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Abstract—Computer based analysis is one of the suggested 

means that can assist oncologists in the detection and diagnosis of 

breast cancer. On the other hand, deep learning has been 

promoted as one of the hottest research directions very recently 

in the general imaging literature, thanks to its high capability in 

detection and recognition tasks. Yet, it has not been adequately 

suited to the problem of breast cancer so far. In this context, I 

propose in this paper an approach for breast cancer detection 

and classification in histopathological images. This approach 

relies on a deep convolutional neural networks (CNN), which is 

pretrained on an auxiliary domain with very large labelled 

images, and coupled with an additional network composed of 

fully connected layers. The network is trained separately with 

respect to various image magnifications (40x, 100x, 200x and 

400x). The results presented in the patient level achieved 

promising scores compared to the state of the art methods. 
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I. INTRODUCTION 

According to reports of the world health organization 
(WHO), breast cancer (BC) is the most prevalent type of 
cancer in women. For instance, incidence rates range from 19.3 
per 100,000 women in Eastern Africa to 89.7 per 100,000 
women in Western Europe [1]. Current scientific findings 
indicate that such high variability might be traced back to 
differences in lifestyle and urbanization. Although early 
diagnosis is more affordable in developed countries, it is less 
likely in underdeveloped nations, which implies that 
undertaking preventive measures only does not offer a cutting-
edge solution. 

Mammography is a common screening protocol that can 
help distinguish dubious regions of the breast, followed by a 
biopsy of potentially cancerous areas in order to determine 
whether the dubious area is benign or malignant [2], [3]. In 
order to produce stained histology slides, samples of tissue are 
taken from the breast during biopsy. In spite of the 
considerable improvement incurred by such imaging 
technologies, pathologists tend to visually inspect the 
histological samples under the microscope for a final diagnosis, 
including staging and grading [4]. 

In this context, automatic image analysis is prone to play a 
pivotal role in facilitating the diagnosis; so far, the relevant 
processing and machine learning techniques. For instance, the 
authors in [5] present a comparison of different algorithms of 

nuclei segmentation, where the cases are categorized into 
benign or malignant. 

Deep CNNs learn mid-level and high-level representations 
obtained from raw data (e.g., images) in an automatic manner. 
Recent results on natural images indicate that CNN 
representations are highly efficient in object recognition and 
localization applications. This has instigated the adoption of 
CNNs in the biomedical field, such as breast cancer diagnosis 
and masses classification [6]–[11], abdominal adipose tissues 
extraction [12], detection and classification of brain tumour in 
MR images [13]–[16], skeletal bone age assessment in X-ray 
Images [17], EEG classification of motor imagery [18], and 
arrhythmia detection and analysis of the ECG signals [19]–
[21]. In particular, in [9], the authors propose a framework for 
masses classification, which mainly encompasses a CNN and a 
decision mechanism for breast cancer diagnosis as either 
benign or malignant in a DDSM mammographic dataset. In [4] 
, the authors propose an improved hybrid active contour model 
based segmentation method for nuclei segmentation. They 
adopt both pixel and object-level features in addition to 
semantic-level features. The semantic-level features are 
computed using a CNN architecture which can learn additional 
feature representations that cannot be represented through 
neither pixel nor object-level features. 

Thus, it is to stress the fact that, relatively to other 
biomedical applications, breast cancer diagnosis has not 
benefited enough from deep learning, which inspired us to 
investigate it thoroughly. In particular, I opt for several deep 
architectures in the context of breast cancer histological image 
classification, and demonstrate that the common belief that 
high level deep features are more capable of capturing the 
contextual as well as spectral attributes in optical images 
remains valid also in histological breast cancer images. This, in 
fact, is confirmed by the very satisfactory results reported 
hereby, which advance late works often by large margins. 

The rest of this paper is organized as follows. Material and 
methods are exposed in Section II. Results are presented in 
Section III. Finally, conclusion is provided in Section IV. 

II. MATERIAL AND METHODS 

A. Dataset Description 

In order to realistically assess any BC diagnosis system, the 
experiments shall be performed on a large-scale dataset 
accommodating 1) numerous patients, 2) abundant images. The 
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latter component is essential to any deep learning model as 
large data is required for the training phase.  

The Breast Cancer Histopathological Image Classification 
(BreakHis), which was established recently in [22], is an 
optimal dataset as it meets all the above requirements. 
Precisely, it is composed of 9,109 microscopic images of breast 
tumour tissue collected from 82 patients using different 
magnifying factors (40X, 100X, 200X, and 400X). For 
convenience, Fig. 1 and 2 display a slide of breast benign and 
malignant tumour for the same patient seen in different 
magnification factors. 

To date, the dataset contains 2,480 benign (taken from 24 
patients) and 5,429 malignant samples (taken from 58 patients) 
of 700X460 pixels, 3-channel RGB, 8-bit depth in each 
channel, and PNG format. In its current version, samples 
present in the dataset were collected by SOB method, also 
named partial mastectomy or excisional biopsy. This type of 
procedure, compared to any methods of needle biopsy, 
removes the larger size of tissue sample and is performed in a 
hospital with general anaesthetic. This dataset is structured as 
shown in Table I. 

TABLE I.  BREAST CANCER DATABASE USED IN THE EXPERIMENT 

 
Magnification 

Total Patient 
40x 100 x 200x 400x 

Benign 652 644 623 588 2480 24 

Malignant 1370 1437 1390 1232 5429 58 

Total  1995 2081 2013 1820 7909 82 

  
(a)                                             (b) 

 
(c)                                             (d) 

Fig. 1. A slide of breast benign for the same patient seen in different 

magnification factors: (a) 40X, (b) 100X, (c) 200X, and (d) 400X. 

 
(a)                                             (b) 

 
(c)                                             (d) 

Fig. 2. A slide of breast malignant tumor for the same patient seen in 

different magnification factors: (a) 40X, (b) 100X, (c) 200X, and (d) 400X. 

B. Proposed Methodology 

Let us consider                
   as the labeled source data 

and          is its corresponding class label either to be 

benign or malignant. Similarly, let us refer to             
   as 

the unseen target data. This paragraph consists of two steps as 
shown in Fig. 3. 

1) Feature Extraction 
Deep CNNs are composed of multiple layers of processing 

which are learnt jointly, in an end-to-end manner, to address 
specific issues [23]–[25]. Particularly, Deep CNNs are 
commonly composed of four types of layers namely 
convolution; normalization, pooling and fully connected. The 
convolutional layer is considered the main building block of 
the CNN and its parameters consist of a set of filters (or 
sometimes referred to as a neuron or a kernel). Every filter is 
small spatially (along width and height), but extends through 
the full depth of the input image. The output of this layer is 
called activation maps or feature maps which are produced via 
sliding the filters across the input image. The feature maps are 
then fed to a non-linear gating function such as the Rectified 
Linear Unit (ReLU). Then the output of this activation function 
can further be subjected to normalization layer to help in 
generalization. Regarding the pooling layers, they are usually 
used immediately after convolutional layers in order to control 
overfitting and reduce the amount of parameters in the 
network. 

 

Fig. 3. Flowchart of the proposed approach.
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Fig. 4. Convolutional layers feature maps with corresponding extracted feature. 

In this work, I follow the recent approaches for exploiting 
pretrained CNN models by taking the output of the last fully 
connected layer (before the sigmoid layer) to represent the 
images. That is I feed each image    as input to the network and 
generate its corresponding CNN feature representation vector 

     
 of dimension  : 

        
   (   

   (  
       ))                                       

Where    
              represent the functions 

defining the different layers of CNN,   is the total number of 
layers, and    and    represent the number of labeled source 
images and unlabeled target images, respectively. Fig. 4 shows 
feature maps with corresponding extracted features. 

2) Classification 
I feed the CNN feature vectors from the previous stage to 

an extra network placed on the top of the pretrained CNN as 
shown in Fig. 3. Specifically, this network is composed of two 
fully-connected layers, a hidden layer followed by binary 
classification layer: a sigmoid layer. The hidden layer maps the 

input    to another representation   
   

      
 of dimension 

     through the nonlinear activation function   as follows: 

      
   

          )                                                          (2) 

Where mapping weight matrix referred as             . 
I adopt the sigmoid function i.e.                     as 
a nonlinear activation function. For simplicity, the bias vector 
in the expression is ignored as it can be incorporated as an 
additional column vector in the mapping matrix, whereby the 
feature vector is appended by the value 1. 

I adopt the recently introduced dropout technique [26] to 
increase the generalization ability of the network and prevent it 
from overfitting. 

III. RESULTS 

A. Experimental Results 

For the sake of comparison, I followed the protocol 
proposed in [22], the dataset has been divided into training 
(70%) and testing (30%) sets taking in consideration that the 

patient used in training and testing sets are mutually exclusive 
for training i used 58 patients (17 Benign and 41 Malignant), 
for test use used 24 patients (7 Benign and 17 Malignant) for 
test. The adopted protocol was applied independently to each of 
the four different available magnifications factor (40X, 100X, 
200X, and 400X) in the patient level, the recognition rate is 
computed as follows: 

                         
∑             

                       
                 

While 

                
    

  

                                                                  

Here,    be the number of cancer images of patients, and 
     represent the cancer images that are correctly classified. 

For the pretrained CNN, i explore VGGm model [27] 
which composed of 8 layers, and uses five convolutional filters 
of dimensions (number of filters × filter height × filter depth: 
96×7×7, 256×5×5, 512×3×3, 512×3×3, and 512×3×3) and 
three fully connected layers with the following number of 
hidden nodes  (fc1: 4096, fc2: 4096, and softmax: 1000). This 
network was pretrained on the ILSVRC-12 challenge dataset. I 
recall that the ImageNet dataset used in this challenge is 
composed of 1.2 million RGB images of size         pixels 
belonging to 1000 classes and these classes describe general 
images such as beaches, dogs, cats, cars, shopping carts, 
minivans, etc. As can be clearly seen, this auxiliary dataset is 
completely different from the ECG signals used in the 
experiments. 

For training the extra network placed on the top of the 
pretrained CNN, I follow the recommendations of [28] for 
training neural networks. I set the dropout probability   to 0.5. 
I use a sigmoid activation function for the hidden layer. For the 
backpropagation algorithm, I use a mini-batch gradient 
optimization method with the following parameters (i.e., 
learning rate: 0.01, momentum: 0.5, and mini-batch size: 50). 
The weights of the network are set initially in the range [-0.005 
0.005]. 

Extracted Features 
Input Data 
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TABLE II.  CLASSIFICATION ACCURACIES (%) WITH MAGNIFICATION 40X 

Test 
Patient  

no. 

40x 

1 2 3 4 5 

B
e
n

ig
n

 

1 100 100 91.9 73.3 96.2 

2 65.7 30.6 100 100 48.6 

3 96.8 53.8 100 37.9 20.0 

4 100 100 93.3 100 100 

5 100 100 51.7 91.3 100 

6 84.6 38.5 100 94.6 92.9 

7 18.2 48.3 0.0 9.1 0.0 

M
a

li
g

n
a

n
t 

8 100 96.9 90.0 100 85.7 

9 100 100 100 100 68.0 

10 100 82.8 82.8 78.3 100 

11 96.9 95.2 100 94.7 100 

12 100 100 90.6 100 100 

13 100 100 100 97.3 100 

14 82.6 95.0 100 100 100 

15 92.3 57.1 74.2 91.4 100 

16 33.3 96.2 78.3 100 100 

17 100 100 100 100 100 

18 97.2 90.0 100 100 88.5 

19 98.0 100 100 100 100 

20 93.8 72.0 26.7 100 97.4 

21 23.5 94.4 23.5 100 100 

22 100 100 100 92.3 100 

23 100 100 71.9 90.0 100 

24 100 100 100 100 91.7 

Average   86.8 85.4 82.3 89.6 87.0 

TABLE III.  CLASSIFICATION ACCURACIES (%) WITH MAGNIFICATION 

100X 

Test Patient no. 
100x 

1 1 1 1 1 

B
e
n

ig
n

 

1 72.7 72.7 72.7 72.7 72.7 

2 66.7 66.7 66.7 66.7 66.7 

3 100 100 100 100 100 

4 100 100 100 100 100 

5 100 100 100 100 100 

6 70.6 70.6 70.6 70.6 70.6 

7 21.2 21.2 21.2 21.2 21.2 

M
a

li
g

n
a

n
t 

8 97.1 97.1 97.1 97.1 97.1 

9 100 100 100 100 100 

10 100 100 100 100 100 

11 92.7 92.7 92.7 92.7 92.7 

12 100 100 100 100 100 

13 100 100 100 100 100 

14 40.9 40.9 40.9 40.9 40.9 

15 100 100 100 100 100 

16 26.7 26.7 26.7 26.7 26.7 

17 95.2 95.2 95.2 95.2 95.2 

18 100 100 100 100 100 

19 90.7 90.7 90.7 90.7 90.7 

20 93.9 93.9 93.9 93.9 93.9 

21 87.5 87.5 87.5 87.5 87.5 

22 100 100 100 100 100 

23 100 100 100 100 100 

24 100 100 100 100 100 

Average   86.8 85.7 85.7 85.7 85.7 

TABLE IV.  CLASSIFICATION ACCURACIES (%) WITH MAGNIFICATION 

200X 

Test Patient no. 
200x 

1 2 3 4 5 

B
e
n

ig
n

 

1 100 100 100 0.0 84.2 

2 48.4 52.6 100 86.8 25.8 

3 100 73.7 100 100 6.3 

4 100 88.1 91.7 92.9 100 

5 100 94.6 100 60.0 100 

6 57.1 45.7 97.3 88.2 100 

7 12.5 87.5 12.5 97.3 0.0 

M
a

li
g

n
a

n
t 

8 93.3 100 100 100 92.9 

9 100 100 100 100 77.8 

10 95.8 100 78.7 90.0 86.7 

11 97.1 94.7 86.7 92.9 100 

12 100 100 100 100 100 

13 100 96.4 94.1 95.5 100 

14 23.8 92.9 93.8 100 100 

15 100 85.7 84.8 100 97.1 

16 85.7 100 100 85.7 100 

17 100 86.7 100 100 100 

18 100 100 100 100 100 

19 94.5 80.0 100 91.2 100 

20 90.6 92.6 100 88.9 100 

21 0.0 96.9 100 76.2 100 

22 100 100 100 82.8 100 

23 100 23.8 94.4 40.9 100 

24 100 89.3 100 100 100 

Average   86.8 83.3 86.7 93.1 86.2 

TABLE V.  CLASSIFICATION ACCURACIES (%) WITH MAGNIFICATION 

400X 

Test 
Patient  

no. 

400x 

1 2 3 4 5 

B
e
n

ig
n

 

1 93.8 94.1 40.0 52.9 100 

2 66.7 89.2 88.2 88.5 50.0 

3 100 69.2 91.7 80.0 20.7 

4 94.1 79.5 53.3 84.6 88.9 

5 93.3 96.9 100 50.0 88.2 

6 70.8 45.8 96.9 71.4 100 

7 3.0 60.0 9.1 96.9 11.8 

M
a

li
g

n
a

n
t 

8 100 92.3 93.1 100 80.0 

9 100 100 100 100 81.8 

10 100 100 85.7 100 73.3 

11 92.1 100 60.0 100 100 

12 100 100 100 100 100 

13 100 95.1 100 100 100 

14 54.2 92.9 100 100 100 

15 100 53.3 86.1 96.6 100 

16 45.5 100 100 92.9 100 

17 100 80.0 100 100 100 

18 100 100 100 100 93.5 

19 90.2 100 96.4 100 100 

20 96.2 100 95.8 100 100 

21 26.7 100 100 66.7 100 

22 100 100 100 71.4 100 

23 100 75.0 93.8 26.7 100 

24 100 100 100 60.0 100 

Average   86.8 84.4 88.5 87.1 84.9 
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TABLE VI.  THE PATIENT-LEVEL CLASSIFICATION ACCURACIES (%), 
COMPARING OUR METHOD WITH EXISTING RESULTS ON THE BREAKHIS 

DATASET 

Retrained 

CNN 

Magnification 
Average 

40x 100x 200x 400x 

[22] 83.8±2.0 82.1±4.9 85.1±3.1 82.3±3.8 83.33 

CNN [29] 83.1±2.1 83.2±3.5 84.6±2.7 82.1±4.4 83.25 

Vgg_m  86.2±2.7 85.9±0.5 87.2±3.6 86.3±1.7 86.80 

To present our results, I train the CNN networks depending 
on their magnifications (40x, 100x, 200x, and 400x) separately. 
The experiment was repeated five times as shown in Tables II-
V, the average accuracy for five cases of the proposed CNN 
methods has been reported in Table VI which shows the 
superior accuracy of the proposed methods at patient level 
against state of the art methods in different magnification 
factors. 

IV. CONCLUSION 

This paper proposed a deep learning framework for breast 
cancer detection and classification. The yielded results confirm 
that deep learning can incur large margin improvements with 
respect to handcrafted features. Although the presented method 
achieves plausible scores, it can benefit from further 
improvements, potentially by 1) customizing more deep 
models; and 2) fusing several deep architectures in order to 
elevate the performance. Another direction to undertake is to 
adopt active learning in order to raise the classification scores. 
Ultimately, domain adaptation is another research line that can 
introduce tangible improvements. 
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