
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

160 | P a g e

www.ijacsa.thesai.org

An Efficient Algorithm for Load Balancing in

Multiprocessor Systems

Saleh A. Khawatreh

Dept. of Computer Engineering, Faculty of Engineering, Al-Ahliyya Amman University

Amman-Jordan

Abstract—A multiprocessor system is a computer with two or

more central processing units (CPUs) with each one sharing the

common main memory as well as the peripherals. Multiprocessor

system is either homogeneous or heterogeneous system. A

homogeneous system is a cluster of processors joined to a high

speed network for accomplishing the required task; also it is

defined as parallel computing system. Homogeneous is a

technique of parallel computing system. A heterogeneous system

can be defined as the interconnection of a number of processors,

having dissimilar computational speed. Load balance is a method

of distributing work between the processors fairly in order to get

optimal response time, resource utilization, and throughput.

Load balancing is either static or dynamic. In static load

balancing, work is distributed among all processors before the

execution of the algorithm. In dynamic load balancing, work is

distributed among all processors during execution of the

algorithm. So problems arise when it cannot statistically divide

the tasks among the processors. To use multiprocessor systems

efficiently, several load balancing algorithms have been adopted

widely. This paper proposes an efficient load balance algorithm

which addresses common overheads that may decrease the

efficiency of a multiprocessor system. Such overheads are

synchronization, data communication, response time, and

throughput.

Keywords—Multiprocessor system; homogeneous system;

heterogeneous system; load balance; static load balancing;

dynamic load balancing; response time; throughput

I. INTRODUCTION

Parallel processing has emerged as a key enabling
technology in modern computers, driven by the ever
increasing demand for higher performance, lower costs and
sustained productivity in real life applications. Concurrent
events are taking place in today’s high-performance
computers due to the common practice of multiprogramming
and multiprocessing [1].

Parallel processing is an efficient form of information
processing. Parallel events may occur in multiple resources
during the same interval. Parallel processing demands
concurrent execution of many programs in the computer [2].

Multiprocessor management and scheduling has been a
fertile source of interesting problems for researchers in the
field of computer engineering. In its most general form, the
problem involves the scheduling of a set of processes on a set
of processors with arbitrary characteristics in order to optimize
some objective function.

Basically, there are two resource allocation decisions that
are made in multiprocessing systems. One is where to locate
code and data in physical memory, a placement decision. The
other is on which processor to execute each process, an
assignment decision. Assignment decision is often called
processor management. It describes the managing of the
processor as a shared resource among external users and
internal processes. As a result, processor management consists
of two basic kinds of scheduling: long-term external load
scheduling and short-term internal process scheduling [1], [2].

A scheduler performs the selection a process from the set
of ready to run processes, and assigns it to run on a processor
in the short-term process scheduling operation. The medium
and long-term load-scheduling operation is used to select and
activate a new process to enter the processing environment
[2].

The general objectives of many theoretical scheduling
algorithms are to develop processor assignments and
scheduling techniques that use minimum numbers of
processors to execute parallel programs in the least time. In
addition, some algorithms are developed for processor
assignment to minimize the execution time of the parallel
program when processors are available. There are two types of
models of scheduling deterministic and nondeterministic. In
deterministic models, all the information required to express
the characteristics of the problem is known before a solution
to the problem, a schedule, is attempted. Such characteristics
are the execution time of each task and the relationship
between the tasks in the system. The objective of the resultant
is to optimize one or more of the evaluation criteria.
Nondeterministic models, or stochastic models, are often
formulated to study the dynamic-scheduling techniques that
Adaptive Scheduling Algorithm for Load Balance in
Multiprocessor System take place in a multiprocessor system
[2].

The simplest dynamic algorithm is called self-scheduling.
Self-scheduling [6] achieves almost perfect load balancing.
Unfortunately, this algorithm incurs significant
synchronization overhead. This synchronization overhead can
quickly become a bottleneck in large-scale systems or even in
small-scale systems if the execution time of one process is
small. Guided self-scheduling [6], [7] is a dynamic algorithm
that minimizes the number of synchronization operations
needed to achieve perfect load balancing.

Guided self-scheduling algorithm can suffer from
excessive contention for the work queue in the system.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

161 | P a g e

www.ijacsa.thesai.org

Adaptive guided self-scheduling [6], [7] address this problem
by using a backoff method to reduce the number of processors
competing for tasks during periods of contention. This
algorithm also reduces the risk of load imbalance.

Adaptive guided self-scheduling algorithm performs better
than guided self-scheduling in many cases.

All these scheduling algorithms attempt to balance the
workload among the processors without incurring substantial
synchronization overhead.

An affinity scheduling algorithm [5], [6] attempts to
balance the workload, minimize the number of
synchronization operations, and exploit processors affinity.
Affinity scheduling Employs a per-processor work queues
which minimizes the need for synchronization across
processors.

Adaptive affinity scheduling algorithm [5], [6] maintains
excellent load balance and reduces synchronization overhead.
The main idea behind this algorithm is to minimize local
scheduling overhead so that the phase of dynamically
balancing the workload can be speeded up, which results in
reduction of execution time.

There are many other different algorithms for scheduling
the workload on multiprocessor systems. Such algorithms are
the factoring algorithm, the tapering algorithm, and the
trapezoid self-scheduling algorithm.

These algorithms basically depend on the described
algorithms in them structure with some alterations made for
improving the algorithm in some characteristic or another [8].

A task for transfer is chosen using Selection Strategy. It is
required that the improvement in response time for the task
and/or the system compensates the overhead involved in the
transfer. Some prediction that the task is long-lived or not is
necessary in order to prevent any needless migration which
can be achieved using past history [8], [10], [11].

The dynamic load balance algorithm applies on Folded
Crossed Cube (FCC) network. Basically, FCC is a
multiprocessor interconnection network [9].

This paper is divided into the following sections: The
proposed method is described in Section 2. Results of the
study are analyzed in Section 3. Finally, Section 4 presents the
conclusions.

II. PROPOSED SCHEDULING ALGORITHM

A. Assumptions and Considerations

In this section, some considerations are stated concerning
the multiprocessor system for which the algorithm is designed.
Following are the main assumptions characterizing this
multiprocessor system:

1) System Topology
The multiprocessor system is assumed to be configured

using homogeneous processors. These processors are
connected using the crossbar switches organization of
interconnection networks. Crossbar switches have a good
potential for high bandwidth and system efficiency.

2) Operating System Characteristics
During the course of design of the scheduling algorithm, it

became apparent that the most suitable operating system to
govern the multiprocessor system is the floating supervisor
control. This operating system provides the flexibility needed
to implement the scheduling algorithm since it treats all the
processors as well as other resources symmetrically, or as an
anonymous pool of resources.

3) Design Characteristics
Similar to the affinity and adaptive affinity scheduling

algorithms [5], [6], the proposed scheduling algorithm is also
constructed to have three phases as follows:

B. Process Scheduling Phase

Processes arriving at a process queue are organized using
Nonpreemptive Priority scheduling algorithm, where the
process with the highest priority is always found at the top of
the process queue. When two processes have the same priority
First-In-First-Out scheduling algorithm is applied.

C. Processor Scheduling Phase

In this phase, processes are distributed among processor
queues. Each processor in the system has a local queue
scheduled using Round-Robin scheduling algorithm with a
dynamically adjustable quantum. Processor work states are
defined in this phase, and are used to achieve a balanced load
distribution in the multiprocessor system.

D. Remote Scheduling Phase

This phase is concerned with load redistribution in case a
faulty processor or a heavily loaded processor is detected. A
feedback approach is utilized to transfer the processes in a
faulty or heavily loaded processor back to the process queue
for redistribution. This phase ensures that the reliability of the
system is maintained and thrashing is avoided. Fig. 1
illustrates the basic idea behind the design.

Fig. 1. Process and processor queues.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

162 | P a g e

www.ijacsa.thesai.org

E. Scheduling Algorithm Design

This section contains the detailed design of the proposed
scheduling algorithm. The algorithm consists of three phases,
as described above, and it proceeds as follows:

1) Process Scheduling Phase

a) Construct a process queue Q.

b) Each process Pi arrives to the process queue carrying

a priority variable PPi.

The process with the highest priority is assigned an HP
variable; the highest priority variable.

c) To place a process Pi in the right priority order, its

PPi is compared with HP. Then after iteratively with the rest

of the PP's until the correct position is found.

2) Processor Scheduling Phase

a) Construct processor queues PQi for each processor

PRi

b) The work states of a processor are partitioned as

follows:

 Faulty Processor FP: NF = NT.

 Heavily-Loaded Processor HL: NF >NT/2.

 Normally-Loaded Processor

 NL: NF=NT/2.

 Lightly-Loaded Processor LL: NF <NT/2.

Where;

NT is the total number of processes in a PQ.

NF is the number of processes left in a PQ.

3) Define a processor-state checking variable SCi for

each PRi. This variable indicates the state of a PRi as follows:

a) For a FP.• SC = 3.

b) For a HL processor: SC = 2.

c) For a NL processor: SC = 1.

d) For a LL processor: SC = 0.

4) Distribute processes to PQ's from Q by checking the

SC variable for each PQ.
A process is assigned to the LL processors first, then to the

NL processors. In case of high load, processes are also
assigned to the HL processors when needed.

5) Remote Scheduling Phase

a) A procedure for checking the workload in each PR is

as follows:

 When SC = 3, a FP is detected:

NR=NF.

 When SC = 2, a HL is detected:

NR = NT - NF.

Where;

NR is the number of processes to be remotely scheduled.

b) NR processes are returned to Q for redistribution to

LL processors and NL processors.

c) This procedure is repeated until the SC variable for

all PR's indicates a NL or LL work states.

TABLE I. WITH LOAD BALANCE

Pr..
Resp.

Time

Exec.

Time

Start

Time

End

Time

Av.

Res.

Time

Orig.

Job

Mig.

Job

Ack.

Job

Run

Jobs

1 40 37 1 64 3.64 14 5 2 11

2 21 21 4 66 1.91 6 0 5 11

3 22 22 1 64 2.00 13 2 0 11

4 23 21 2 47 2.30 9 1 2 10

5 13 13 14 66 1.86 7 0 0 7

6 10 10 3 68 1.43 7 0 0 7

7 11 11 3 68 1.38 8 0 0 8

8 33 26 3 39 2.36 14 0 0 14

9 10 10 3 47 1.25 8 0 0 8

10 31 30 4 48 2.38 14 1 0 13

 214 201 1 68 2.14 100 9 9 100

Fig. 2. Response times variations.

III. RESULTS

This algorithm is applied on a simulated system consists of
10 processors and 100 jobs.

The response time is taken as a performance measure.
Table I contains the results where the load balance algorithm
is applied.

Table II contains the results where load balance algorithm
is not applied.

By comparing the results of Table II with the results of
Table I, the difference in the response time is clear where the
total response times is 214 ms compared with 822 ms.

Fig. 2 shows the difference in the response time between
the systems with load balance and without load balance.

0

20

40

60

80

100

120

140

160

180

0 2 4 6 8 10 12

R
e

s
p

o
n

s
e

 T
im

e
s

 (
m

s
)

Processors

Response Times with Processors

With no load balance With load balance

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

163 | P a g e

www.ijacsa.thesai.org

The terms which are used in the tables are defined as
follows:

Response time = finish time – arrival time

Average response time = response time/ number of jobs
executed

Orig. jobs = jobs which originated at this processor.

Mig. Jobs = jobs which were migrated to other processors.

Acq. Jobs = jobs which were acquired from other
processors.

TABLE II. WITH NO LOAD BALANCE

Pr.
Resp.

Time

Exec.

Time

Start

Time

End

Time

Average

Res.

Time

Orig.

Job

Mig.

Job

Ack.

Job

1 71 48 1 64 5.46 13 0 0

2 125 37 2 39 12.5 10 0 0

3 118 46 1 52 11.8 10 0 0

4 38 35 5 44 5.43 7 0 0

5 26 24 2 64 3.71 7 0 0

6 69 39 3 58 6.9 10 0 0

7 9 9 3 22 1.8 5 0 0

8 146 43 3 64 12.17 12 0 0

9 66 52 3 65 5.5 12 0 0

10 154 51 4 55 11.0 14 0 0

 822 384 1 65 8.22 100 0 0

IV. CONCLUSION

The main objective of this paper is to design an algorithm
that achieves a balanced load state on a multiprocessor system.
The proposed scheduling algorithm is a deterministic dynamic
algorithm, which outlines an excellent load balancing strategy.
It also addresses some major overheads that may prove
problematic in the multiprocessing operation. Multiprocessor
systems have many advantages, which make them economical
compared to multiple single systems. One advantage is
increased throughput. By increasing the number of processors,
more work would get done in a shorter period of time.

Another reason for multiprocessor systems is that they
increase reliability. When functions are distributed properly
among several processors, failure of one processor will not
halt the system, but would only slow it down. This ability to
continue providing service proportional to the level of non-
failed hardware is called graceful degradation. Resource
sharing, computation speedup, and communication are other
advantages for building multiprocessor systems [2]-[4].

In the algorithm presented in this paper, we tried to
maximize the advantages of multiprocessor systems. By
achieving a balanced load distribution state on the
multiprocessor system, it was possible to observe the
properties of this system. Throughput is increased. Graceful
degradation is another apparent characteristic. In addition to
these advantages, this algorithm overcomes many overheads
that may occur in a multiprocessor system when it applies
other algorithms. One overhead is synchronization. In the
presence of the process queue and processor queues,

synchronization does not have to be addressed as a
complication. Synchronization is automatically achieved in
the design of the adaptive scheduling algorithm. Data
communication overheads are minimum, since the queue
length at all times is kept relatively short for all the system
queues. The only state which may suffer this overhead is when
the system is in a high load state.

The proposed scheduling algorithm adopts an organization
with a process queue, where each arriving process to the
system is entered, and processor queues for each existing
processor in the system. The processes are distributed from the
process queue to processor queues, where they await
execution. The process queue is scheduled with a
nonpreemptive priority algorithm. This has many advantages
but may present some limitations. One advantage is
prevention of deadlocks [4]. The main problem of priority
scheduling is starvation [4]. This can be solved by aging low
priority processes [4]. Processor queues are scheduled using
Round-Robin scheduling algorithm. The quantum is utilized
here as a control factor. Response time and the throughput
depend on the quantum, which may be dynamically adjusted
to give the desired characteristics [4]. A major limitation of
RR scheduling is the switching between processes present in
the processor queues. This presents an overhead to this
algorithm, which may be overcome by practical testing to
achieve an optimal quantum value. On comparing it with other
scheduling algorithms, the proposed scheduling algorithm
proved superior to them in many aspects. In its unique design
of having both a process queue supported by processor
queues, the proposed scheduling algorithm utilized the
advantages of the various other designs while overcoming
many of them limitations. The presence of a central work
queue unsupported in a multiprocessor tends to be a
performance bottleneck, resulting in a longer synchronization
delay. Heavy traffic is generated because only one processor
can access the central work queue during allocation. The third
limitation is that a central work queue does not facilitate the
exploitation of processor affinity. On the other hand, including
a process queue in the presented design, provides the
possibility of evenly balancing the workload. To eliminate the
central bottleneck, the proposed scheduling algorithm
supported the process queue with local processor queues. This
approach reduces contention and so, prevents thrashing.
Thrashing occurs when the degree of multiprocessing
increases beyond the maximum level and this causes the
system utilization to drop sharply [4]. A central work queue
may cause thrashing during heavy traffic.

For future work, the process queue is to be scheduled with
a preemptive priority algorithm and the results will be
compared with non-preemptive queue scheduling.

REFERENCES

[1] K. Hwang, 'Advanced Computer Architecture: Parallelism, Scalability,
Programmability, 'McGraw-Hill, Inc., 1993.

[2] K.Hwang and F.A.Briggs` Computer Architecture and Parallel
Processing,' McGraw-Hill, Inc., 2002.

[3] A. S. Tanenbaum, `Computer Networks,' Prentice Hall,
FourthEdition,2003.

[4] Silberschatz and Galvin, ` Operating System Concepts,' Addison-Wesley
Publishing Company, sixth Edition,2003.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

164 | P a g e

www.ijacsa.thesai.org

[5] Y.Yan, C.Jin, and X.Zhang,`A datively Scheduling Parallel Loops in
Distributed Shared-Memory System,' IEEE Trans. Parallel and
Distributed. Systems, Vol.8, No. 1, pp. 70-81, January 1997.

[6] E.P.Markatos and T.J.LeBlanc,` Using Processor Affinity in Loop
Scheduling On Shared-Memory Multiprocessors ,' IEEE Trans. Parallel
and Distributed Systems, Vol.5, No. 4, pp. 370-400, April 1994.

[7] C.D. Polychronopoulous andD.J.Kuck, `Guided Self-Scheduling: A
Practical Scheduling Scheme for Parallel Super Computers,' IEEE trans.
Computer, Vol. C-36, No. 12, pp.1425-1439, December 19987.

[8] Samad, A., Siddiqui, J., & Ahmad, Z,’ Task Allocation on Linearly
Extensible Multiprocessor System. International Journal of Applied
Information Systems, 10(5), 1–5, 2016.

[9] Samad, A., Siddiqui, J., & Khan, Z. A.,’ Properties and Performance of
Cube-Based Multiprocessor Architectures,’ International Journal of
Applied Evolutionary Computation, 7(1), 63–78, 2016.

[10] Singh, J., & Singh, G., ’Improved Task Scheduling on Parallel System
using Genetic Algorithm,’ International Journal of Computers and
Applications, 39(17), 2012.

[11] K., Alam, M., & Sharma, S. K. (2015). A Survey of Static Scheduling
Algorithm for Distributed Computing System. Interconnection Network.
International Journal of Computers and Applications, 129(2),25–30,
2015.

