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Abstract—The efficiency of a wind turbine highly depends on 

the value of tip speed ratio during its operation. The power 

coefficient of a wind turbine varies with tip speed ratio. For 

maximum power extraction, it is very important to hold the tip 

speed ratio at optimum value and operate the variable-speed 

wind turbine at its maximum power coefficient. In this paper, an 

intelligent learning based adaptive neuro-fuzzy inference system 

(ANFIS) is proposed for online estimation of tip speed ratio 

(TSR) as a function of wind speed and rotor speed. The system is 

developed by assigning fuzzy membership functions (MFs) to the 

input-output variables and artificial neural network (ANN) is 

applied to train the system using back propagation gradient 

descent algorithm and least square method. During the training 

process, the ANN adjusts the shape of MFs by analyzing training 

data set and automatically generates the decision making fuzzy 

rules. The simulations are done in MATLAB for standard 

offshore 5 MW baseline wind turbine developed by national 

renewable energy laboratory (NREL). The performance of 

proposed neuro-fuzzy algorithm is compared with conventional 

multilayer perceptron feed-forward neural network 

(MLPFFNN). The results show the effectiveness of proposed 

model. The proposed system is more reliable for accurate 

estimation of tip speed ratio. 

Keywords—Wind speed; rotor speed; power coefficient; tip 

speed ratio; ANFIS 

I. INTRODUCTION AND MOTIVATION 

Wind is a sustainable source of energy and is considered as 
a best alternate of limited fossil fuel resources. Wind power is 
economical and environment friendly. Wind power generation 
system mainly consists of a wind turbine and an electric 
generator. Wind turbine blades convert the kinetic energy of 
wind into mechanical energy and generator converts the 
mechanical energy into electrical energy. Wind turbine plays a 
vital role in power generation. The wind turbine rotor speed 
must be controlled in varying wind speed conditions [1]. 

The mechanical power captured by wind turbine depends 

on the value of power coefficient ( PC ). Wind turbine 

operating at maximum value of power coefficient ( maxPC ) 

captures maximum power from wind. The power coefficient is 

a nonlinear function of tip speed ratio ( ) and blade pitch 

angle (  ). Wind turbine achieves maximum value of power 

coefficient ( maxPC ) at optimal tip speed ratio (
opt ) [2], [3]. 

TSR actually compares the rotor speed with the wind speed (
v ). Higher rotor speed as compared to wind speed means 

higher TSR. The wind turbine has maximum efficiency at 

optimal TSR (
opt ) which corresponds to maximum power 

coefficient ( maxPC ). Therefore, it is very important to control 

the rotor speed according to the available wind speed. The 

optimal tip speed ratio (
opt ) depends on many factors such as 

number of blades, size (length) of blade and the shape of 
airfoil used [4]. The lesser number of blades and longer blade 
length leads to higher optimal TSR. Small wind turbines have 
higher rotational speed but as their blade length is small, so 
their optimal TSR is not as much as large wind turbines. The 
optimal TSR for single blade and 2 blade wind turbine is 
around 9 and 6 respectively. The optimal TSR for a 3 blade 
wind turbine is 5 which can be further improved up to 7 or 8 
by using highly efficient and well-designed airfoil rotor 
blades. Generally, it is taken as 7 for a 3 blade wind turbine. 
The optimal TSR for a 4 blade wind turbine is around 3. The 
flow of air around wind turbine blades produces aerodynamic 
noise which keeps growing with wind speed. The speed of 
blade tip (end point of the blade) is a critical factor in deciding 
the aerodynamic noise produced by the wind turbine. Wind 
turbine with higher TSR produces more aerodynamic noise 
[5]. Moreover, the aerodynamic noise also depends on the 
shape of blade. Thin airfoil is used because of its aerodynamic 
benefits [6], [7]. A 3 blade wind turbine produces less noise as 
compared to a 2 blade wind turbine of the same size because 
of its lesser TSR. The higher number of blades produces more 
torque. The wind turbines having more than three blades are 
used for water pumping and grinding purposes. But, 4 blade 
wind turbines are not used for power generation because of 
their much higher cost, weight and less profit in terms of 
efficiency gain (0.5%) or power capturing. On the other hand, 
2 blade wind turbines are also not preferred for power 
generation due to their higher aerodynamic noise. Moreover, 2 
blade wind turbines with same size have higher TSR and in 
turn higher rotor speed, which increases the apparent weight 
(higher structural loading) of the blades. Therefore, brakes can 
fail in strong wind and a 2 blade wind turbine can collapse. 
So, a 3 blade design can produce more power at slower 
rotational speed than a 2 blade design and more cost efficient 
as compared to a 4 blade option. Therefore, 3 blade wind 
turbines are mostly used for power generation. 
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TSR varies with wind speed and tip speed of wind turbine. 
TSR should be maintained around its optimal value to extract 
maximum power. It is very important to estimate the TSR of 
wind turbine to control the power produced during its 
operation. In [8], [9] ANN based structure was built to predict 
the tip speed ratio for wind turbine profile types NACA 4415 
and LS-1. The system was capable to efficiently estimate the 
value of TSR. An adaptive perturbation and observation 
(P&O) method was proposed in [10] for estimation of TSR 
and maximum power point tracking (MPPT). The proposed 
system was found more efficient than the classical 
perturbation and observation method. In [11], [12] tip speed 
ratio and MPPT was performed by measuring the wind speed 
and generator voltage and current. The designed system was 
implemented on a small scale wind turbine to validate its 
performance. In [13] two ANN models were proposed, one to 
operate the variable-speed wind turbine at optimum TSR for 
MPPT and the second ANN model for pitch control. The 
proposed model was found to have the capability of MPPT for 
varying wind speed. 

The perturbation and observation (P&O) based algorithm 
is one of the most widely used methods for MPPT of wind 
turbine. The main disadvantage associated to this technique is 
that it keeps on oscillating around the maximum power point 
(MPP). Therefore, it does not exactly track the MPP which 
results in losing some part of the available power. However, 
this discrepancy can be covered by using smaller perturbation 
step. But it makes the algorithm slow in response and also 
affects the performance of controller to optimize the dynamic 
response of system. So, we have to compromise between 
reduced oscillations and fast dynamic response. The adaptive 
P&O method involves complex computation of derivatives. 
So, there is need to use some soft computing based techniques. 
The ANN is the most widely used soft computing technique to 
estimate the TSR. The ANNs have shown much better 
performance over conventional methods. The accuracy of 
ANN depends on the number of hidden layer neurons and the 
type of activation function used. The learning rate and 
optimization methods used (back propagation algorithm or 
Levenberg-Marquardt algorithm) also effect the performance. 
The training of ANN may be time taking as it involves many 
tuning parameters. 

Hybrid intelligent systems are becoming very popular 
because of their ability to dealing with nonlinear systems. 
Hybrid systems are actually the combination of two different 
techniques. These systems are capable of realizing the 
nonlinear relationships with much higher accuracy. The 
ANFIS is also a type of hybrid systems. ANFIS is a 
combination of Takagi-Sugeno fuzzy inference system (T-S 
FIS) and ANN. Fuzzy systems make decisions of the basis of 
human reasoning and ANNs are trained to learn from the 
previous experiences or data. Researchers have successfully 
implemented ANFIS to deal fitting, forecasting, regression 
and classification problems [14]-[16]. 

The major aim of this study is to propose a hybrid 
intelligent learning based neuro-fuzzy methodology for 
accurate estimation of TSR for offshore 5 MW baseline wind 
turbine. The experimental data of wind turbine is collated to 
design the ANFIS model. The ANN trains the system using 

hybrid learning method. The results of ANFIS are then 
compared with conventional MLPFFNN. The results show 
that ANFIS can estimate the TSR with much higher accuracy 
as compared to MLPFFNN. 

II. WIND POWER FUNDAMENTALS AND SPECIFICATIONS OF 

NREL OFFSHORE 5 MW BASELINE WIND TURBINE 

The mechanical power „ mP ‟ captured by a wind turbine is 

expressed as, 

31
( , )

2
m PP Av C           (1) 

Here, „  ‟ is the density of air in (kg/m
3
), „ A ‟ is the area 

of the wind turbine rotor in (m
2
) and „ v ‟ is the wind velocity 

in (m/s). The wind turbine power coefficient „ PC ‟ is the 

measure of the efficiency of wind turbine. The power 

coefficient varies with the TSR (  ) and blade pitch angle       

(  ). 

The NREL virtually designed an offshore 5 MW baseline 
wind turbine to standardize the advancements is new 
techniques [17]. Researchers around the world use this model 
as a reference to investigate the aerodynamics and control of 
wind turbine. The specifications of offshore 5 MW baseline 
wind turbine are given in Table I. 

As mentioned in Table I, the wind turbine reaches to its 
maximum power coefficient of 0.4868 at TSR of 7.55. The 

PC -TSR curve of 5 MW wind turbine is shown in Fig. 1. 

TABLE I.  SPECIFICATIONS OF NREL OFFSHORE 5 MW BASELINE WIND 

TURBINE 

Parameter Value 

Rated power 5 MW 

Rotor configuration Upwind,3 blades 

Rotor, hub diameter 126 m, 3 m 

Hub height 90 m 

Cut-in, rated, cut-out wind speed 3 m/s, 11 m/s, 25 m/s 

Cut-in, rated rotor speed 6.9 rpm, 12.1 rpm 

Rated generator speed 1174 rpm 

Peak power coefficient 0.4868 

Tip speed ratio at peak power coefficient 7.55 

Collective blade pitch angle at peak power 

coefficient 
0° 

When „
opt  ‟, the turbine speed is slow and a large 

fraction of undisturbed wind passes through the blades. 
Therefore, less energy is harnessed because of poorly 

designed rotor blades. When „
opt  ‟, the wind turbine 

operates at maximum value of power coefficient ( maxPC ). 

Therefore, maximum energy is harnessed. When „
opt  ‟, 
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the turbine speed is so fast that the rotor behaves like a disk 
(wall). Therefore, less energy is harnessed. The wind turbine 
rotor is highly stressed and there is a risk of structure failure. 

 

Fig. 1. PC -TSR curve for NREL offshore 5 MW baseline wind turbine at 

pitch angle (  ) of 0 . 

The statistical properties of experimental data collected 
from offshore 5 MW baseline wind turbine are shown in 
Table II. The total number of collected data samples is 338. 
The collected data set is subdivided into training data and 
testing data. The training data is used to train the ANFIS based 
TSR estimator and then its performance is checked for testing 
data. 

TABLE II.  STATISTICAL PROPERTIES OF DATA USED TO DESIGN ANFIS 

BASED TSR ESTIMATOR 

Wind turbine parameters Average value Max.  value Min.  value 

TSR 5.41 32.96 0.37 

Rotor speed (rad/s) 0.8529 1.5707 0.1047 

Wind speed (m/s) 13.834 25 3 

III. METHODOLOGY 

A. Structure of Adaptive Neuro-Fuzzy Inference System 

(ANFIS) 

ANFIS is a soft computing technique to deal with highly 
nonlinear systems. It combines the features of T-S FIS and 
ANN in a single frame work to provide accurate decision 
making results. The ANFIS is a computationally intelligent 
system which involves parallel computing. The ANN uses the 
training data to update the parameters of fuzzy MFs [18]. The 
basic structure of ANFIS is shown in Fig. 2. 

The output of first order T-S FIS with two IF-THEN fuzzy 
rules can be expressed as, 

Rule-1: If „ x ‟ is 1A  and „ y ‟ is 1B  then 

1 1 1 1f p x q y r    

Rule-2: If „ x ‟ is 2A  and „ y ‟ is 2B  then 

2 2 2 2f p x q y r    

Here, „ x ‟ and „ y ‟ are two inputs and „ f ‟ is the output. 

Where, „ p ‟, „ q ‟ and „ r ‟ are consequent parameters of 

the first order polynomial. 

 

Fig. 2. The basic architecture of ANFIS. 

ANFIS architecture consists of five layers of neurons. The 
first layer is called fuzzification layer and each neuron in this 
layer is adaptive. In first layer, MFs are assigned to each input 
variable. The input MFs can be bell-shaped, Gaussian, 
triangular, trapezoidal and dsigmoid, etc. 

Each neuron in second layer computes the firing strength 
of fuzzy rule by multiplying the incoming signals. 

( ). ( )i Ai BiW x y           (2) 

The neurons in third layer calculate the normalized firing 
strength of each rule. 

i
i

i

W
W

W



                        (3) 

Each neuron in the fourth layer is adaptive and this layer is 
called defuzzification layer. Each neuron multiplies the 
normalized firing strength of a rule with corresponding output 
polynomial function to get a crisp output. 

. ( )i i i i i iW f W p x q y r           (4) 

The fifth layer has a single neuron which sums up all 
incoming signals from layer 4 and produces a single crisp 
output. 

.
.

i i

i i

i

W f
f W f

W
 





        (5) 

IV. DEVELOPING THE TSR ESTIMATORS 

A. ANFIS based Estimator 

The ANFIS analyzes the input-output training data set and 
trains the system using hybrid learning algorithm. 
Experiments are conducted for each type of input MF and 
ANFIS is designed using grid partitioning. Six MFs are 
assigned to each input parameters (wind speed and rotor 
speed) and linear MFs to output (TSR). The system is trained 
for 200 epochs and error tolerance is set to zero. After the 
completion of training process, ANFIS automatically 
generated 36 IF-THEN fuzzy rules for input-output mapping. 
The training and testing errors produced by ANFIS using 
different type of input MFs are given in Table III. It has been 
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noticed that bell-shaped MFs provide least training and testing 
error followed by Gaussian, dsigmoid, triangular and 
trapezoidal MFs. 

Mathematically, the bell-shaped MF is expressed as, 

2

1
( )

1

i
Ai b

i

i

x
x c

a

 




                   (6) 

Where, „ a ‟, „ b ‟ and „ c ‟ are premise parameters and „ i ‟ 

is equal to total number of MFs assigned to each input 
parameter. 

During the learning process, the consequent parameters of 
polynomial functions are updated in the forward pass using 
least square algorithm and premise parameters of bell-shaped 
MFs are updated in backward pass using backpropagation 
gradient descent algorithm. The trained bell-shaped input MFs 
are shown in Fig. 3 and 4. The decrease in root mean square 
error (RMSE) during the training of bell-shaped MFs for 200 
epochs is shown in Fig. 5. 

 
Fig. 3. Trained bell-shaped MFs of wind speed. 

 
Fig. 4. Trained bell-shaped MFs of rotor speed. 

 
Fig. 5. Training of bell-shaped MFs for 200 epochs. 

TABLE III.  TRAINING AND TESTING ERRORS PRODUCED BY TSR 

ESTIMATOR FOR DIFFERENT TYPE OF INPUT MFS 

Type of input 

MFs 

No. of 

input 

MFs 

Type of 

output 

MFs 

No. of 

epochs 

Training 

error 

Testing 

error 

Bell-shaped 6 Linear 200 0.005299 0.014567 

Gaussian 6 Linear 200 0.027864 0.034992 

dsigmoid 6 Linear 200 0.061608 0.086566 

Triangular 6 Linear 200 0.097743 0.1421 

Trapezoidal 6 Linear 200 0.11339 0.12391 

B. MLPFFNN based Estimator 

MLPFFNN is a biological inspired system which consists 
of different layers of neurons. Each neuron is a processing unit 
which processes the information until a threshold is obtained 
and then passes on the information to the next neuron. 
MLPFFNN is mainly composed of three layers of neurons. 
First layer is called input layer, second layer is called hidden 
layer and third layer is called output layer. The neurons in one 
layer are directly connected to the neurons of next layers. The 
basic structure of MLPFFNN is shown in Fig. 6. 

 
Fig. 6. Structure of designed MLPFFNN. 

There are two inputs of the TSR estimator which are wind 
speed and rotor speed, so there are two neurons in the first 
layer (input layer). While designing MLPFFNN, ten neurons 
are assigned to the hidden layer and logistic sigmoid „logsig‟ 
transfer function is used as activation function for hidden layer 
neurons. The logistic sigmoid function can be mathematically 
expressed as, 

1
log sig( )

1 x
x

e



         (7) 

The linear transfer function is used as activation function 
for output layer neuron. In order to train the system, the 
learning rate is selected as 0.01 and error goal as 0.0001. The 
Levenberg-Marquardt back propagation algorithm is used to 
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train the system for 200 epochs. The mean square error (MSE) 
produced by MLPFFNN after 200 epochs is 0.041279 as 
shown in Fig. 7. 

 

Fig. 7. The MSE produced after 200 epochs. 

The MSE and RMSE produced by ANFIS and MLPFFNN 
are given in Table IV. It is found that ANFIS based estimator 
provides the best fit of the actual TSR with minimum MSE 
and RMSE. 

TABLE IV.  PERFORMANCE INDICES OF BOTH APPROACHES 

Model MSE RMSE 

ANFIS 0.00002808 0.0052991 

MLPFFNN 0.041279 0.203172 

V. CONCLUSION 

The wind turbine efficiency depends on the value of power 
coefficient, which varies with the TSR. Therefore, it is 
necessary to accurately estimate the value of TSR to produce 
optimum power. In this study, a hybrid intelligent 
methodology based of ANFIS is proposed for accurate 
estimation of TSR. The experimental data is collected from 
NREL offshore 5 MW baseline wind turbine. The T-S FIS of 
ANFIS is designed by assigning bell-shaped, Gaussian, 
dsigmoid, triangular and trapezoidal MFs to the inputs. Then 
ANN is used to train the system for 200 epochs using hybrid 
learning method. It is noticed that ANFIS provides the best 
results for bell-shaped MFs. Then, conventional MLPFFNN 
based TSR estimator is designed for the same data. The 
logistic sigmoid and linear transfer functions are used as 
activation function for hidden layer and output layer, 
respectively. The system is trained for 200 epochs using 
Levenberg-Marquardt back propagation algorithm. The results 
of ANFIS and MLPFFNN are compared with reference to 
actual value of TSR. It has been observed that ANFIS has 
much better performance than conventional MLPFFNN and 
produces less RMSE even for any type of input MF. 
Therefore, ANFIS is selected as the best suitable technique for 
accurate estimation of TSR. The ANFIS involves fewer 
adjustable (tuning) parameters as compared to ANNs; 
therefore its training is less time consuming and easy. The 
ANFIS does not require any detailed and precise mathematical 
model of the system. It only incorporates the prior knowledge 
of the system to adapt the system behavior. Moreover, ANFIS 
does not involve complex computations therefore it is less 

computationally complex as compared to other conventional 
approaches. ANFIS automatically generates the IF-THEN 
fuzzy rules by analyzing the training data. ANFIS uses the 
minimum number of fuzzy rules which makes the decision 
making process fast. ANFIS is robust and adaptive to 
changing conditions. ANFIS is simple, cheaper to develop and 
can easily be implemented by using data acquisition cards. 

The results presented in this paper are subject to some 
hardware limitations. The data set used in this study is 
collected from variable-speed variable-pitch 5 MW offshore 
wind turbine which is virtually developed by NREL to support 
the conceptual study of wind turbine aerodynamics and 
control properties. The actual wind turbine system is not only 
expensive but also much larger in size. Therefore, it is not 
usually available in the laboratories, except those which are 
highly equipped and solely dedicated for wind energy 
research. The ideal situation is to collect the data samples 
from an operational wind turbine system and then using the 
collected data to design estimation and control mechanism. 

VI. FUTURE WORK 

The optimum TSR is different for every wind turbine type. 
In future, the proposed approach can be implemented on any 
wind turbine model in similar fashion to accurately estimate 
the TSR after collecting the appropriate data. The estimated 
value of optimum TSR can also be further utilized to design 
MPPT controller. Future research also includes the 
implementation of proposed TSR estimator on real wind 
turbine system to verify the results. 
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