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Abstract—The PhoP regulon, a two-component regulatory 

system is a well-studied system of Salmonella enterica serotype 

typhi and has proved to play a crucial role in the 

pathophysiology of typhoid as well as the intercellular survival of 

the bacterium within host macrophages. The absence of PhoP 

regulon in the human system makes regulatory proteins of PhoP 

regulon for target specific for future drug discovery program 

against multi-drug resistant strains of Salmonella enterica 

serotype typhi. In recent years, high-throughput screening 

method has proven to be a reliable source of hit finding against 

various diseases including typhoid. However, the cost and time 

involved in HTS are of significant concern. Therefore, there is 

still a need for an expedient method which is also reliable in 

screening active hits molecules as well as less time consuming and 

inexpensive. In this regards, the application of machine learning 

(ML) based chemoinformatics model to perform HTS of drug-

like hit molecules against MDR strain of Salmonella enterica 

serotype typhi is the most applicable. In this study, bagging and 

gradient boosting based ML algorithm was used to build a 

predictive classification model to perform virtual HTS of active 

inhibitors of the PhoP regulon of Salmonella enterica serotype 

typhi. The eXtreme Gradient Boosting (XGBoost) based 

classification model was comparatively accurate and sensitive in 

classifying active drug-like inhibitors of PhoP regulon of 

Salmonella enterica serotype typhi. 
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I. INTRODUCTION  

Typhoid is an endemic disease of developing nations 
caused by Salmonella enterica serotype typhi. According to 
recent WHO data, around 21 million people are infected with 
Salmonella Typhi, and approximately 2, 22, 000 people die 
annually across the globe [1]. The multidrug-resistant (MDR) 
strain of S. typhi has spread rapidly and has become a major 
endemic problem in South East Asia and Indian subcontinent 

[1]. Therefore, the target based screening of novel anti-
typhoidal compound with a higher potential to destroy MDR 
strains of S. typhi causing MDR typhoid fever is of prime 
importance.  

The two-component (PhoQ-PhoP) regulon is a crucial 
virulence regulatory system of S. typhi regulating the 
expression of more than 120 different genes involved 
pathogenicity of S. typhi within the host cells [2]. The PhoP 
regulon consists of an environmental sensor histidine kinase 
(PhoQ) that in response host defensins (abundant in 
macrophages), low level of periplasmic Mg

2+
 ions, acidic pH is 

activated upon autophosphorylation at the conserved histidine 
residue present in the cytoplasmic domain of PhoQ protein [3]. 
Consequently, the PhoP a response regulator of the PhoP 
regulon is phosphorylated at the aspartate residue present at the 
conserved N-terminal domain of PhoP protein by accepting a 
phosphate group from PhoQ protein [4]. The phosphorylated 
PhoP regulates the transcription of corresponding genes 
involved in the intracellular survival [5]-[6] and virulence of 
the S. typhi within host cells [7]-[9]. The PhoP/PhoQ operon 
based virulence regulatory system is not present is present only 
in a bacterial system; therefore the PhoP regulon has gained 
significance as a potential target for antibacterial drug 
discovery program.  

ML algorithms are robust and fast in dealing with high 
dimensional data. Since the chemical dataset used for screening 
of drug-like lead molecules during the earlier stages of drug 
discovery involves high dimensional data, i.e., comprising a 
large number of two dimensional and three-dimensional 
chemical attributes. Therefore, ML-based methods are most 
appropriate in categorizing inactive and active compounds 
from a given library of chemical compounds. 
Chemoinformatics models based on ML algorithms has been 
suitably applied in the past to screen as well as rank active hit 
molecules during the lead molecule identification stages of 
drug discovery and development program. In this regard, 
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Garcia-Sosa et al. 2012 [10] used multivariate logistic 
regression methods to classify active and inactive drug-like 
molecules. On the other hand, Korkmaz et al. 2014 [11] used a 
combination of various feature selection method with Support 
Vector Machine (SVM) to discriminate active and inactive 
drug-like molecule from on similar dataset. Further, Korkmaz 
et al. 2015 [12], proposed a web tool (MLViS) using the best 
ML-based classification algorithms to screen active drug-like 
molecule during the early stages of drug discovery protocols.  
A comparative study to evaluate the performance of SVM and 
Neural network (NN) based classification model to 
discriminate between a drug-like and nondrug-like was 
conducted by Zernov et al. [13] and Byvatov et al. [14]. They 
both showed that SVM based model performed better in 
classifying drug-like molecule from the non-drug-like 
molecule. Similarly, SVM algorithm based classification 
model was also used to classify inhibitors of cytochrome P450 
[15], lymphocyte-specific protein tyrosine kinase [16] and 
butyrylcholinesterase [17].  On the other hand, other ML 
algorithms such as k-Nearest Neighbor (KNN) [18], NN [19-
20] and Naïve Bayes (NB) [2], were used to classify active 
inhibitors from non-inhibitor molecules. Likewise, SVM 
algorithm based predictive model was used by Rathke et al. 
[22], Wassermann et al. [23], Jorissen and Gilson [24], and 
Agarwal et al. 2010 [25] to evaluate chemical compound based 
on their activity. Similarly, Abdo et al. 2010 [26] and 
Plewczynski et al. 2009 [27] have applied Random Forest 
(RF), and Bayesian neural network (BNN) based predictive 
model for predicting the activity of chemical molecules. 
Additionally, Harlen et al. 2012 [28] used Random Forest (RF) 
algorithm to build a predictive model to classify active and 
inactive chemical molecule against the PhoP regulon of S. 
typhi from the HTS bioassay dataset. The accuracy, sensitivity, 
and specificity obtained using the RF classifier based model 

was 81.5%, 87.7%, and 81.5%, respectively. In this context, an 
improved classification model built using the supervised ML-
based algorithms (XGBoost and RF) have been proposed to 
classify active inhibitors of PhoP transcriptional regulatory 
system protein (PhoP) with higher accuracy, sensitivity and 
specificity than proposed and built by Harlen et al. 2012 [28]. 
Since the number of the active molecule with a potential to 
inhibit PhoP regulon was less as compared to their inactive 
counterpart in the AID-1850 dataset, therefore, the dataset was 
balanced using Synthetic Minority Over-sampling Technique 
(SMOTE) algorithm prior applying supervised ML algorithm 
for model building. The basic idea of the proposed model is to 
build a less expensive and robust predictive classification 
model which will be potent in screening active inhibitors of 
PhoP regulon and thus will save time and money for 
identifying lead molecule during the early stages of anti-
tuberculosis drug discovery program. The present original 
research article is sectioned into four sections: In order to 
overcome the problem associated with the high-cost 
experimental screening protocols, the current research work in 
Section II. Firstly, defines the dataset used for building the 
chemoinformatic classification model; secondly apply SMOTE 
algorithm to balance the dataset since the AID-1850 dataset is 
highly imbalanced, and finally discuss various Classification 
algorithms namely RF and XGBoost used to construct the 
current supervised classification model. Section III explains the 
results of the statistical model performance evaluators for the 
classification model build using balanced bioassay dataset, and 
Section IV provide the concluding statements about the 
proposed classification model as well as the future scope of the 
proposed model. A pictorial representation of the workflow 
diagram involved in constructing the supervised classification 
model for classifying active inhibitors of PhoP protein is 
summarized and is shown in Fig.  1.  

 
Fig. 1. A pictorial representation of workflow to illustrate the methods required to build a supervised classification model to screen active inhibitors of PhoP operon 

proteins.
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II. MATERIALS AND METHODS 

This part describes the dataset and defines the process to 
pre-process and balance the dataset. This part also explains the 
ML algorithm used to build the supervised classification model 
as well as describes the statistical evaluators used to access the 
performance of the ML-based classification models. 

A. Data Source 

The dataset AID=1850 was obtained from the PubChem 
BioAssay Database of the National Center for Biotechnology 
Information (https://pubchem.ncbi.nlm.nih.gov/bioassay/1850). 
A total of 306568 compounds were screened for a compound 
that inhibits the PhoP operon in S. typhi. The compounds based 
on a percentage of inhibition were classified into the active and 
inactive molecule. The molecules which showed > 30% 
inhibition in the confirmatory PhoP dose response assay were 
considered as active while the molecules which showed less 
than 30% of inhibition in the dose-response test were deemed 
to be inactive. Therefore, the trial generated 1021 active 
inhibitors of PhoP regulon and 305404 inactive compounds in 
the confirmatory bioassay.  

B. Attribute Generation 

The Structural-data files (SDF) of both active and inactive 
compounds from AID-1850 dataset were downloaded from 
PubChem bioassay dataset [29]. The molecular descriptor file 
for both active and inactive compounds of the AID-1850 
dataset was generated using PowerMV, a Graphical User 
interface (GUI) based software for molecular descriptor 
generation and visualization [30]. A Perl script based 
Mayachemtool

1
 was used to split the sizeable structural-data 

file of the inactive compounds into smaller structural-data files. 
Using PowerMV, 179 molecular descriptors (attributes) were 
generated from the chemical-data record for each active and 
inactive compounds of the AID-1850 dataset. Bit string and 
continuous calculation method were used create the molecular 
descriptor file for each active and inactive compounds present 
in the AID-1850 dataset.  A total of 147 molecular descriptors 
generated based on pharmacophore fingerprinting were 
represented as a bit string, i.e., 0 and 1. Where the bit string “1” 
signifies the occurrence of a specific feature/ fragment and “0” 
represent the absence of that specific fragment/feature. Twenty 
four weight burden number and eight chemical properties 
based continuous molecular descriptors were generated using 
PowerMV.  A list of eight property based descriptors namely 
the number of rotatable bonds, Polar surface area (PSA), 
XLogP, molecular weight, a molecule containing the toxic 
group (bad group indicator) and blood-brain indicator 
represented by 1 and 0. Here the discrete value “1” displays the 
ability of the molecule to cross the Blood-Brain Barrier (BBB) 
and while “0” indicates the inability of the compound to pass 
the BBB. The molecular descriptor file of each active and 
inactive compounds consisting of 179 descriptors was 
combined and saved as Comma-separated Value (CSV) file for 
further processing. An extra column depicting the outcome 
(bioactivity) of each instance (compound) was appended. The 
inhibitors of PhoP compounds were given a nominal value 

                                                           
1  http://www.mayachemtools.org/ 

“active,” and the non-inhibitors of PhoP were labeled as 
“inactive.” 

C. Processing of Clinical Dataset 

1) Data Preparation 
The molecule id column was removed from each matrix, as 

it does not contribute to the feature list. The combined file CSV 
consisting of active and inactive molecules was preprocessed 
to remove the duplicate instances. As a result, 352 duplicate 
samples including 11 active compound samples were removed 
from the dataset. A quick count shows that a total of 300992 
samples were present with the majority class being the inactive 
compounds and occupying 98.34% of the sample space 
whereas the 1010 active compounds being the minority class 
hold only 1.66% of the total sample space. Further, the final 
dataset after removal of duplicate instances was subjected to 
filtration of non-informative attributes to improve the 
efficiency of the model generated using ML tools [31], [32]. 
The removal of non-informative attribute reduces the feature 
space of AID-1850 dataset to 154 attributes. The final list of 
154 attributes are enlisted and shown in Table I 
(Supplementary File). 

2) Dimensionality Reduction 
Using all features of a given dataset is not an efficient 

model building process as higher dimensions add to the 
complexity of the final classifier which leads to longer 
computation time while unimportant features reduce the model 
performance/accuracy. Since the feature space of the dataset 
was 154, therefore a tree-based feature selection module

2
 to 

reduce the dimensionality of dataset to only 43 features listed 
in Table II (Supplementary File). When an attribute is used as a 
decision node in a tree, its relative rank/depth can determine 
how important it concerns the prediction of the target variable. 
Since the features used at the top of a decision tree affect the 
final prediction of a large number of input data. Thus, the 
fraction of samples that they influence can be used to estimate 
the importance of each feature against one another. By creating 
some randomized trees and averaging the importance value of 
each feature, a more robust feature selection model with lower 
variance can be constructed. A pictorial representation of the 
scoring based selection of attributes using Tree-based feature 
selection method is shown in Fig. 2. 

 
Fig. 2. Illustrates the score obtained by the 154 features of the AID-1850 

dataset using Tree-based feature selection module of Scikit-learn package. 

                                                           
2  http://scikitlearn.org/stable/modules/feature_selection.html#tree-

based-feature-selection 
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3) Class Balancing 
A dataset is called imbalanced if the numbers of target 

classes are not nearly equally represented. As the present 
dataset was highly imbalanced with the majority class taking 
up 98.34% of the total sample space, SMOTE algorithm was 
used to balance the AID-1850 dataset by creating synthetic 
instances from the minority class from the AID-1850 dataset. 
SMOTE is an oversampling method which creates synthetic 
instances of the minority class rather than oversampling the 
class through replacement. Oversampling is done by randomly 
choosing a minority sample from the given data and finding its 
k nearest neighbors [33], [34]. In the present study, k equal to 5 
was used. A sample is generated on the line segment joining 
any or all k neighbors by multiplying the difference between 
the selected feature vector (instance) and its nearest neighbor 
with a random value in the range of 0-1. In the present study, a 
random value 0.5 was selected and multiplied by the feature 
vector under consideration leading to the generation of a new 
sample. Similar action is performed for all/any neighbors 
which effectively forces the minority class decision region to 
become more general. The final dataset, after completing class 
balancing consisted of 50% active and 50% inactive instances. 
The pseudo code for generating a synthetic sample is as 
follows:   

Let a feature vector   ⃗⃗  ⃗  represents the instance under 
consideration. Find its k nearest neighbors and select one of 

them. Let this instance be represented as a feature vector  ⃗⃗ . 
Then the new sample  ⃗  will be equal to 

   ⃗⃗  ⃗   ⃗⃗  ( ⃗⃗   ⃗⃗ )            (1)

Where, “rand (0, 1)” represents a random value between 0 
and 1. 

D. Data Partitioning and Cross-validation Procedures 

The balanced dataset was segmented into train and test sets 
as 80% and 20% respectively. The train set would be used to 
train the model while the test set, data never before seen by the 
model, would be used for testing its accuracy/performance. 
The train set was used for k-fold cross-validation; in the 
present case, k is 10. Thus, in 10-fold cross validation, one fold 
is used for testing purpose while the rest 9 (k-1) folds are used 
for training. This process is repeated until all folds have been 
tested. The average accuracy taken over all folds gives a more 
reliable measure than a single training and testing phase. This 
action can also be used to verify if the final, trained model 
overfits the test set or not. 

E. Model Building Algorithm 

Classification is the process of segregating a sample, based 
on its attributes into the given target classes. In this study, two 
algorithms namely Random forest and XGBoost were used to 
perform classification where both of which were based on the 
concepts of decision trees. A decision tree is a flowchart-like 
tree structure whose internal nodes are attributes which are 
used to split the tree further based on a threshold and whose 
leaf nodes are the target classes. The feature selected at each 
level for further splitting is determined by calculating 
information gain for each attribute and the one with maximum 
information gain is selected. Calculation of the information 
gain for each feature is done by calculating the entropy of all 

possible values of an attribute and then finding its information 
gain. Entropy is the amount of homogeneity of a sample while 
information gain is the difference of entropies before and after 
a split. The attribute which yields the maximum information 
gain is chosen as the root node. 

     ∑          
 
   (2)

Entropy using the frequency table of one attribute 

       ∑            (3)

Entropy using the frequency table of two attributes 

                                 (4)

Information Gain 

1) Random Forest (RF) 
A random forest is a forest/collection of decision trees and 

works on the concept of bagging. Some un-correlated 
classifiers/learners can be used together to form a better 
classifier with less variance and reduce overfitting [35]. In a 
random forest classifier, the training samples are divided into 
some random subsets based on which decision trees are 
created. The target class for a particular instance is then 
selected based on the maximum voting scheme wherein each 
tree outputs a class, and the one with the highest votes is 
chosen as the target class for the given sample. This reduces 
variance in the present model while also decreases overfitting, 
a problem which usually occurs in decision trees. 

2) XGBoost 
XGBoost is an ensemble algorithm which is majorly used 

in kaggle competitions as it provides excellent performance out 
of the box and has some parameters for tuning. XGBoost is 
based on the concept of gradient boosting [36]. Gradient 
Boosting is a technique which uses an ensemble of weak 
classifiers, models which perform slightly better than random 
guesses, to create a strong classifier. Here CART 
(Classification and Regression Trees) was used for preparing 
an ensemble algorithm for classification. In boosting, a model 
is built to optimize a differentiable loss function, at runtime. In 
the next stage/iteration, a new model is developed to optimize 
the loss function from the previous step further. This process 
continues until a threshold is reached. In this way, the errors 
committed by the earlier models can be corrected by the 
models in the next stage. XGBoost works on the idea of 
gradient boosting but differs from the fact that it uses 
regularized models to control overfitting which gives better 
performance. At the same time, XGBoost or eXtreme Gradient 
Boosting is called so because it utilizes other computational 
techniques such as cache access patterns, data compression, 
etc. to push computational boundaries and achieve state of the 
art performance regarding speed and accuracy. 

∑ [         
 

 
    

     ]       
 
                                       (5)

Where,    and    are inputs defined by 
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 (6)

    
  
     

        
     

   (7)

      is given by 

                                                   (8) 

Where w is the vector of scores on the nodes, T is the 
number of leaves and q is a function assigning each data point 
to the corresponding leaf, While       is the regularizer term, 
given by 

        
 

 
 ∑   

  
                                                               (9)

The ML classification algorithm, the data preprocessing 
and post-processing data analysis are performed in Scikit-learn 
tool for data mining and analysis. Scikit-learn tool is a state-of-
the-art implementation of many supervised and unsupervised 
ML algorithms written in and for Python. It has an easy-to-use 
interface and is a go-to choice for exploratory data analysis. It 
is increasingly used by academicians as it allows for more time 
on designing of algorithms than their implementation [37]. Due 
to the exceedingly imbalance characteristics of the AID-1850 
data, the Imbalanced-learn tool was used tackle the problem of 
class imbalance in the AID-1850 dataset. The imbalanced-learn 
toolkit is an implementation of some popular re-sampling 
techniques which is useful for datasets with highly imbalanced 
classes [38]. It is a Python package and is compatible with 
Scikit-learn tool and can be downloaded from 
http://contrib.scikit-learn.org/imbalanced-learn/stable/. 

F. Evaluation of Model Performance 

The ML-based predictive model trained using XGBoost, 
and RF classifier was evaluated using statistical model 
performance evaluators present in Scikit-learn data mining 
tool. For two-class problem the 2x2 confusion matrix consists 
of the following sections: (1) True Positive (TP) in this study, 
is the active inhibitors of PhoP appropriately classified by 
classification model as active class; (2) False Positive (FP) 
actually non-inhibitors of PhoP operon but incorrectly 
classified as active by the predictive model; (3) True Negative 
(TN) actual non-inhibitor of PhoP (inactive molecule) correctly 
classified by the model as non-inhibitor (inactive) and lastly, 
(4) False Negative (FN) actually inhibitor molecule (active 
molecule) but incorrectly classified by the classification model 
as non-inhibitor (inactive). In this context, the True Positive 
Rate (TPR) is defined as the proportion of TP (i.e., active 
inhibitors of PhoP regulon predicted correctly by the 
classification model) from the total population of inhibitors of 
PhoP regulon and is estimated as TP/TP + FN. Similarly, False 
Positive Rate (FPR) is defined as the fraction of FP (i.e., 
erroneously categorized as active inhibitor molecule) when 
compared to the total number of predicted inactive chemical 
molecule and the FPR is estimated as FP/FP+TN.  

Sensitivity, another model statistical evaluator, represents 
the capacity of the ML-based predictive model to correctly 
classify the inhibitors (True Positives) of PhoP regulon from 
the instances given in AID-1850 dataset and is estimated as 

(TP/TP+FN)*100. On the other hand, specificity refers to the 
capability of the ML-based predictive model to classify 
inactive (non-inhibitor) molecules from AID-1850 dataset 
correctly and is estimated as (TN/TN+FP)* 100.   

Accuracy is another statistical evaluator to measure the 
ability of the model to correctly classify the TN  and TP 
instances from the total number of predicted instances 
(TP+TN+FP+FN) and is calculated as 

([TP+TN])/ [TP+TN+FP+FN])*100             (10) 

The ideal accuracy value for any classification model is 
one. The Receiver Operating Characteristics (ROC) graph 
defines the consistency of the model to efficiently discriminate 
between two classes by Area under the Curve (AUC) value. 
The AUC value is generated by making a graph between True 
Positive Rate (TPR) on the Y-axis and False Positive Rate 
(FPR) on the x-axis. The estimated AUC value is the likelihood 
that the model will assign a higher score to an arbitrarily 
selected inhibitor compound than to an arbitrarily picked non-
inhibitor compound. The score of AUC value ranges from 0 to 
1, therefore the model with a score close or equal to 1 will be 
considered reliable in predicting active compound from the 
AID-1850 chemical dataset and vice versa for a model with an 
AUC value close to zero.  

G. Determination of Statistically Significant Difference 

between Models 

Estimation of a significant statistical difference between the 
models generated using XGBoost and RF in predicting active 
molecule from AID 1850 dataset was determined using two-
sample unpaired t-test [39]. The accuracy value of each test-
fold obtained during the ten-fold training cum-cross validation 
of XGBoost and RF model were grouped and tested for 
significant difference using two-sample t-tests at a confidence 
interval of 95%.  

III. RESULTS AND DISCUSSION 

The HTS dataset AID-1850 was obtained from the 
publically available bioassay database of PubChem-NCBI.   
The HTS dataset consisted of 1021 active molecules (inhibitors 
of PhoP regulon) and 305404 inactive molecules (non-
inhibitors of PhoP regulon). The SDF files of the inactive and 
active molecules were taken from the bioassay database of 
PubChem. Due to the larger size, the SDF file of the 
compounds was fragmented into smaller files using 
MayaChemTool. A CSV file consisting of 179 molecular 
descriptors for each active and inactive molecule were 
generated using PowerMV. Finally, each descriptor files of 
both active and inactive molecule were randomly merged into 
one CSV file. The Final merged molecular descriptor CSV file 
of both active and inactive molecule was preprocessed in 
Scikit-learn platform to remove duplicate instances and 
noninformative attributes. Since only specific attributes among 
the total attributes contribute significantly in accurately 
predicting the desired class. Therefore, in this context Tree-
based feature selection module of Scikit-learn package was 
used to remove noninformative features or attributes from the 
final merged molecular descriptor file of active and inactive 
molecules of AID-1850 HTS chemical dataset. The last 
molecular descriptor file of both active and inactive molecule 
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consisted of 43 attributes (molecular descriptors) contributing 
most towards model building were screened using tree-based 
feature selection method. While an outcome column was 
labeled as “class” having two discrete values “0” and “1”. Here 
the value “1” denotes an inactive molecule and “0” signifies an 
active molecule.  

The modified molecular descriptor file of both active and 
inactive molecule with 43 attributes was split into 80% training 
data and 20% independent test data. Due to the imbalanced 
nature of the dataset, SMOTE algorithm was applied to 
generate synthetic instances from the minority class (active 
molecule) to create a balance between the two classes (i.e., 
active and inactive molecule) of the dataset. Therefore, the 
final dataset post SMOTE application consisted of 50% active 
and 50% inactive instances. The balanced dataset was 
fragmented into 20% independent test dataset and 80% training 
dataset. The classification models built using XGBoost and RF 
algorithms were trained using the 80% training dataset. 
Furthermore, the classification models trained using 80% 
training data were tested for their ability to classify active and 
inactive molecule from the 20% independent test dataset. A 
comparative performance evaluation of the predictive models 
with and without SMOTE is tabulated in Table III. All the 
results tabulated in Table III for each classifier is determined 
using 20 % independent test data. Due to the imbalanced nature 
of the dataset, the models tend to be predisposed to the 
majority class (inactive molecule).The biasness of the models 
for the majority class can be observed from the results of both 
FNR and sensitivity. Here, sensitivity reflects the capability of 
the model to appropriately categorize the True Positive (active 
molecule) instances from AID-1850 HTS dataset while FNR 
reflects the prejudiced nature of models for the majority class 
inactive molecule). In this regard, the models tested on an 
imbalanced dataset shows a  higher rate of FN‟s (79.6% for RF 
and 85.7% for XGBoost) and a lower percentage of sensitivity 
(20.4% for RF and 14.1% for XGBoost). The above results 
show that the predictive classification models built and tested 
on imbalance dataset are biased towards the majority class 
(inactive molecule). However, contrasting results are obtained 
post-SMOTE application. The sensitivity and the FNR for the 
classification models constructed using RF and XGBoost 
algorithm and tested on balanced dataset show a lower value 

for FNR (0.7 for RF and 2.4 for XGBoost) and a higher 
percentage for sensitivity (99.2% for RF and 97.8% for 
XGBoost) as shown in Table III. The higher percentage of 
sensitivity for RF-based model show its higher ability to 
accurately predict active molecule (TP) instances from total 
positive instance (TP+FN) present in AID-1850 HTS dataset 
when compared to XGBoost based predictive model. The 
ability of the predictive system to accurately predict TP post 
SMOTE application can also be determined by the TPR. The 
TPR value before the application of SMOTE was 25.4% for 
RF and 14.1% for XGBoost based predictive models. 
Subsequently, the TPR value post SMOTE application is 
99.2% for RF and 97.6% for XGBoost, based classification 
models. Further, the accuracy and specificity of the models 
tested on the imbalanced test data have similar value for each 
model (i.e., 98.5% accuracy for each model and 99.8% 
specificity for each model). Furthermore, post SMOTE 
application the RF-based classification model had similar 
accuracy and specificity value (99.2%), which was 
comparatively better than accuracy and specificity, obtained 
using the XGBoost classifier based predictive model. Since, 
the RF classifier based classification model achieves higher 
percentages of specificity and sensitivity in detecting TN 
(inactive molecules) and TP (active molecules) samples, 
respectively from a balanced AID-1850 chemical dataset. 
Therefore, the classification model built using the RF 
algorithm is considered as in ideal model to screen active PhoP 
regulon inhibitors from a given balanced chemical HTS 
dataset. Evaluation of the ability of the classifiers to selectively 
classify TP from the FN instances present in the balanced 
dataset is another significant statistical model performance 
evaluator. In this regard, the AUC value is the probability that 
classifier based model will give a higher score to an arbitrarily 
selected positive sample (active molecule) when compared to 
an arbitrarily selected negative sample (inactive sample). The 
AUC value for a classification model is calculated by plotting a 
ROC curve between the TPR in the y-axis and FPR in the x-
axis. The AUC value for a classification model ranges from 0 
to 1. Thus a model with an AUC value close or equal to 1 is 
considered as an ideal model to selectively choose a positive 
instance from mixed instances of positive (active molecule) 
and negative (inactive molecule) instances in a given dataset. 

TABLE III. THE PERFORMANCE EVALUATION OF RF AND XGBOOST CLASSIFIER BASED SUPERVISED CLASSIFICATION MODELS  

SMOTE Classifier Area 

Under the 

Curve 

(AUC) 

Accuracy  

 

True 

Positive 

Rate  

(%) 

False 

Positive 

Rate  

(%) 

True 

Negative 

Rate  

(%) 

False 

Negative 

Rate  

(%) 

Specificity  

(%) 

Sensitivity  

(%) 

Not Using 

SMOTE 

Random 

Forest 

0.86 98.533 25.398 0.151 99.849 79.602 99.849 20.398 

XGBoost 0.93 98.525 14.136 0.126 99.874 85.864 99.874 14.136 

Using SMOTE Random 

Forest 

0.99 99.237 99.243 0.768 99.231 0.757 99.232 99.243 

XGBoost 0.97 97.75 97.636 2.138 97.862 2.364 97.862 97.636 
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Fig. 3 shows the comparative ROC plot of RF and 
XGBoost classification model built and tested on balanced 20 
% independent tests dataset. It can be apparently 
comprehended from Fig. 3 that the AUC value of RF 
algorithm-based model which is 0.99 is comparatively higher 
than that of XGBoost classifier based predictive model. Thus, 
the RF classifier based predictive model is considered as an 
efficient model for selectively classifying positive instances 
(active PhoP inhibitor molecules) from a given balanced 
chemical dataset. The statistically significant difference 
between the RF and XGBoost based classification models in 
accurately predicting the active and inactive molecule was 
determined using two sample Unpaired t-test, and the result is 
tabulated in Table IV. An exceptionally statistically significant 
two-tailed P value is less than 0.0001 was obtained when the 
mean of ten-fold accuracy values of the RF-based trained 
model was compared with XGBoost classification trained 
model at 95 % confidence interval.  

The present proposed classification model based on RF 
classifier is more sensitive and accurate in classifying active 
PhoP inhibitors molecules from the AID-1850 dataset as 
compared to classification model proposed by Kaur et al. 2016 
as observed from the present findings tabulated in Table V. 
The accuracy AUC, specificity, and sensitivity of the current 
RF based model is higher as compared to accuracy AUC, 
specificity, and sensitivity obtained by the base classifiers used 
by Kaur et al. 2016 to build a predictive model to classify 
inhibitors of PhoP operon from the AIS-1850 dataset. 

 
Fig. 3. Comparative ROC plot of RF and XGBoost algorithm based 

supervised classification tool on balanced dataset. 

Moreover, the FNR of the present study is lower as 
compared to the FNR obtained by predictive models proposed 
by Kaur et al. 2016. Therefore, the current model based on RF-
based classifier built and tested on the balanced dataset is far 
more superior in screening a real positive (active PhoP 
inhibitor molecule) from a given AID-1850 dataset. 

TABLE IV. TWO-SAMPLE UNPAIRED T-TEST TO DETERMINE SIGNIFICANT DIFFERENCE BETWEEN RF AND XGBOOST  
CLASSIFIER BASED PREDICTIVE MODEL 

Algorithms Paired Differences 

Mean Std. Deviation 

Std. Error 

Mean 

95% Confidence Interval of the 

Difference 

t Df 

Sig. (2-tailed 

P-value) Lower Upper 

RF and XGBoost 0.0166900490 .00196 0.00062 0.0156290243 0.0177510737  33.0478 18 <0.0001 

TABLE V. COMPARATIVE PERFORMANCE EVALUATION OF THE RF CLASSIFIER BASED SUPERVISED CLASSIFICATION MODEL WITH ANOTHER PREDICTIVE 

MODEL FOR SCREENING ACTIVE INHIBITORS OF PHOP REGULON PROTEIN 

 Here, AUC=Area Under the Curve; FNR=False Negative Rate 

IV. CONCLUSION AND FUTURE SCOPE 

In the current study, ML algorithm is used to build a 
supervised classification model to classify active PhoP 
inhibitor molecules from the balanced AID-1850 HTS dataset. 
The capability of the predictive model to distinguish between 
the active and inactive classes of the AID-1850 dataset was 
determined by specific attributes selected using the tree-based 
feature selection module of Scikit learn package.  The final 43 
descriptors based dataset was processed using SMOTE 
algorithm to remove the class imbalance present in the AID-
1850 dataset. Several statistical assessors were used to assess 
the performance of RF and XGBoost classifier based 
classification model in screening true inhibitors of PhoP 

regulon protein from a given dataset. The comparative 
performance evaluation of both XGBoost and RF classifier 
based predictive model revealed that RF classifier based model 
showed better ability to predict active PhoP inhibitors from the 
preprocessed balanced AID-1850 dataset.  Moreover, the 
present RF classifier based model is far more superior in 
predicting active inhibitors of PhoP regulon protein from AID-
1850 when compared to the model proposed by Kaur et al. 
2016. Therefore, the present predictive model will be a step 
forward in screening novel drug-like inhibitors of PhoP a 
virulent two-component regulatory system of S. typhi. 
Moreover, in future, a web-based real-time predictive system 
will be built based on the results of the present model to 
efficiently classify active inhibitors of PhoP operon protein 

ML classifier based 

classification model 

AUC Accuracy FNR sensitivity specificity 

RF (Kaur et al. 2016) 91.5 81.5 12.3 87.7 81.5 

RF (Hassan et al. 2018) 0.99 99.2 0.8 99.2 99.2 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 9, No. 2, 2018 

255 | P a g e  

www.ijacsa.thesai.org 

from the sizeable molecular library of molecules from various 
chemical databases. 
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SUPPLEMENTARY FILE 

TABLE I. ALL FEATURES SORTED ACCORDING TO IMPORTANCE

WBN_GC_L_1.00 
WBN_GC_L_0.25 

WBN_GC_L_0.50 

WBN_LP_H_0.25 
WBN_LP_L_0.75 

WBN_GC_L_0.75 

WBN_GC_H_0.75 
WBN_GC_H_0.25 

WBN_LP_L_0.25 

WBN_EN_H_0.25 
WBN_EN_H_0.50 

WBN_LP_H_0.75 

WBN_LP_H_0.50 
WBN_EN_L_0.75 

WBN_LP_L_1.00 

WBN_EN_L_0.25 
BadGroup 

WBN_GC_H_0.50 

WBN_EN_L_0.50 
NumRot 

WBN_LP_L_0.50 

WBN_LP_H_1.00 
WBN_EN_H_1.00 

WBN_EN_L_1.00 

WBN_EN_H_0.75 

PSA 

WBN_GC_H_1.00 

XLogP 
MW 

NumHBA 
NumHBD 

BBB 

ARC_05_ARC 
HBA_03_ARC 

POS_04_ARC 

ARC_03_ARC 
ARC_06_ARC 

ARC_04_ARC 

HBA_05_ARC 
HBA_04_ARC 

HBD_02_ARC 

ARC_01_ARC 
ARC_02_ARC 

POS_07_ARC 

POS_05_ARC 
POS_06_HYP 

HBA_06_ARC 

HBD_03_ARC 
HBA_07_ARC 

ARC_07_ARC 

POS_02_ARC 
POS_06_ARC 

HBD_05_ARC 

POS_03_ARC 
HBD_04_ARC 

ARC_03_HYP 

NEG_02_NEG 
HBD_06_ARC 

POS_04_POS 

HBA_06_HBA 

HBD_07_ARC 

NEG_04_NEG 
HBA_04_HYP 

ARC_05_HYP 

POS_03_POS 
HBA_03_HBA 

ARC_06_HYP 

HBD_05_HBD 
HBD_05_HBA 

POS_04_HBA 

ARC_07_HYP 
NEG_04_ARC 

NEG_05_HYP 

ARC_02_HYP 
HBA_06_HYP 

POS_02_HYP 

POS_05_POS 
POS_05_HBA 

HBD_07_HBA 

NEG_02_ARC 
ARC_04_HYP 

POS_07_HBA 

HBD_04_HBA 
POS_04_HBD 

HBA_07_HBA 

POS_07_HBD 

HBA_02_HYP 

HBA_05_HBA 

HBA_07_HYP 
HBD_04_HBD 

HBD_06_HBA 
POS_06_HBA 

POS_05_HYP 

HBA_03_HYP 
HBD_06_HBD 

HBA_04_HBA 

HBD_07_HBD 
POS_05_HBD 

HBD_03_HYP 

NEG_05_ARC 
HYP_01_HYP 

NEG_05_HBA 

POS_03_HYP 
NEG_07_ARC 

NEG_06_ARC 

HBA_05_HYP 
HBD_07_HYP 

HYP_03_HYP 

NEG_04_HBD 
HBD_06_HYP 

NEG_03_HBD 

POS_07_HYP 
NEG_07_HYP 

NEG_03_ARC 

NEG_07_HBD 
POS_03_HBA 

POS_04_HYP 

HBD_02_HYP 
HBD_05_HYP 

NEG_06_HBA 

POS_06_HBD 

HYP_05_HYP 
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POS_06_POS 
HYP_02_HYP 

NEG_07_HBA 

HBD_04_HYP 
HYP_04_HYP 

POS_07_POS 

NEG_02_HYP 
HBD_03_HBD 

HYP_07_HYP 

NEG_04_HBA 
NEG_01_NEG 

NEG_03_HBA 

NEG_06_HBD 
NEG_04_POS 

NEG_05_NEG 

NEG_03_HYP 

NEG_06_HYP 
NEG_06_POS 

HYP_06_HYP 

NEG_01_HBD 
NEG_05_POS 

HBD_03_HBA 

NEG_02_HBD 
POS_03_HBD 

NEG_03_POS 

NEG_07_NEG 
NEG_06_NEG 

NEG_05_HBD 

POS_02_HBD 
NEG_03_NEG 

NEG_04_HYP 

NEG_07_POS 

TABLE II. TOP 43 FEATURES SORTED ACCORDING TO IMPORTANCE

WBN_GC_L_1.00 

WBN_GC_L_0.25 

WBN_GC_L_0.50 
WBN_LP_H_0.25 

WBN_LP_L_0.75 

WBN_GC_L_0.75 
WBN_GC_H_0.75 

WBN_GC_H_0.25 

WBN_LP_L_0.25 
WBN_EN_H_0.25 

WBN_EN_H_0.50 

WBN_LP_H_0.75 
WBN_LP_H_0.50 

WBN_EN_L_0.75 

WBN_LP_L_1.00 
WBN_EN_L_0.25 

BadGroup 

WBN_GC_H_0.50 

WBN_EN_L_0.50 

NumRot 

WBN_LP_L_0.50 
WBN_LP_H_1.00 

WBN_EN_H_1.00 

WBN_EN_L_1.00 

WBN_EN_H_0.75 
PSA 

WBN_GC_H_1.00 

XLogP 
MW 

NumHBA 

NumHBD 
BBB 

ARC_05_ARC 

HBA_03_ARC 
POS_04_ARC 

ARC_03_ARC 

ARC_06_ARC 
ARC_04_ARC 

HBA_05_ARC 

HBA_04_ARC 

HBD_02_ARC 

ARC_01_ARC 

ARC_02_ARC

 


