
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

101 | P a g e

www.ijacsa.thesai.org

Secure and Privacy Preserving Mail Servers using

Modified Homomorphic Encryption (MHE) Scheme
A Technique for Privacy Preserving Big Data Search

Lija Mohan
1
, Sudheep Elayidon M

2

Division of Computer Science, School of Engineering,

Cochin University of Science & Technology,

CUSAT, Kochi, Kerala, India

Abstract—Electronic mail (Email) or the paperless mail is

becoming the most acceptable, faster and cheapest way of formal

and informal information sharing between users. Around 500

billion mails are sent each day and the count is expected to be

increasing. Today, even the sensitive and private information are

shared through emails, thus making it the primary target for

attackers and hackers. Also, the companies having their own

mail server, relies on cloud system for storing the mails at a lower

cost and maintenance. This affected the privacy of users as the

searching pattern is visible to the cloud. To rectify this, we need

to have a secure architecture for storing the emails and retrieve

them according to the user queries. Data as well as the queries

and computations to retrieve the relevant mails should be hidden

from the third party. This article proposes a modified

homomorphic encryption (MHE) technique to secure the mails.

Homomorphic encryption is made practical using MHE and by

incorporating Map Reduce parallel programming model, the

execution time is exponentially reduced. Well known techniques

in information retrieval, like Vector Space model and Term

Frequency – Inverse Document Frequency (TF-IDF) concepts are

utilized for finding relevant mails to the query. The analysis done

on the dataset proves that our method is efficient in terms of

execution time and in ensuring the security of the data and the

privacy of the users.

Keywords—Big data; encrypted data searching; privacy

preserving; homomorphic encryption; hadoop; map reduce

I. INTRODUCTION

Today, the data is evolving at an enormous rate and Cloud
Computing paved the way to economic and easy storage of Big
Data. World Wide Web (WWW), Social Media, Electronic
Health Records, etc. are all sources of Big Data. Since this Big
Data cannot be stored and processed using single system, it is
stored in multiple systems or preferably outsourced to cloud
system. But, this data outsourced to a third party system like
cloud raises some security challenges. NIST [23] identifies the
‗Security and Privacy of the stored data‘ as one of the major
challenge to be addressed while storing sensitive data in the
cloud. According to the application requirement, methods
adopted to ensure the security and privacy differs. This article
explains a novel technique to implement secure Email servers
that ensures the privacy of each user.

Emails are becoming the easiest, inexpensive and faster
method of personal and formal communications. Many people

utilize the free email service provided by Google, Yahoo, etc.
Private organizations maintain their own mail servers to ensure
more privacy and security of the users and data transferred.
But, as the employees increase and as the size of mails
increases, these organizations should maintain a good amount
of infrastructure for the efficient storage which will result in a
heavy maintenance cost. Cloud computing comes to the rescue
here. But, ensuring the privacy and security of the users and
emails is a challenging issue. ―Hilary Clinton‘s Email Leak‖,
―Effect of Email Leak during French Elections‖ [24], etc. are
the result of inefficient and insecure storage and transfer of
emails.

This article proposes a secure and privacy preserving
technique to store, retrieve and transfer of sensitive e-mails. To
ensure security, traditional encryption techniques can be
utilized. Encrypt each email before passing through the
network and decrypt it at the receiver side. Also, before storing
the mails in cloud system encrypt it.

Thus, storage and transmission of encrypted mail is
possible by utilizing existing well known cryptosystems. But,
search and retrieval of specific mail is the difficult part. Since,
all mails are stored in an encrypted form, the direct solution is
to download all the mails to the client machine, decrypt them
and find the matching mails. But, this will consume a large
bandwidth and hence, not at all an economic solution,
considering the pay-as-you-use pricing model of cloud. Also,
if there are too much mails, download and decryption of each
mail will be a time consuming task and will not be feasible, if
the client machine does not have much processing capability.

The scenario given in Fig. 1 illustrates the need for secure
email server. Alice is working in ABC Company which
processes information dealing with the national security. They
maintain their own mail server for transfer of mails between
their employees. The mail server is hosted on a Cloud system.
Hence, to ensure the security, mails are stored in an encrypted
form. Later, to retrieve all mails related to ―Mission X‖, either
Alice need to download all mails to her system, decrypt them
and search or decrypt all mails at the Cloud system and search
and retrieve only the specific mails. The former method wastes
a lot of bandwidth and later results in security violation as
decryption is done at a cloud machine.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

102 | P a g e

www.ijacsa.thesai.org

Fig. 1. Scenario illustrating the need for secure Email server.

II. RELATED WORK

Encrypted data searching is partially made possible through
different techniques like Property Preserving Encryption [15],
Searchable Symmetric Encryption [16], [17], Homomorphic
Encryption [10], etc. But none of these methods have been
found to be efficient and practical for real word applications.
Hence, based on the application context, an algorithm is
selected and modified to meet the privacy and security
constraints. Statistical and access pattern leakage makes PPE
schemes less adoptable to Cloud [1], [2]. SSE schemes are
preferred over PPE for more storing more sensitive data but at
the cost of complex operations like pairing, elliptic curves, etc.
Attribute Based Encryption, Identity Based Encryption, etc.
helps to restrict the access to the documents but does not
support content searching. Fully Homomorphic Encryption
scheme put forward by Gentry in 2012 [11]-[13] is considered
as a holy grail for encrypted data operations but no practical
methods have been put forth which can be directly applied to
any application. Oblivious RAMS [19] are another concept to
prevent access leakage but with a higher implementation cost.

III. BACKGROUND

The authors utilise the well-known techniques for
information retrieval, like vector space model [3] and TF-IDF
[4], for retrieving the relevant documents. The search similarity
index thus generated is encrypted using homomorphic
encryption [5] scheme and encrypted functions are applied on
it to retrieve the similar document indices. This list is then sent
to the client side and the ranking is done there by decrypting
the obtained indices and sorting them based on their similarity
score.

A. TF-IDF Calculation

Term Frequency – Inverse Document Frequency is a
statistical measure used to evaluate the importance of a word in
a document, or a corpus. Term Frequency implies the
cardinality of occurrence of each word in a document and
Inverse Document Frequency implies the importance of a word
in the entire corpus.

TFi,j = Nij / ∑Nkj (1)

Where TFijimplies the term frequency of an i
th
 word in j

th

document, Nij implies the frequency of occurrence of i
th
 word

in j
th
 document and ∑Nkj implies the total number of words in

the j
th

 document. Since we are dealing with Big Data, we utilise
a normalised TF value for further evaluations.

TFnij = TFij / max(TF) (2)

Where TFnij implies the normalised TF value for the i
th

word in the j
th

document and max(TF) implies the maximum
value for TF obtained for any word in the document collection.

IDFi = 1 +log(D/|Fi|) (3)

Where, |D| implies a total number of documents in the
corpus and |Fi| implies a total number of occurrence of terms in
the corpus.

B. Vector Space Model

Vector Space model [6]-[9] represents text documents in
rows and columns, where the rows are distinct words, and the
columns are documents in the corpus and each cell represents
the degree to which each word belongs to a document. TF-IDF
is used as the metric to represent the degree of relevance of
words in a document. This model represents documents and
words as a vector.

Document collection, Dt = (d1, d2 ,d3 , …. , dt)

Word Collection, Wk= (w1, w2, w3 , …. , wk)

If Dt is arranged in columns and Wk in rows, each cell, Ctk

represents the similarity score.

When a query comes with x words, Qx= (w1, w2… wx), the
similarity of the document is identified by (4).

Similarity Score, St = ∑i=1 Cit * Bi (4)

Here, Bi has a value 0/1, depending on whether the word is
present in the query list or not.

After obtaining the similarity score for ‗t‘ documents, they
are ranked in order to find the most similar documents.

IV. MODIFIED HOMOMORPHIC ENCRYPTION (MHE)

SCHEME

According to Gentry‘s Homomorphic Encryption scheme
using ideal lattices, the encryption scheme is c = pq+2r+m and
the decryption scheme is m = (c(mod p))mod 2. Before
encrypting any message, it should be converted to binary and
each bit is encrypted by using this formula. This is a
generalized method to be adopted if we do not know the value
of message to be encrypted. But if we know this message range
prior, the complexity of this scheme could be greatly reduced.
Binary conversion and bit by bit encryption can be replaced by
a single step encryption and decryption vice versa. Also, the
number of bits needed to store the encrypted value will be
drastically reduced to approximately 1/||n|| where n is the
number of bits in the binary representation of the message.

A. Modified Homomorphic Encryption (MHE) Algorithm

Let m ranges from 1 to n, then set s = 2
2||n||

. The secret key,
p should be a large number of the order of O(s

3
). The noise

parameter, r will be a smaller value compared to s and p; i.e. p
>>>s >>r.

Encryption: Encrypt(SK, m):

Given m  Zn and the secret key p, choose a random value
for r and q.

Return mails matching ―Mission X‖

Mail Server of Company

ABC

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

103 | P a g e

www.ijacsa.thesai.org

Cipher Text, c = pq + sr +m
Decryption: Decrypt(SK,c):

Given the secret key, ‗p‘ and the cipher text, ‗c‘ then output
is, m = (c mod p) mod s.

B. Proof of Correctness for MHE Algorithm

Proof of correctness for decryption

 m = (c mod p) mod s

 = ((pq+sr+m) mod p) mod s

 = m mod s (since p > s.r)

 = m

Proof of correctness for homomorphic addition

m1 + m2 = ((C1 + C2) mod p) mod s

 = ((pq1+sr1+m1 + pq2+ sr2+m2)mod p) mod s

 = ((p(q1+q2)+s(r1+r2)+m1+m2)mod p) mod s

 = (s(r1+r2)+m1+m2)mod s (since p >> s(r1+r2))

 = m1 + m2

Proof of correctness for homomorphic multiplication

m1 * m2 = ((c1 * c2) mod p) mod s

 = ((((pq1+sr1+m1 * pq2+ sr2+m2) mod p) mod s

 = (s
2
r1r2 + sr1m2 +sr2m1 + m1m2) mod s

 (since p >> s
2
.noise)

 = m1.m2

V. SYSTEM DESIGN

Secure Mail Servers encrypt each mail before passing it
through the network. Public Key Cryptosystem powered by
LDAP is utilized for this. For storage of mails, as well as for
the secure transfer of mails, traditional cryptographic
techniques are utilized, as it is found to be more efficient and
less time complex. For encrypting the mails, AES is utilized.
Each mail is encrypted by user‘s secret key and uploaded to
cloud. To fetch a mail, the same key is used for decryption.
Also, while sending a mail, it is encrypted by receivers‘ public
key using RSA encryption system. Receiver can use his secret
key to decrypt and view the contents of the mail.

Each mail will be stored in the cloud system in an
encrypted form. To search and retrieve the matching mails
from this encrypted domain, a vector space is generated and
encrypted using the Modified Homomorphic Encryption
scheme (discussed in Section 3.1). A two round search and
retrieval strategy is followed. During the first round, a trapdoor
is generated with the query keywords and is used to calculate
the encrypted score of each mail. Cloud system will return the
Mail-ID along with the encrypted score to the user. User will
decrypt the scores, rank them and send the top-K Mail-IDs to
the cloud. Cloud will now send the corresponding encrypted
mails to the user in the second round of communication. Fig. 2
illustrates the two round search and retrieval scheme. As
explained in Section 1, secure mail storage and transmission is
achieved using traditional cryptosystems. How to securely
retrieve the relevant mails are discussed in the next section.

Fig. 2. Two round search and retrieval scheme.

A. Secure Mail Storage for Secure Retrieval

To implement secure ranked mail retrieval, we adopt the
indexing technique used in Information Retrieval. Before
encrypting a mail for the secure storage, generate the vector
space model filled with TF-IDF values. The TF-IDF value is
then normalized using min-max normalization to put within the
rage 1 to n. Each cell value is then encrypted using the MHE
scheme described. Words and Mail-IDs are removed from this
index and its order is kept as a key for recovering the relevant
files. The MHE encrypted index is uploaded to cloud along
with the encrypted mails. Each time when a mail is sent or
received, only this index has to be updated and the changed
order of words and mail IDs will be made available to the
owner.

B. Secure and Ranked Mail Retrieval

To search for a particular mail containing some query
keywords Q = (q1,q2,…qn), a string, S is generated which is a
combination of 0s and 1s. The length of the string will be equal
to the size of the Wordlist. Corresponding to each word in the
Wordlist, if that word is present in the query, it will be set
otherwise it will be unset. Each bit of this string is then
encrypted using MHE to form the trapdoor.

for each wordi in the Wordlist

 If(wordi in Q) Si = 1; else Si =0 (5)

On receiving the trapdoor, the cloud will do multiplication
and summation on the index to obtain the encrypted scores
corresponding to each column using equation 6. Due to the
additive and multiplicative homomorphic property of MHE,
the operations done on this encrypted data will be
homomorphic to the operations done on raw data. The list of
encrypted scores thus obtained is returned to the user.

 Similarity_Score, SSm = ∑
w

i=1 TF-IDFid * Twi . (6)

User will decrypt the score with his secret key and rank
them to identify the top-K matching mails. The corresponding
mail IDs are sent to the cloud. The cloud will return the
encrypted mails which are then decrypted at the client side.
Thus a two round communication is initiated between user and
cloud system to retrieve the matching mails. Decryptions take
place only at the client side to ensure absolute security. Also,
compute intensive operations like score calculation take place
at the cloud which ensures efficiency.

Encrypted

Files

Encrypted

Index

Trapdoor

(q1,q2,..qn) (Mail-ID,

Enc(Score)

)

(Top K
Mail-IDs)

Enc(Mails)

Round1

Round2
Mail Storage

Mail Retrieval

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

104 | P a g e

www.ijacsa.thesai.org

Ranking of scores involve finding the greatest ‗k‘ values
from the list. To reduce the complexity of ranking procedure
using sorting techniques, an efficient swapping strategy is
adopted. This method is less time intensive compared to
traditional sorting. Ranking is achieved using Algorithm 1.
There is no need of sorting the entire list. Suppose we need to
identify the top k scores, add k values to a ‗topKlist‘ from the
input values arranged in ascending order. For each next value
in the input array, if it is less than the first value of ‗topKlist‘,
discard it otherwise, remove the first value of the list and add
the new value to the correct position in the ‗topKlist‘. After
each value in the input array is scanned, the ‗topKlist‘ will
contain the most relevant k mails arranged in ascending order.
This algorithm reduces the complexity to O(mk) where m is
the total number of mails and k is the number of mails to be
retrieved. Complexity can further be reduced by applying a tree
structure.

C. Improving the Ranking of Mails

Apart from the content similarity of the mail with the query
keywords, there are other factors that affect the ranking of
similar documents. For example, if a user has marked one
email as ‗important‘, then such mails shall be given some
weightage even if their similarity score is a bit less. This is
achieved by adding one more row to the vector space for
including the weight of the mail. If the mail has been marked
as ‗important‘ by the user, the filed will be set 1 else 0. The
value can be increased or decreased based on application
requirement. The same technique can be applied to emails
tagged as spam, promotions, etc.

The entire stages of the Secure Index Generation are
summarised below:

1) Setup(λ): Based on the security parameter, λ the data

owner generates the secret key SK.

2) IndexBuild(DocCollection,SK): Documents are

arranged in vector space model after applying IR techniques

like stemming and stop word elimination. The index is

homomorphically encrypted to generate a secure index, Iw with

height w and width m, using the secret key, SK. Then, Iw is

uploaded to cloud server along with other encrypted mails.

3) TrapdoorGenerate(Query,SK): The query keywords

obtained from user, Qn are arranged into a Boolean Query

vector form Qw, where Qj = 1 if wj is present in Qn else 0. Qw is

then homomorphically encrypted using SK to form the trap

door, Tw. Tw is sent to the cloud server.

4) ScoreCalculate(Tq,Ie): Encrypted score, ‗es‘ of each

mail is calculated using equation 1. Resulting vector will be

SSm = (es1, es2,…., esm)

5) Rank(SSm,SK,n): Encrypted Scores are decrypted at

client machine using secret key, SK and retrieve the actual

scores, Sm=((fid1,s1),(fid2,s2),….,(fidm,sm)) . Sort the scores to

find the top n similar mails matching with the query.

6) Retrieve Top Matching Files: The top-K ranked

document ids are sent to the cloud server and it returns the

encrypted documents to the clients, which can then be

decrypted to view the mail contents.

VI. SECURITY ANALYSIS

The security of the proposed scheme should guarantee that
the outsourced data is safe at the third party storage. The cloud
server that we consider is always an honest, but curious
system. Hence, the data as well as the related information like
index, keywords, etc. should be protected against statistical
leakage, access pattern identification and term distribution.
The overall security of our information retrieval system

depends on the security of the proposed encryption scheme and
the distributed implementation of the index creation and
retrieval phase.

A. Security of the Homomorphic Encryption Scheme used for

Securing the Index

The proposed MHE scheme is secure and can be explained
based on the approximate GCD problem. Consider the
approximate-GCD instance {x0, x1,….xt} where xi = pqi + ri.

Algorithm 1: Top-K Similar Document Select Algorithm (Sd,K)

Input :

Sd : list containing scores of each file Sd=((fid1,s1),(fid2,s2),….,(fidd,sd))

K : number of files to be retrieved.

Output:
TopListK = Top K-Relevant Files

1. Initialize: TopListK = NULL

2. For each item Ɛ Sd

3. If length(TopListn) < K

4. Add item to TopListn in ascending order of the score

5. Else

6. If(item[‗score‘] > TopList0[‗score‘])

7. Replace TopList0 with item

8. Sort first K elements in TopListn in ascending order.

9. Else

10. Discard the item

11. End IF

12. End IF

13. End For

14. Return TopListn

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

105 | P a g e

www.ijacsa.thesai.org

Known attacks on the approximate-GCD problem for two
numbers include brute forcing the reminders, continued
fractions, and Howgrave-Graham‘s approximate-GCD
algorithm [14].

A simple brute-force attack is to try to guess r1 and r2 and
verify the guess with a GCD computation. Specifically, for r1‘,
r2‘ Ɛ (2

-ρ
, 2

ρ
), set x1‘ = x1-r1‘, x2‘=x2-r2‘, p‘=GCD(x1‘,x2‘).

If p‘ has ᵑ bits, output p‘ is a possible solution. The solution
p will definitely be found by this technique, and for the
parameter choices, where ρ is much smaller than ᵑ, the solution
is likely to be unique. The running time of the attack is
approximately 2

2ρ
.

Attacks for arbitrarily large values of t include lattice-based
algorithms for simultaneous Diophantine approximate [20],
Nguyen and Stern‘s orthogonal lattice [21], and extensions of
Coppersmith‘s method to multivariate polynomials [22].

Apart from the security of the homomorphic encryption,
our scheme utilised word order and document order as the keys
for correct retrieval. W words and D documents can be
arranged in W! X D! ways and as W or D increases, the
complexity increases.

B. Security of the Index Creation and Information Retrieval

Scheme

The proposed scheme uses homomorphic encryption to
secure the index and without decrypting the index at server
side, the encrypted similarity score of the documents is
identified and returned to the client side. Hence, the method
ensures that the data is secured against statistical and access
pattern leakage. Suppose, if two queries contain the keyword q,
then the word vector vq in W will be set to 1, and will be
homomorphically encrypted with two different keys K1, K2,
which will yield two different cypher values, C1 and C2. Hence,
seeing the values of the cypher text, we cannot predict the
keywords that are searched and the frequency or order of
accessing different keywords. Also, to prevent access pattern
leakage, apart from k relevant files, k irrelevant files are also
retrieved which reduces the chance of probabilistic approaches
to find the file content.

The proposed scheme hides the term distribution, as tf-idf
values are normalised, encrypted and stored in the cloud.
Since, the encryption is not ordered preserving, depending on
the absolute value of weights, a relevance of documents cannot
be identified. Thus, the term distribution, as well as the inter
distribution, is hidden from third party.

Fig. 3 illustrates the term distribution of the terms ―data‖
and ―resources‖ with other terms in the dataset.

Fig. 3. Distribution of similarity relevance of 142 terms with (a) ―data‖, and (b) ―resources‖ before and after FHEI in the 20 Newsgroups data set.

Complex operation like encrypted score calculation is done
at the cloud server and ranking of the scores is done at the
client side thus ensuring the security of the data. Also, the
privacy of the user is ensured by encrypting the query before
sending it to cloud server.

VII. ACCELERATING MHE IMPLEMENTATION USING MAP

REDUCE

Distributed processing using Map Reduce over Hadoop
accelerates the speed of execution of the index creation and

retrieval stages. Fig. 2 illustrates the working of MHE using
Map Reduce.

Phase 1: Encrypted Index Creation
Stage 1: Inverted Index Creation with the frequency of

occurrence.
An inverted index is a data structure which stores the

details of mapping from words to files. After forming the
inverted index, we need to form a vector space model with
each cell containing TF-IDF values. In order to simplify the
vector space generation stage, we calculated the frequency of
occurrence of each word in each document, simultaneously

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

106 | P a g e

www.ijacsa.thesai.org

with the inverted index creation. This list is kept separately so
that it can be re-used when some modifications happen in the
input document collection.

Stage 2: Encrypted Vector Index Generation
After obtaining the output from Stage 1, each Mapper for

the next stage will be assigned with finding the TF-IDF of each
cell. TF can be obtained from the stage1 output and DF, by
summing all values. TF-IDF is calculated as per (5). After
obtaining the TF-IDF value, MHE is applied as per (6) to form
the encrypted value. The entire output from different mappers
is then merged to form the final encrypted vector space index.
This is then uploaded to cloud. Stage 2 does not require a
Reduction stage. Fig. 4 illustrates the details of Map Reduce
Stages. Encryption of each document can also be done
efficiently by adding one more Mapper stage.

Phase 2: Ranking to retrieve K-Similar Documents.

To retrieve top k similar documents, in an ideal case, assign
the task to K mappers with D/K input, where D is the total
number of documents. Each mapper evaluates Algorithm 1 to
find the most similar document. Collecting the output from K
Mappers will give the top K matching documents. There is no
Reducer needed in this case. If only N (N<K) mappers are
available, assign D/N input to each mapper and evaluate
Algorithm 1 to get matching K/N documents. The reducer will
select top K from the final result.

Fig. 4. Map reduce implementation of encrypted vector index creation.

VIII. EXPERIMENTAL SETUP AND EVALUATIONS

The experiment is evaluated on 10 node Hadoop cluster
setup on Amazon Web Service (AWS). Namenode is a t2.large
instance. Secondary namenode and datanodes are t2.micro
instances. All machines are Ubuntu 14.2 installed with
OpenJDK 1.7 and Hadoop stable version 1.0.2. HDFS
Replication factor is set to 3 and HDFS block size is 8MB.

A. Dataset

The dataset used for testing is Thomson Reuters Text
Research Collection (TRC2). The dataset contains 1,800,370
stories which occurred at period 01-01-2008 00:00:03 to 28-
02-2009 23:54:14. The size of the dataset is 2,871,075,221
bytes. TRC2 is a single long file with date, headlines and
stories stored in comma separated form. To match our testing
requirement, we split this large file into multiple files where
each file is named with a date in ddmmyyy.txt format and the
content of that file is the headlines and stories on that particular
day. Thus 419 files have been generated where each file size
ranges from 8MB to 16MB. To store and retrieve these small
files efficiently from Hadoop Distributed File System, BAMS
[18] technique is followed.

B. Performance Analysis

The entire scheme is broadly divided into 2 phases; the
Documents Upload phase and the Document retrieval phase.
Performance of each phase is separately analyzed and
explained.

a) Performance of the Initialization phase

Initially, we need to run the setup (λ) algorithm to derive
the public and secret keys needed for encryption and
decryption. To reduce the tradeoff between security and
efficiency, we fixed the value of λ as 128. Secret key will be a
value between [2

ᵑ-1
,2

ᵑ
]. Thus the complexity of this stage will

be O(λ
ᵑ
) which is a constant, as λ is constant.

The index building stage involves tf-idf calculation and
homomorphic encryption. To reduce the execution time of
index building of large data, we implemented a distributed map
reduce parallel programming model that reduces the
complexity to linear. Also, tokenization, stemming and stop
word elimination is done to reduce the volume of keywords to
be indexed. To update the documents, re-iteration of the entire
index building stage is needed and to avoid such a scenario, we
store idf values separately and hence only the updated part of
the file needs to be re-evaluated to find tf-idf of the
corresponding words. Encryption can be implemented in
O(dw) time, where d is the number of documents and w is the
number of words. Index generation and retrieval stage is
accelerated by following a MapReduce distributed
implementation. Time needed to generate the index is same for
all methods whereas time needed to encrypt the index using
traditional SSE, proposed MHE and MHE implemented using
Map Reduce is illustrated in Fig. 5.

Fig. 5. Comparison of execution time for encrypted index generation.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

107 | P a g e

www.ijacsa.thesai.org

b) Performance of the Similar Document Retrieval

Phase

The retrieval phase includes different stages like Trapdoor
generation, Score Calculation and Sorting & shuffling to
identify the top-k documents. The complexity of our proposed
scheme is highly dependent on the retrieval phase, as this has
to be repeated each time a user posts a query. Hence, we
parallelize the most time-consuming retrieval phase i.e., sorting
and shuffling of top-k results.

Trapdoor Generation involves the binary conversion of a
posted query and the homomorphic encryption of each bit. If
the query contains n keywords, then the complexity will be
O(n). Fig. 6 illustrates the time needed to compute the
Trapdoor by employing homomorphic encryption as well as
traditional searchable symmetric encryption (SSE), by varying
the number of total distinct words in the document collection
and the number of terms in a query. It is well observed that, the
execution time is approximately half for our proposed modified
homomorphic encryption scheme (MHE).

(a)

(b)

Fig. 6. (a) Execution Time by varying the total number of words in the

document collection; (b) Execution Time by varying the total number of terms

in the query.

To calculate the encrypted similarity score, the inner
product has to be performed. This calls for w multiplications
and d additions, where w is the number of words and d is the
number of documents which leads to a complexity of O(wd).
Here, the execution time varies with a variation in the number
of query terms and documents. The comparison is illustrated in
Fig. 7. It is well observed that, for the MHE scheme, the
execution time is increasing almost linearly, whereas for SSE,
it is an exponential increase.

(a)

(b)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

108 | P a g e

www.ijacsa.thesai.org

Fig. 7. (a) Execution Time by varying the total number of words in the

document collection; (b) Execution Time by varying the total number of terms

in the query.

Decryption of scores to obtain the similarity score is done
at client side and the number of terms to be decrypted depends
on total number of documents in the collection. Hence, the
complexity will be utmost O(d). If there are too many
documents, then distributed parallel processing can be
employed to decrypt the terms. Fig. 8 illustrates how the
decryption time of normal MHE scheme and MHE scheme
using Map Reduce Programming Model (MR-MHE) varies
with the number of documents and the number of terms in the
query. Map Reduce implementation always transforms the
execution time to a linear scale. Here, we implemented a
cluster with only 10 nodes. The number of nodes is inversely
proportional to the execution time. Hence, to decrease the
execution time, the nodes can be increased. But, if the
collection contains only less number of documents, map reduce
processing will result in an overhead.

(a)

(b)

Fig. 8. (a) Execution Time by varying the total number of words in the

document collection; (b) Execution Time by varying the total number of terms

in the query.

Ranking and shuffling of File identifiers based on similarity
score is the last stage to be executed, to identify the most
similar documents. Modifying the sorting algorithm as
described in Algorithm 1 itself will reduce the execution time
to O(d.n) and by introducing MR programming, it can be again
reduced to O(d). More reduction is possible by introducing
heap tree implementation. Comparison of the execution time is
shown in Fig. 8.

Fig. 9(a) shows how distributed processing improves the
execution time of ranking, with a variation in k, where k
denotes the number of similar files to be retrieved by the user.
Here, the number of documents is set to 1000. Then, Fig. 9(b)
illustrates how the performance of MR-MHE improves, with
an increase in the query terms. As the number of query terms
change, there is no much observable difference in execution
time, as the query is distributed and evaluated. Hence, the
algorithm is more scalable when the Map Reduce
programming model is adopted for the implementation of our
proposed scheme.

(a)
(b)

Fig. 9. (a) Execution time by varying K; (b) Execution time by varying the

number of query terms.

Scalability of the proposed MHE scheme is evaluated using
SpeedUp metric. The SpeedUp factor defines the ratio of time
needed to execute an algorithm in one machine, to the time
needed to execute it on N machines. In an ideal case, the
method is considered scalable, if the speedup factor remains
constant for different values of N.

SpeedUp, Su= T1/TN …… (7)

Fig. 10(a) illustrates the change in execution time for
varying values of data set size. The speedup for the same is
illustrated in Fig. 10(b). From the figure, it is clear that, even if
the data size increases, there is no much variation in the
execution time, as the number of nodes increase. Thus the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

109 | P a g e

www.ijacsa.thesai.org

algorithm is becoming more scalable, and approaching ideal
values with the increase in data size.

(a)

(b)

Fig. 10. (a) Execution time by varying data size; (b) Speedup.

C. Communication Overhead

The core of our approach is the homomorphic encryption of
vectored index which eliminates the need of transferring the
entire index to the client side for decryption and ranking. The
score is calculated at the server side itself and only the
encrypted scores are forwarded to the client for ranking.
Consider there are 100 files and 1000 distinct keywords. Then
the size of index file to be transferred for traditional SSE will

be approximately 100x1000x1024 bits equals 12MB, if each
cell value is set to 1024 bits. But, for the Modified
Homomorphic Encryption Scheme, it will only be 100x1024
bits which are equal to .01MB. Hence, there is a large variation
in the amount of data to be transferred through the network,
when we compare SSE and MHE.

IX. CONCLUSION AND FUTURE WORKS

The authors have proposed a novel scheme for the
implementation of encrypted mail storage and retrieval based
on similarity relevance. A modified and practical version of
Homomorphic encryption scheme has been utilised and the
execution is accelerated, by introducing distributed Map
Reduce programming model. The scheme supports multiple
keyword queries, ranking of mails based on user ranking
(‗important‘,‘spam‘ etc.) and text matching by utilising most of
the basic techniques in information retrieval, like vector space
model, TF-IDF etc. Analysis done on the MHE scheme proves
the correctness and security of the proposed scheme. The entire
scheme is evaluated on a live Hadoop cluster, and proven to be
efficient, secure, scalable and accurate and hence found
suitable for securing a large amount of data. Currently, the
updates on uploaded mailsneed revision for the entire Index
creation and encryption stage, except for the TF and IDF
calculation. The revised word order and file order are
encrypted using the public key for each user, and passed to
them whenever an update occurs. This limitation can overcome
by experimenting other dynamic indexing techniques which
help in storing real time data as well.

ACKNOWLEDGMENT

Authors sincerely thank Department of Science &
Technology (DST), India for the financial support offered
through INSPIRE Research Fellowship under the grant number
IF140608 and Amazon Web Service (AWS) in
Education Research Grant (No. 651699140108) for utilising
AWS resources for free of cost.

REFERENCES

[1] C. Wang, N. Cao, J. Li, K. Ren, and W. Lou, ―Secure Ranked Keyword
Search over Encrypted Cloud Data,‖ Proc. IEEE 30th Int‘l Conf.
Distributed Computing Systems (ICDCS), 2010.

[2] Cong Zuo, James Macindoe, Siyin Yang, Ron Steinfeld, Joseph K. Liu,
"Trusted Boolean Search on Cloud Using Searchable Symmetric
Encryption View Document", IEEE Trustcom/BigDataSE/ISPA, UK,
2016.

[3] Yun Zhang, David Lo, Xin Xia, Tien-Duy B. Le, Giuseppe Scanniello,
Jianling Sun, "Inferring Links between Concerns and Methods with
Multi-abstraction Vector Space Model" ,IEEE International Conference
on Software Maintenance and Evolution (ICSME), Pages: 110 - 121,
DOI: 10.1109/ICSME.2016.51, 2016.

[4] Nasser Alsaedi, Pete Burnap, Omer Rana, "Temporal TF-IDF: A High
Performance Approach for Event Summarization in Twitter",
IEEE/WIC/ACM International Conference on Web Intelligence (WI),
Pages: 515 - 521, DOI: 10.1109/WI.2016.0087, 2016.

[5] Yasmina Bensitel, Rahal Romadi, "Secure data storage in the cloud with
homomorphic encryption", 2nd International Conference on Cloud
Computing Technologies and Applications (CloudTech), Pages: 1 - 6,
DOI: 10.1109/CloudTech.2016.7847680, 2016.

[6] G. Salton, A. Wong, C. S. Yang, ―A Vector Space Model for Automatic
Indexing‖, Communications of the ACM, Volume 18 Issue 11, Pages
613-620, November 1975.

[7] Wong S. K. M., Ziarko Wojciech, Wong Patrick C. N., ―Generalized
vector spaces model in information retrieval‖, SIGIR '85 Proceedings of

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

110 | P a g e

www.ijacsa.thesai.org

the 8th annual international ACM SIGIR conference on Research and
development in information retrieval, Pages 18-25,Montreal, Quebec,
Canada — June 05 - 07, 1985.

[8] Waitelonis Jörg; Exeler, Claudia Sack, Harald, ―Linked Data enabled
Generalized Vector Space Model to improve document retrieval‖, The
14th International Semantic Web Conference,Pennsylvania, October,
2015.

[9] George Tsatsaronis and Vicky Panagiotopoulou, ―A Generalized Vector
Space Model for Text Retrieval Based on Semantic Relatedness‖,
Proceedings of the EACL 2009 Student Research Workshop, pages 70–
78, Athens, Greece, April 2009.

[10] Xun Yi, Russell Paulet, Elisa Bertino, ―Homomorphic Encryption and
Applications‖, Chapter 2, Springer Briefs in Computer Science, pages 27-
46, Springer 2014.

[11] C. Gentry, ―Fully Homomorphic Encryption Using Ideal Lattices,‖
Proceedings of the 41st Annual ACM Symposium on Theory of
computing (STOC), pp. 169-178, 2009.

[12] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan, ―Fully
Homomorphic Encryption over the Integers,‖ Proc. 29th Ann.
International Conference on Theory and Applications of Cryptographic
Techniques, H. Gilbert, pp. 24-43, 2010.

[13] Nathanael David Black , ―Homomorphic Encryption and the
Approximate GCD Problem‖, A Dissertation Presented to the Graduate
School of Clemson University, August 2014.
http://tigerprints.clemson.edu/cgi/viewcontent.cgi?article=2281&context
=all_dissertations

[14] N. Howgrave Graham, ―Approximate Integer Common Divisors‖,
Proceedings of the International Conference on Cryptography and
Lattices,(CaLC‘ 01), pp. 51-66, 2001.

[15] R. Curtmola, ―Searchable Symmetric Encryption: Improved Definitions
and Efficient Constructions,‖ Proceedings of ACM Conference on
Computer and Communications Security (CCS), pp. 79–88, 2006.

[16] Alexandra Boldyreva, Nathan Chenette, Younho Lee, and Adam O‘Neill.
Order-preserving symmetric encryption. In Antoine Joux, editor,

EUROCRYPT, volume 5479 of Lecture Notes in Computer Science,
pages 224–241. Springer, 2009.

[17] Sanjit Chatterjee and M. Prem Laxman Das, "Property Preserving
Symmetric Encryption Revisited", International Conference on the
Theory and Application of Cryptology and Information
Security,ASIACRYPT, Lecture Notes in Computer Science, vol 9453.
Springer, Berlin, Heidelberg, 2014.

[18] Lija Mohan, Sudheep Elayidom M,―Balanced MultiFileInput Split
(BaMS) Technique to solve Small File Problem in Hadoop‖, IEEE 11th
International Conference on Industrial and Information Systems (ICIIS),
IIT Roorkee, India, 2016.

[19] Lija Mohan, Sudheep Elayidom M. (2017) Encrypted Data Searching
Techniques and Approaches for Cloud Computing: A Survey. In: Mandal
J., Satapathy S., Sanyal M., Bhateja V. (eds) Proceedings of the First
International Conference on Intelligent Computing and Communication.
Advances in Intelligent Systems and Computing, vol 458. Springer,
Singapore, 2016.

[20] J.C. Lagarias, ―The computational complexity of simultaneous
diophantine approximation problems‖, SIAM Journal on Computing
(SICOMP), Volume 14(1),pp 196–209,1985.

[21] P.Q. Nguyen, J. Stern,‖ Adapting density attacks to low-weight
knapsacks‖, Proceedings of Advances in Cryptology, ASIACRYPT‘05,
pp. 41–58, 2005.

[22] D. Coppersmith, ―Small solutions to polynomial equations, and low
exponent RSA vulnerabilities‖, Journal of Cryptology, volume 10(4), pp
233–260, 1997.

[23] ―The NSA Scandal‘s Impact on the Future of Cloud Security - Data
Security and Protection in the Wake of the Spying Scandal‖, White Paper
issued by Porticor, February, 2017. http://mobility-
sp.com/images/gallery/PORTICOR-The-NSA-Scandal%27s-Impact-on-
the-Future-of-Cloud-Security.pdf

[24] Guidelines on Security and Privacy in Public Cloud Computing, NIST
Special Publication 800-144, December 2011.

