar radiation 
through windows’ glasses and equipped with an air conditioner 
and temperature sensors. Measurements are done during a 
significant day in hot season.  

A data acquisition system (DAQ) has been realized to 
measure temperature exchanges: inside temperature, outside 
temperature, corridor’s temperature and adjacent rooms’ 
temperature. This DAQ is composed of:  

 microcontroller board based on the ATmega328P, 

 memory card reader, and 

 temperature sensor DS1821. 

The choice of this sensor is justified by its accuracy and its 
measurement range which is between -55°C and +125°C. Five 
DAQs are positioned in different measurement points 
(concerned node, adjacent rooms, corridor and outside) to 
measure temperatures in a short sampling period. Indeed, a 
data logging solution is implemented in the microcontroller 
ATmega328P. This application serves to measure temperatures 
by sensors DS1821 and store these data in memory card reader. 

The air conditioner worked with a set temperature equal to 
21°C according to the standard ISO 7730 (Ergonomics of the 
thermal environment-Analytical determination and 
interpretation of thermal comfort using calculation of the 
Predicted Mean Vote (PMV) and the Predicted Percentage 
Dissatisfied (PPD) indices and local thermal comfort effects). 
Indoor temperature’s sensor was added to calibrate the model. 
Indeed, to validate predicted cooling consumption, the first step 
was to determine actual consumption during a day. 

To do so, a thermal model is proposed and detailed in the 
following. This model consists of resistors, capacitors, current 
source and voltage sources. Its input are data provided from 
temperature sensors. Its output is the computing of actual 
cooling consumption. Temperature is modelled by a voltage 
source, conduction and convection through walls, door and 
windows are modelled by resistors and capacitors. 

Solar radiation is modelled by a current source. Its model is 
based on the difference between maximum and minimum 
outside temperature during a small sampling period in order 
that the model will be closed to the real state. Instead of 
computing a daily estimation of solar radiation (HS model) 
[28], [29] that may yield inaccurate results, this paper is 
focusing on a short-sampling rate. Indeed, in hot seasons, 
temperature gap is important during a short period. Solar 
radiation’s model depends in turn on temperature variation. 

This model is given by (1). Since windows are uncoated 
single glazing, the solar heat gain coefficient SHGC  is equal 

to 0.7. Also, the building, proposed as a case of study, is 
located in coastal region. Hence, the coefficient K  is equal to 
0.19. 

 
0.5

0 max minrad f
Q SHGC S K G T T       

Where SHGC  is the Solar Heat Gain Coefficient equal to 

0.7 [30], 
f

S  is the window area equal to 7.4 m
2
, K is an 
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empirical coefficient (0.16 for interior regions and 0.19 for 

coastal ones), 
0

G is the hourly extra-terrestrial radiation 

(W/m
2
), 

max
T is the maximum temperature and 

min
T  is the 

minimum temperature.  

The hourly extra-terrestrial radiation 
0

G  is computed by (2) 

[28]: 

 

 

0 2 1

2 1

12
(cos cos sin sin

sin sin )
180

G SC f    



   

      

    

 





Where SC  is the solar constant equal to 1367, f  is the 

eccentricity correction factor,   is the latitude equal to 36.82°, 

1  is the solar hour angle for the beginning time, 
2  is the 

solar hour angle for the ending time and   is the solar 

declination. Angles are given in degrees.  

Eccentricity correction factor is described as follows: 

360
1 0.033 cos

365

n
f


    

Where n  is day of the year (for example 1
st
 January 

corresponds to 1). 

Solar declination is calculated by (4): 

284
23.45 sin 360

365

n


 
   

 
 

Solar hour angle is the sun’s angular deviation from south. 
It is expressed as follows: 

 

 15 _ 12Solar Time     

180 180     , negative before Solar Noon. 

Since measurements are done between 6:00 and 14:00, 
solar hour angles   are given by Table I. 

TABLE I.  SOLAR HOUR ANGLES 

6h 7h 8h 9h 10h 11h 12h 13h 14h 

-90 -75 -60 -45 -30 -15 0 15 30 

After defining analysis data (building parameters and data 
provided by temperature sensors) and modelling solar radiation 
during a short sampling rate, a thermal model is proposed in 
Fig. 2. Where Rwij, Cwi, Rhij and Ti are the parameters of 
adjacent rooms having same conditions (wall resistor, wall 
capacitor, convection resistor and node’s temperature), Rhci, 
Rwci and Cwc are the corridor wall’s parameters, Rhoi, Rwoi, 
Cwo are the outside wall’s parameters, Rwin is the window’s 
resistor, Qrad is the solar radiation’s source and T0 is the 
indoor temperature.  

Thermal model’s parameters are given by Table II. 

TABLE II.  THERMAL MODEL’S PARAMETERS  

Parameters Values 

Resistances (K/W) 

Rwin 0.310 

Rwij 0.07 

Rwci 0.113 

Rhij 0.0106 

Rhci 0.0155 

Rwoi 0.520 

Rho2 0.0518 

Rho1 0.029 

Capacitance (J/K) 

Cwi 266463.28 

Cwc 182746.1 

Cwo 934209.45 

Variation of indoor temperature depends on outside 
temperature, corridor temperature and adjacent nodes 
temperature. Since thermal model’s output is the computing of 
actual cooling consumption, this last depends in turn on indoor 
temperature variation.  

Actual cooling load is given by Fig. 3. Where, 0s is the 
beginning time corresponding to 6:00. The ending time is 
28800s which corresponds to 14:00. This period corresponds to 
the work hours (7:00 to 14:00). The air conditioner starts 
running one hour before. 

 
Fig. 2. Thermal model. 
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Fig. 3. Actual cooling load between 6:00 and 14:00. 

III. COOLING LOAD PREDICTON MODEL 

Load prediction method, based on the selection of a 
reference day according to similarities in occupancy schedule, 
used an enormous amount of historical data (cooling load and 
weather data). Then, the model is calibrated by using errors of 
previous two hours between the predicted cooling load and the 
actual one. 

Modifications were attributed to this model. Certainly, 
current model requires a deep analysis of great past data. 
Hence, the model isn’t close to reality due to big historical 
data. Another model’s difficulty is how to select the reference 
day. Indeed, this selection is a complicated issue for some 
residential buildings because it depends on several parameters 
essentially environmental conditions. However, in the 
proposed model, it’s enough to deal with current hourly data to 
predict the next hour cooling load. So, paper’s value-added is 
reducing the amount of data, which presents model’s inputs, 
and discarding the issue of reference day. To enhance model’s 
performance, previous errors are used for calibration. Details 
will be explained in the following:  

In order to predict hourly cooling load during a day, the 
model requires following inputs: 

- /

t

cooling actQ  
: reference actual cooling load at time t 

- 
t

actT  
: reference actual outside temperature at 

time t 

- 
1t h

preT 
 : predicted outside temperature at time t 

plus one hour 

- cte  : coefficient  

Predicted cooling load for the next hour 
1

/

t h

cooling preQ 
 is 

given by (6). Predicted outside temperature 
1t h

preT 
 are deduced 

from weather forecast. The coefficient cte  is determined by 

the least square regression algorithm and equal to 0.81. Since 
measurements are done between 6:00 and 14:00, actual cooling 
load consumption during the first hour (6:00 – 7:00) is used as 
prediction’s initial vector. 

1

1

/ / 1

t h t

pre actt h t

cooling pre cooling act t

act

T T
Q Q cte

T




 

     
 

 





The errors of previous two hours between prediction results 
and actual cooling load are used to enhance model’s accuracy. 

To do so, the average error of past two hours 
/cooling tQ  is 

added to the predicted cooling load at time t plus one hour
1

/

t h

cooling preQ 
. This calibration method is given as follows: 

1 1

/ / /

t h t h

cooling final cooling pre cooling tQ Q Q     


    /

1
1

2
cooling tQ error t error t h      

/

1 1

/ /

/ /

1
(( )

2

( ))

t t

cooling t

t h t h

cooling act cooling pre

cooling act cooling pre

Q Q Q

Q Q 

   

 

 





For the second predicted hour, only the one hour previous 
error is used. To resume the proposed prediction model, current 
hourly consumption is sufficient for predicting the next hour 
cooling load. The second step is to enhance prediction by using 
average errors of past two hours between actual cooling load 
and prediction results. That’s why, historical data of the 
previous hour (t minus one hour) and current cooling 
consumption at time t must be available. Load prediction 
model’s data are illustrated in Fig. 4. Where, t is a reference 
time for predicting the next hour cooling load at time t plus one 
hour. So, this prediction is not an average hourly prediction but 
each instant t is used for computing the next hour consumption 
(t plus one hour). 

Model’s simulations are illustrated by Fig. 5. The first hour 
is used as prediction’s initial vector. This justifies that the 
starting point of predicted cooling load is 7:00. There is a gap 
between the actual cooling load and the predicted one. To 

evaluate model’s accuracy, the mean relative error MRE  
between predicted hourly cooling load and actual one is 
computed. 

 

Fig. 4. Load prediction model’s data. 

 
Fig. 5. Cooling load prediction based on a short sampling period equal to 

one hour. 
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This MRE  is expressed by (10): 

/ /

1

/

1

N
k k

cooling act cooling pre

k

N
k

cooling act

k

Q Q

MRE

Q











 







1 11.11%HMRE   

Where, N  is the number of data points. 

According to MRE , there is a remaining gap essentially 
during consumption peak. In fact, the node, proposed as a case 
of study, is located in the east. So, in the morning, the node is 
too sunny especially during the period (11:00 - 12:00) 
consequently cooling load consumption is significant. This 
justifies the presence of consumption peak. Due to the peak’s 
important derivative, the sampling period should be decreased 
to minimize the gap between predicted results and actual 
cooling load. 

Hence, the model has undergone some refinements that will 
be detailed in the following. In order to minimize this error, 
modifications were attributed to the hourly model. Instead of 
using hourly data, the sampling period was decreased to thirty 
minutes while respecting system response.  

Indeed, this study deals with smart buildings targeted 
applications and shows consideration for real time constraints 
so that this paper is focusing on a short-sampling rate to be 
close to the real state. This justifies the sampling period’s 
choice. Cooling load prediction model becomes: 

30min

30min

/ / 1

t t

pre actt t

cooling pre cooling act t

act

T T
Q Q cte

T




 

     
 
 





Where 
30min

/

t

cooling preQ 
 is the predicted cooling load for the next 

thirty minutes, and 
30mint

preT 
 is the predicted outside 

temperature for the next thirty minutes. 

This proposed method is about to deal with current data to 
predict next cooling consumption after thirty minutes. Model’s 
accuracy was enhanced by adding the average error of two 
previous 30 minutes.  

Equations (8) and (9) are rewritten as follows: 

    /

1
30min

2
cooling tQ error t error t      





/

30min 30min

/ /

/ /

1
(( )

2

( ))

t t

cooling t

t t

cooling act cooling pre

cooling act cooling pre

Q Q Q

Q Q 

   

 

 





Through simulations given by Fig. 6, the 30 minutes model 
has largely improved cooling load prediction showing good 
adequacy between actual consumption and prediction results. 

This enhancement is substantiated by computing MRE . 

30min 4.52%MRE   

1

30min

2.46HMRE

MRE
  



This criterion highlights that prediction based on a short 
sampling period, fixed according to system response, has 
calibrated the model and enhanced its performance. In order to 
evaluate the proposed model’s performance, it’s compared 
with cooling load prediction model developed in [24]. This 

existing model’s MRE  is equal to 9.50% . Whereas, through 

(15), MRE  is equal to 4.52% . Hence, the prediction model 

based on a short sampling period equal to thirty minutes is 
more accurate than the existing model. The proposed 
prediction model’s methodology is also compared to other 
cooling load prediction based on physical model [19]. This 
latter approach may be sophisticated since it requires several 
thermal parameters, a deep physical representation of the 
building and extensive complex model. The development and 
validation of such approach are difficult due to several details 
involved and to a considerable amount of data hard to be 
measured or obtained. However, the prediction model, 
developed in this paper, is simplified and only depends on 
current data which are easily available. 

 
Fig. 6. Cooling load prediction model based on a short sampling period 

equal to 30 minutes (first significant day). 

 

Fig. 7. Cooling load prediction model based on a short sampling period 

equal to 30 minutes (second significant day). 
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Fig. 8. Cooling load prediction model based on a short sampling period 

equal to 30 minutes (third significant day) 

To generalize this proposed prediction, simulations, 
illustrated by Fig. 7 and 8, are applied to other significant days. 
These figures underscore that this prediction cooling model is 
valid even in other circumstances since meteorological 
parameters may vary enormously from a day to another due to 
their random fluctuation. 

IV. CONCLUSION  

A cooling load prediction model, based on a short sampling 
rate, is developed in this paper. In first phase, it’s about an 
hourly prediction. So, the model depends on current hourly 
data used as a reference to predict the next hour consumption. 
To calibrate this model, previous errors between prediction 
results and actual cooling load are helpful to enhance 
prediction’s accuracy. Other enhancement is to decrease the 
sampling period to 30 minutes with respect to system response. 

Prediction has largely enhanced with MRE  equal to 4.52% . 

To validate the proposed method, actual cooling 
consumption is computed. Since this consumption mainly 
depends on solar radiation, this last is estimated during a small 
sampling period with respect to smart buildings. Solar radiation 
model is based on the difference between maximum and 
minimum outside temperature during a short-sampling rate.  

Simulations have been done in rooms located at National 
Engineering School of Tunis in real conditions and have shown 
good adequacy with measurements.  

In perspective, this model can be generalized in the whole 
building while taking account several details such as building 
structure, orientation according the sun, windows’ sizes and 
number and wall material of each local... . This prediction 
model can be also enhanced by involving other parameters 
such as natural ventilation and blinds’ position. 

As far as further work on the prediction issue, heating 
systems, considered as the dominant energy use in cold 
countries, deserves attention to be studied and analyzed in the 
sense of energy reductions. So, the proposed prediction model 
will be expanded and applied to the sector of heating load.  
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