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Abstract—Automatic speech recognition allows the machine 

to understand and process information provided orally by a 

human user. It consists of using matching techniques to compare 

a sound wave to a set of samples, usually composed of words but 

also of phonemes. This field uses the knowledge of several 

sciences: anatomy, phonetics, signal processing, linguistics, 

computer science, artificial intelligence and statistics. The latest 

acoustic modeling methods provide deep neural networks for 

speech recognition. In particular, recurrent neural networks 

(RNNs) have several characteristics that make them a model of 

choice for automatic speech processing. They can keep and take 

into account in their decisions past and future contextual 

information. This paper specifically studies the behavior of Long 

Short-Term Memory (LSTM)-based neural networks on a 

specific task of automatic speech processing: speech detection. 

LSTM model were compared to two neural models: Multi-Layer 

Perceptron (MLP) and Elman’s Recurrent Neural Network 

(RNN). Tests on five speech detection tasks show the efficiency of 

the Long Short-Term Memory (LSTM) model. 
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I. INTRODUCTION 

Machine learning is a form of Artificial Intelligence (AI) 
that gives a machine the ability to evolve by acquiring new 
knowledge. Understanding speech is not an easy task for a 
machine. A machine, just like the human brain, must first 
recognize speech before understanding it. The formalism of 
generative grammars introduced by Noham Chomsky [1] is 
part of a process of theorizing language and allows a 
formalization that was possible to teach a machine. In the 
1980s, statistical approaches very different from the initial 
linguistic formalism were born and quickly gained popularity 
because of their ease of implementation: rather than calling 
upon experts to formalize a given language, was trying to 
create a probabilistic model from a representative sample of 
the language to be modeled automatically. From there, and 
thanks to the increase of the computing power and the storage 
capacity of the machines, it became possible to perform many 
tasks of Automatic Natural Language Processing (ANLP) 
such as machine translation, automatic summarization, data 
mining, speech recognition and comprehension [2]. 

The scope of the ANLP on which this paper is based is the 
understanding of speech. It is usually done through a number 

of stages. The first, optional, can be to transform the initial 
expression of the language into a format that maximizes the 
performance of machine learning. For an oral message, for 
example, a decoder will be used in an Automatic Speech 
Recognition (ASR) step in order to obtain the message in 
textual form or in the form of a lattice of textual hypotheses. 
Indeed the modeling of semantic content is considered easier 
by working on the text than on the acoustic signal, because the 
latter has a very high variability. 

The second step towards understanding is the learning 
phase: building a model that will serve as a support for 
understanding. This model is produced using prior knowledge. 
This knowledge can come from experts in the field or, for 
statistical models, from a certain number of data 
representatives of the phenomenon to be modeled, and it is 
often necessary to call upon humans to annotate or even 
transcribe these data. 

The third step is the use of this model to offer an 
understanding to a given statement. It can use several models 
and cross their results to refine understanding. 

In deployed systems based on automatic processing of the 
natural language, and more specifically with regard to speech 
recognition systems, another step comes into play: the 
adaptation of the models. Indeed, such systems must 
necessarily adapt to follow the evolution of habits and 
language of users, as well as that of the services offered. Here 
again, the system needs experts who regularly update the 
models, classically providing a new body of learning adapted 
to the observed evolution of users or services. 

These four major phases or stages (transformation, 
learning, understanding and adaptation) are not necessarily 
sequential and can be combined to maximize their 
effectiveness. Generally, a model resulting from learning is 
used many times in an understanding stage, and the adaptation 
phase often only occurs when the model gives signs of 
weakness. 

The speech recognition consists in giving meaning to an 
oral utterance. In this it approaches a problem of classification 
if one considers that one chooses a sense among N possible 
senses, the sense being the class allotted to the statement. The 
block scheme of speech recognition system is presented in 
Fig. 1. 
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Fig. 1. Block scheme of speech recognition system.

The use of artificial neural networks for automatic speech 
processing is not recent. As early as the 1980s, systems using 
neural networks appeared to recognize vowels and then to 
recognize phonemes. But the results obtained at that time do 
not make it possible to improve the state of the art. During the 
next two decades some progress is made [30] but it is 
necessary to wait until the beginning of 2010 and the 
emergence of deep neural networks (DNN) with new methods 
of learning and specific computing resources (GPU), for that 
they become the state-of-the-art solution for wide vocabulary 
speech recognition systems [27], [28]. 

In recent years, a type of recurrent neural network has 
become the norm thanks to its excellent performance on many 
and varied tasks: Long Short-Term Memory (LSTM) -based 
neural networks. 

The remainder of this paper is divided into five sections. 
After introducing, related works on speech recognition 
systems are presented in Section 2. Section 3 presents the 
Long Short-Term Memory (LSTM) -based neural networks. 
Section 4, experiments and results are detailed. Finally, this 
paper is concluded in Section 5. 

II. RELATED WORKS 

During the 1950s, speech recognition research focused on 
the acoustic component of speech. With the help of a tool 
called a spectrograph, which displays the image of speech 
spectra, they were able to define the main articulatory 
characteristics in order to be able to distinguish the different 
sounds of speech. Based on this visual recognition of sounds, 
the electrical device created in the Bell lab in 1952 could 
recognize the ten numbers spoken by a single speaker, 
comparing the acoustic parameters of the audio signal with 
reference models [3]. 

However, the success of the experiments is based on very 
strict conditions: reduced vocabulary, phonemes/isolated 
words, few speakers, recordings in laboratory conditions, etc. 
Acoustic methods alone are therefore insufficient for 
continuous speech and multi-speaker. As a result, the 
linguistic information begins to be taken into account in the 

recognition systems, to add context to the phonemes/words to 
be recognized and thus to improve the recognition 
performance [4]. 

In 1971, the United States Defense Advanced Research 
Projects Agency (DARPA) launched a five-year project to test 
the feasibility of automatically understanding continuous 
speech, which favors the creation of three new systems [5]. 
The “Hearsay-II” systems of CMU (Carnegie Mellon 
University) and “HWIM” (Hear What I Mean) of BBN (Bolt 
Beranek and Newman Inc.) are based on artificial intelligence: 
the recognition of speech is formulated as a heuristic research 
problem among multiple sources of knowledge. 

From the 1980s researchers focused on the recognition of 
connected words. The biggest change of the time is defined by 
the transition from rule-based systems to systems based on 
statistical models [6]. The speech signal starts to be 
represented in terms of probabilities thanks to the HMM 
(Hidden Markov Models), which makes it possible to combine 
linguistic information with acoustic temporal realizations of 
speech sounds. This also motivates the emergence of 
statistical models of language, called n-grams. The innovation 
in acoustic signal analysis consists in the combination of the 
cepstral coefficients and their first and second-order temporal 
derivatives. These methods have been predominant in 
subsequent research and continue to be used even nowadays, 
with constant additional improvements. 

From the 1990s researchers focused on minimizing 
recognition errors. The DARPA program continues with a 
keen interest in natural language. His biggest challenge is 
associated with the “Switchboard” corpus which focuses on 
spontaneous and conversational speech. The University of 
Cambridge has created and released a set of tools called the 
Hidden Markov Model Tool Kit (HTK) [7] which is one of the 
most widely adopted software programs for automatic speech 
recognition. 

In the 2000s, the DARPA program focuses on the 
detection of sentence boundaries, noises or disfluences, 
obtaining abstracts or translations in a context of spontaneous 
speech and multi-languages. Methods to evaluate the 
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confidence (reliability) of the recognition hypotheses were 
also studied during this period [8]. 

Neural networks first appeared in the 1950s, but could not 
be used because of practical problems. They were 
reintroduced in the late 1980s [9], but could not provide 
sufficient improvement over HMM systems. It is only since 
2010 that context-dependent neural networks have surpassed 
HMM-GMM systems [10]. This improvement is due to the 
use of the many hidden layers (Deep Neural Network), made 
possible by an efficient unsupervised pre-training algorithm 
[11]. In addition, the calculation architecture using graphics 
processors (GPU) can efficiently parallel the learning and 
decoding of speech [26]. 

Neural networks are also increasingly used in lexical 
modeling [12], [13]; recurring models provide significant 
improvements over traditional n-gram back-off models [14]. A 
new set of tools called Kaldi [15] makes it possible to use 
state-of-the-art techniques for speech recognition. 

Nowadays, researchers are increasingly interested in 
making systems capable of meeting all types of needs: 
machine translation, foreign language learning, assistance for 
the disabled or elderly, etc. Some examples of common 
research concern the detection of sentence boundaries [16], 
speech recognition in noisy environments [17], detection of 
distress phrases [18], commands [19] or keywords [20], etc. 
Multimodal communication, which takes into account 
additional information on the face, the movement of the lips 
and/or the articulation, also begins to be taken into account 
[21]-[23]. 

III. LONG SHORT-TERM MEMORY (LSTM)-BASED NEURAL 

NETWORKS 

The interest of RNNs lies in their ability to exploit 
contextual information to move from an input sequence to an 
output sequence that is as close as possible to the target 
sequence. Unfortunately, for standard RNNs learning can be 
difficult and the context really exploited very local [29]. The 
problem lies in the fact that an input vector can only influence 
future decisions through recursive links (and thus via the 
repeated multiplication by the matrix Vj and the repeated 
application of the activation function) and therefore this 
influence decreases or increases exponentially as one moves 
forward in the sequence (Fig. 2). This phenomenon is often 
called a vanishing gradient problem in the literature because it 
impacts the retro-propagation of the gradient. 

In the 1990s, many neural architectures and learning 
methods were tested to try to counter this phenomenon. 
Among these methods are heuristic optimization methods that 
do not use the gradient such as simulated annealing or discrete 
error propagation methods, the introduction of explicit delays 
in the recurrent architecture or the hierarchical compression of 
sequences. But the approach that has proven most effective 
and has now become the standard for dealing with sequences 
is the LSTM model. In fact, this model introduces 
multiplicative logic gates that make it possible to preserve and 
access relevant information over long intervals, thus reducing 
the impact of the evanescent gradient problem (Fig. 3). It is to 

this type of neural model that this paper is mainly interested 
and the LSTM model is described in this section. 

 

Fig. 2. Evanescent gradient problem in a standard RNN. 

A layer of LSTM   
  is composed of four RNN layers and 

which interact with each other Three of these RNN layers 
have the function of transfer of the logistic function (and 
therefore of the outputs between 0 and 1) and act as logical 
gates controlling: 

-The amount of information that enters the LSTM cells of 

the layer j, 

-The amount of information that is retained by the internal 

state of the cells from one step to the other, 

-The amount of information coming out of the LSTM cells 

of the layer j. 

 

Fig. 3. Preservation of information (and gradient) in an LSTM layer. 

The last of the four layers operates as a standard RNN 
layer and feeds the internal state of the LSTM cells via the 
gateways. Fig. 4 shows a synthetic description of information 
flows. Finally, to model the returns between the internal state 
of the cells and the 3 logic gates introduced by F. Three 
parameter vectors              called “peepholes” were 
added. Fig. 5 shows the detailed operation of an LSTM layer. 

As in the case of the standard RNN, the BPTT technique is 
used to compute the partial derivatives of the cost function 
C(z, c) that is minimized with respect to the different 
parameters of the LSTM layers. To do this, we go through the 

sequence by going back in time: t: tf→ 1 and for each time 

step the gradients were determined with respect to the 
parameters. Then, global gradients are obtained by summing 
the contributions of each of the time steps. Fig. 6 describes the 

retro-propagation of the gradient in the layer   
  at the time 

step t in the form of a computational graph. 
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Fig. 4. Synthetic visualization of the propagation of information during the 

forward pass in an LSTM layer. 

 

Fig. 5. Visualization of the propagation of the information during the 

forward pass in a layer of an LSTM. 

In order to calculate the partial derivatives of C at the time 

step t with respect to the parameters of the layer   
 , the first 

step is to retro-propagate the gradient in the whole of the layer 

  
 , starting at the exit gates. 

IV. EXPERIMENTS AND RESULTS 

During this paper, speech detection tasks are varied in 
terms of difficulties, languages and acoustic environments. 
We have worked on pure detection tasks (that is, the goal of 
minimizing the number of badly signal windows classified 
speech/not speech) and speech detection tasks for speech 
recognition, that is to say, so as to minimize the Word Error 
Rate (WER) of an automatic speech recognition system used 
downstream of the speech detection system. Very different 
types of data were used, such as telephone conversations, 
working meeting recordings, and television series audio tapes.  

 
Fig. 6. Visualization of the propagation of the information during the back-

pass in a layer of an LSTM. 

In 2012, IARPA launched the Babel program with the aim 
of developing automatic speech recognition technologies that 
can be quickly applied to any spoken language. For all 
experiments, state-of-the-art automatic speech recognition 
systems were used. These systems are similar to those 
described in [24]. They use Multi-Layer Perceptron (MLP) as 
acoustic models and language models based on 4-gram 
models. They also respect the NIST constraint for system 
evaluation in the Babel program which states that no data 
other than that provided for the target language of the Babel 
program may be used. The official metric for the assessments 
performed is the Word Error Rate (WER) but the Frame Error 
Rate (FER) is also used in preliminary experiments. 

The NIST regularly organizes open and international 
assessments of the different tasks of automatic speech 
processing. In 2015, The NIST organized the OpenSAD'15 
evaluation to provide a framework for developers of speech 
detection systems to independently measure the performance 
of their systems on particular difficult audio data. Indeed, the 
audio signals collected for this evaluation come from the 
RATS program of DARPA which was mainly interested in 
highly distorted and/or noisy channels. These different 
channels are of type HF, VHF and UHF and are 7 in number 
(called A, B, C, E, F, G and H) with the particularity that two 
of these channels (A and C) are voluntarily absent from the 
learning and validation stages but present in the test stage to 
evaluate the generalization capacity of speech detection 
systems. 

The official metric of the evaluation was the DCF defined 
as follows: 

DCF = 0.75 x       + 0.25 x     

Where: 
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And 

    
                                     

                            
 

Three experiments were conducted on data collected in 
acoustic environments very different from the telephone 
conversations of the OpenSAD'15 evaluation and the Babel 
program. For these three experiments the ultimate goal was to 
segment into speakers. Segmentation into speakers consists of 
segmenting an audio signal into homogeneous speech turns, 
that is to say containing only one speaker. The metric of 
choice for this task is the Diarization Error Rate (DER) which 
is broken down into two parts: the FER, to which is added an 
error term corresponding to the confusions between speakers. 
Therefore, to optimize a speaker segmentation system it is 
preferable to minimize the FER of the speech detection 
system. 

We worked on a task of segmentation in speakers in the 
audio streams of television programs collected for the LNE 
Audiovisual Emissions Recognition evaluation campaign 
(REPERE). 

We also worked on the data of the AMI project which was 
a multidisciplinary consortium of 15 members whose mission 
was the research and development of technologies to improve 
interactions within a working group. 

Finally, we worked on audio data from television series. 
The TVD corpus were used [25] and focused on the first 
season of the Game of Thrones (GoT) television series, which 
offers a variety of acoustic environments (indoor, outdoor, and 
battle scenes). This corpus is thus composed of ten episodes of 
55 minutes approximately with the annotations of turns of 
speech by speaker. 

Here, an overview of the performance gain brought by the 
LSTM model is presented and compared to other neural 
models on the speech detection task. The three neuronal 
models tested are: Multi-Layer Perceptron (MLP), Elman's 
Recurrent Neural Network (RNN) and LSTM. In order to 
obtain a fair comparison of the modeling capacity of each of 
the artificial neural networks (ANN) tested, all the ANNs used 
are sized to have the same number of parameters: 6000. The 
different ANNs are compared on five speech detection tasks: 
minimization of the FER on the data REPERE, AMI, Game of 
Thrones and the Vietnamese corpus of the Babel program; and 
minimizing the DCF on the OpenSAD'15 evaluation data. The 
three ANNs were optimized for these tasks and the results 
obtained on the different corpus are detailed in Table I. It is 
important to note that for these tests the decision smoothing 
module is disabled in order to get a better insight into the raw 
capabilities of the different neural models. 

The RNNs are particularly adapted to speech detection 
tasks because, by allowing to exploit the temporal context 
freely, these models are able to improve very significantly the 
decisions taken locally at each time step. Thus, there is a 
decrease in error rates of up to 42% relative between the MLP 
and the simplest of the recurrent models on the data of the 
AMI corpus. 

The most successful recurring model is the LSTM model. 
In fact, this model, when compared to the standard RNN 
model, makes it possible to improve the error rates by 17% 
relative on the OpenSAD'15 and REPERE corpus, by 14% 
relative on the Game of Thrones corpus and allows obtaining 
an equivalent performance on the AMI and Babel corpus. 

TABLE I.  PERFORMANCE OF DIFFERENT SPEECH DETECTION SYSTEMS 

ON BABEL, REPERE, AMI, GAME OF THRONES AND OPENSAD'15 CORPUS 

DATA 

Type of 

ANN 

FER DCF 

Babel REPERE AMI 
Game of 

Thrones 
OpenSAD’15 

MLP 9.2 17.1 11.4 17.9 5.3 

RNN 

Standard 
6.4 16.4 6.6 12.7 4.1 

LSTM 

RNN 
5.9 13.5 6.2 11 3.4 

V. CONCLUSIONS 

In this paper a particular type of RNN called LSTM were 
studied and their use for an automatic speech processing task: 
speech detection. Comparisons with other neural models were 
presented on five speech detection tasks. 

All tests show that the LSTM model is more efficient than 
Elman MLP and RNN neuron networks. With this model, the 
proposed method were ranked third in the NIST OpenSAD'15 
evaluation campaign with a level of performance very close to 
the second ranked system while having ten to one hundred 
times fewer parameters. Future works include the use of 
LSTM for another task of automatic speech processing such as 
spoken language identification: separate one language from all 
others. 
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