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Abstract—Network virtualization has attracted significant 

amount of attention in the last few years as one of the key 

features of cloud computing. Network virtualization allows 

multiple virtual networks to share physical resources of single 

substrate network. However, sharing substrate network 

resources increases impact of single substrate resource failure. 

One of the commonly applied mechanisms to protect against such 

failures is provisioning redundant substrate resources for each 

virtual network to be used to recover affected virtual resources. 

However, redundant resources decreases cloud revenue by 

increasing virtual network embedding cost. In this paper, a 

collective neurodynamic approach has been proposed to reduce 

amount of provisioned redundant resources and reduce cost of 

embedding virtual networks. The proposed approach has been 

evaluated by using simulation and compared against some 

existing survivable virtual network embedding techniques. 
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I. INTRODUCTION 

Virtualization is one of the distinctive features of cloud 
computing. Virtualization increases utilization of substrate 
resources and increases revenue of cloud datacenters by 
allowing embedding multiple virtual networks in a single 
substrate network. However, mapping virtual resources to 
substrate resources is known to be NP-hard even without 
considering other cloud computing features such as scalability 
and survivability [1]-[3]. 

Although, sharing substrate resources among multiple 
virtual networks sustains cloud computing with many valuable 
benefits, it brings critical survivability issues. Single substrate 
resource failure can cause long service downtime and waste a 
lot of date from several virtual networks (VNs) [4]. Substrate 
resource failure becomes a part of everyday operation in 
today’s Internet Service Provider (ISP) networks [5]. 

One of the most efficient protection approaches is 
provisioning redundant resources for each virtual network 
(VN). Redundant resources enable fast reallocating affected 
virtual resources after substrate resource failures. Nevertheless, 
redundant resources increase capacity of required virtual 
resources, which reduces revenue and reduces acceptance ratio 
of cloud datacenters. 

In this paper, a collective neurodynamic optimization 
approach has been proposed to reduce amount of required 
redundant resources and to optimize virtual network 
embedding. To guarantee virtual network restorability after 
substrate node failure, the proposed approach enhances virtual 
network by adding one virtual node and set of virtual links. 
Virtual networks are enhanced by applying virtual network 
enhancing design proposed by Guo et al. in [1]. The problem 
has been formulated as Mixed-Integer Linear Programming 
and solved by applying neural network proposed by Xia in [6]. 
To guarantee survivability against substrate link failure, virtual 
links are embedded by applying multi-path link embedding 
approach proposed by Khan et al. in [7]. 

The problem of multi-path link embedding of enhanced 
virtual network has been formulated as Mixed-Integer Linear 
Programming and has been solved by using collective 
neurodynamic optimization approach, which combines the 
ability of social thinking in Particle Swarm Optimization with 
the local search capability of Neural Network. 

Effectiveness of the proposed approach has been evaluated 
by comparing its performance with other approaches. 
Simulation results show that the proposed model reduces 
required redundant resources and increases revenue. 

The rest of this paper is organized as follows. Section 2 
describes the related work. Section 3 briefly describes the 
proposed model. Section 4 experimentally demonstrates the 
effectiveness of the proposed model. Finally, Section 6 
concludes. 

II. RELATED WORK 

Several survivable virtual network embedding (SVNE) 
approaches have been proposed in the last few years [1]-[4]. 
Guo et al. [1] have proposed survivable virtual network 
embedding approach. The proposed approach enhanced virtual 
network by adding additional virtual resources and redesigning 
virtual network with considering failure dependent protection 
technique, which provides backup substrate node for each 
substrate node failure scenario. Enhanced virtual network has 
been formulated using binary quadratic programming, and 
virtual network embedding has been formulated using mixed 
integer linear programming. Although, the proposed approach 
reduces amount of required substrate resources to design 
survivable virtual network, it increases number of required 
migrations after failures, which increases service down time. 
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A topology-aware remapping policy has been proposed by 
Xiao et al. [2] to deal with single substrate node failures. Based 
on network topology, a set of candidate backup substrate nodes 
has been defined for each substrate node and a set of candidate 
backup substrate links has been defined for each substrate link. 
In [8], Xiao et al. have extended the proposed policy in [2] to 
handle multiple nodes failures. However, the proposed policy 
uses all substrate nodes to accommodate incoming virtual 
networks. Therefore, when a substrate node failure happens, 
the proposed policy does not grantee that for each migrated 
virtual node there is a candidate backup substrate node with 
enough free resources to accommodate migrated virtual node. 

Zhou et al. [3] have studied survivability of virtual 
networks against multiple physical link failures. They have 
formulated the problem of remapping virtual network with 
multiple physical link failures using mixed integer linear 
programming and have proposed an approach to find exact 
solution for the formulated problem. However, the proposed 
approach can deal only with small virtual networks. 

Qiang et al. [9] have modeled the survivable virtual 
network embedding problem as an integer linear programming 
model and have used bee colony algorithm to find near optimal 
virtual network embedding solution. After substrate node 
failure, virtual nodes are migrated to normal node, which is 
specified by greed rules first, and virtual links are migrated to 
shortest substrate path. However, finding suitable substrate 
node for each migrated virtual node is a very complicated task. 
The reasons behind this complexity are not only connectivity 
and CPU constraints, but also lack of substrate resources. The 
proposed approach does not reserve a backup quota to be used 
after failures, which decreases the probability of finding 
enough and free substrate resources for recovering affected 
virtual resources and increases the probability of violating 
service level agreement. 

To enhance virtual network survivability against single 
substrate link failure, Chen et al. [10] have proposed a linear 
programming model to formulate problem of allocating 
bandwidth for primary paths, backup paths, and shared backup 
paths. Performance of bandwidth allocation scheme has been 
improved by employing load-balancing strategy. After link 
failure, instead of migrating affected virtual links from failed 
substrate link, allocated bandwidths are reconfigured to cover 
affected virtual links. 

Gu et al. [11], [13], [14] have proposed virtual network 
embedding scheme to guarantee recovery from single regional 
failure event. Before embedding each virtual network requests, 
working and recovery embeddings are specified to grantee that 
it is failure region disjoint. The problem has been formulated as 
a mixed integer linear programming problem and has been 
solved by proposing two heuristic solutions. The proposed 
solutions have improved resource efficiencies by considering 
mapping cost and load balancing during embedding process. 

Mijumbi et al. [12] have proposed a distributed negotiation 
protocol to support virtual network survivability against 
physical link failures in multi-domain environments. The 
proposed protocol contains seven messages, which forms 
interactions between infrastructure providers and virtual 

network providers during backup and restoration for single 
physical link failures. 

Meixner et al. [15] have proposed a probabilistic model to 
reduce the probability of virtual network disconnections and 
capacity loss due to single substrate link failure. The problem 
has been modeled as integer linear program model based on 
risk assessment to economically select sustainable backup 
substrate node. 

Sun et al. [16] have modeled the problem of survivable 
virtual network embedding using mixed-integer linear 
programming (MILP) and proposed two algorithms: 
Lagrangian Relaxation based algorithm, and Decomposition 
based algorithm. While experimental shows that the proposed 
algorithms reduce computational complexity compared to 
MILP, they sustain the same embedding cost. 

Rahman and Boutaba [5] have provided a mathematical 
formulation of the survivable virtual network embedding 
(SVNE) problem. To avoid mixed-integer programs 
complexity, Rahman and Boutaba have proposed hybrid policy 
heuristic, which proactively solves the problem of single 
substrate link failure with considering customer service level 
agreement constraints. Before any virtual network arrives, a set 
of candidate backup detours is calculated for each substrate 
link. After receiving new virtual network request, virtual nodes 
are embedded by applying two node-embedding algorithms: 
greedy node embedding heuristic that has been proposed by 
Zhu and Ammar in [17], and D-ViNE Algorithm, which has 
been proposed by Chowdhury and Rahman in [18]. To recover 
from substrate link failure, they have proposed hybrid and 
proactive backup detour algorithms. Performance of different 
combination of virtual node embedding algorithms and 
substrate link failure recovery algorithms have been evaluated 
by using ViNE-Yard simulator with different VN request 
topologies. Simulation results demonstrate that the proposed 
solutions outperform BLIND policy heuristic, which re-
computes a new link embedding for each VN affected by the 
substrate link failure. 

III. COLLECTIVE NEURODYNAMIC SURVIVABLE VNE 

Cloud datacenter receives users’ requests as virtual 
networks (VNs). Each VN contains a set of virtual nodes 
(virtual machines) and a set of virtual links connect these 
nodes. Virtual network    is modeled as a weighted 
undirected graph    (     ), where    is the set of virtual 
nodes and    is the set of virtual links. Virtual nodes and 
virtual links are weighted by the required CPU and bandwidth, 
respectively. 

Enhancing virtual network to improve survivability of 
virtual network    (     ) with   |  | virtual nodes, an 
enhanced virtual network    (     )  is constructed. 
Enhanced virtual network    extends    by adding one 
additional virtual node and set of virtual links. Resources of 
   are specified to guarantee that there are enough resources to 
reallocate    after any substrate link or single node failures. 

Each reallocation is represented by using three matrices  , 
       .   is (   )  matrix, where      means that 
virtual node   is allocated on node j.   is  (   )   (   ) 
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matrix, where     refers to the required bandwidth for the 

virtual link that connects virtual nodes   and  .   is (    ) 
matrix, where      implies that virtual node   requires CPU 
with capacity  . 

Virtual network enhancing process is initialized by 
allocating virtual nodes from virtual network (which contains   
virtual nodes) to the first   nodes in the enhanced virtual 
network. The initial allocation matrix    becomes as following  

   (             ) 

    
    refers to that node     in the enhanced virtual 

network is empty and is not used in this case. 

To recovery from     substrate node failure, re-embedding 

matrix    can be generated by permuting matrix   . Matrix    

can be represented by permutation matrix   , which is an 
orthogonal matrix of size (   )  (   ) such that 

    
  {          

    

              
  

Thus, re-embedding matrices is calculated as 

        

        

   (  )      

Therefore, the problem of enhancing virtual network is 
formulated as following: 
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Where,   is the weight coefficient to represent importance 
of bandwidth and CPU resources. Constraints (2) - (5) ensure 
that there are sufficient resources to re-allocate virtual network 
after different failures. Constraint (6) reveals that each virtual 
node is allocated to only one substrate node and constraint (7) 
makes certain that each substrate node contains only one 
virtual node from the same virtual network. Constraint (8) 

guarantees that for each     substrate node failure there is a 

permutation matrix    to generate re-embedding matrix    
from the initial matrix   . 

This problem is nonconvex due to bilinear constraints (5) 

and it can be linearized by replacing the quadratic terms     
     

  

by five-dimensional array   (       ) 

            
     

      *      +            *        + 

After replacing the zero-one integrality constraint (9) with 
non-negativity constraint, the problem becomes equivalent to 
the following linear programming problem: 
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  is defined as    (             ) , where    and      
are vectors represent required CPU and bandwidth for the 
enhanced virtual network.    and    are vectors represent all 
variables in the five-dimensional array   and in the three-
dimensional array  , which contains all permutations. 

The primal problem (10)-(19) is liner programming and it 
can be written in the following general matrix form: 

Minimize                                               (  ) 

Subject to 

                                           (  ) 
                                           (  ) 

                                  (  ) 
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where   .
  
  

/         (
  

  
)          

  .
  
  
/        

           (   )      (   )   

                     

From dual theory [6], dual problem for the previous primal 
problem is: 

Maximize                                                           (  ) 

Subject to  

                                                  (  ) 

                                                  (  ) 

                                                                   (  ) 

Where   (    )        (
  
  

)      

To solve the primal problem (20)-(23) and dual problem 
(24)-(27), Xia [6] has proposed neural network with the 
following differential equation to drive its state vector    
(   ) . 

  

  
       ( )                                                   (  ) 

Where,    ( ) is the gradient of the energy function  ( ), 
which is defined as following: 
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To apply the previous neural network to the primal problem 
(10)-(19), constraints are switched to penalties by using 
Lagrange and Karush-Kuhn-Tucker multipliers as follows: 
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Where,    and   are vectors of Lagrange and Karush-Kuhn-
Tucker multipliers, respectively. 
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lagrangian function  (     ), the derivative of the function 
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problem is formulated as follows: 
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The time derivative of a state variable is calculated as 
partial derivative of the energy function in (28). Thus, the 
dynamic equation of the neural network is defined by the 
following differential equations: 
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Where,    is a nonnegative parameter that scales the 
convergence rate of the neural network. 

Survivable virtual network embedding after describing 
neural network that has been used for enhancing virtual 
network, this subsection explains the collective neurodynamic 
approach that has been employed for finding optimal multi-
path link embedding solution. 

Multiple neurodynamic models have been exploited to 
enhance candidate virtual network embedding solution. First, 
set of neurodynamic models are initialized and distributed in 
the substrate network. Second, each model improves its local 
optimal solution by using its dynamic equation. After all 
neurodynamic models converge to its local optimal, Particle 

Swarm Optimization (PSO) technique is employed to exchange 
information between neurodynamic models. Third, each model 
adjusts its state with considering its own best solution as well 
as the best solution found so far. The previous two steps are 
repeated until a termination criterion is reached. The position 
and velocity of each neurodynamic model can be expressed 
using the following equations [19]: 
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      (     ( )     ( ))                      (  ) 

  (   )    ( )    (   )                                                  (  ) 

Where,       ( ) is the local optimal solution of the 
neurodynamic model   at time  ,      ( ) is the global optimal 
solution at time  ,   and    are two random numbers between 0 
and 1. The constants     and     are specified to control 
influence of       ( ) and      ( ) on the search process. The 
constant   is called inertia weight, which controls effect of the 
previous velocity on the new one.  

In the remaining of this subsection, the problem of multi-
path link embedding of enhanced virtual network has been 
formulated as quadratic integer program and transformed into 
mixed integer linear program. Finally, dynamic equation of the 
neurodynamic model has been explained.  

In multi-path link embedding [7], each virtual link is 
divided into         virtual sub-links, which connect the 
same virtual nodes as the original virtual link. Bandwidth of 
each virtual sub-link is equal to   (   )  of the original 
virtual link bandwidth. Consequently, there is only one extra 
sub-link is added for survivability against substrate link failure. 
The problem of embedding enhanced virtual network is 
formulated as quadratic integer program: 
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Where,     is a set of    disjoint paths between substrate 
nodes   and  .       (   ) is the total length of  all substrate 
paths in the set     .     (   )  is the minimum free 
bandwidth in all substrate links that participate in substrate 
paths of     . 

Main goal of the objective function (54) is minimizing cost 
of embedding enhanced virtual networks. Cost of embedding 
virtual nodes depends on total CPU capacity of enhanced 
virtual network. Each virtual node is allocated to one and only 
one substrate node. Therefore, cost of embedding virtual nodes 
is considered unvarying in the previous formulation. In the 
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other side, each virtual link is divided into   links and 
embedded in   substrate paths, which contain sequences of 
substrate links. Thus, cost of embedding virtual link depends 
on total lengths of all required substrate paths to accommodate 
this virtual link. 

Constraint (55) ensures that there is sufficient substrate 
CPU to embed virtual node. Constraint (56) reveals that there 
is enough free bandwidth in all substrate links that are 
employed to embed virtual link. 

To solve the quadratic integer program (54)-(59), the 
quadratic term          is eliminated to transform the problem 

into mixed integer linear program. The linearization of the 
problem allows us to solve the problem by applying the neural 
network that is proposed in [6]. After replacing quadratic term 
        with four-dimensional array        and replacing zero-

one integrality constraints with nonnegativity constraints, the 
problem becomes equivalent to the following linear 
programming problem. 
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  is defined as (   )  where   and   are vectors represent 
all variables in the two-dimensional array   and in the four-
dimensional array Y. 

By using Lagrange and Karush-Kuhn-Tucker multipliers, 
constraints are switched to penalties in the following 
Lagrangian function: 

 (     )  ∑ ∑  ∑ ∑       (    )            
  
   

  
   

  
   

  
     

    (∑ ∑ ∑ ∑       
  
   

  
   

  
   

  
   –     )  

  ∑        (∑     
  
     ) 

     

  ∑     (   )  (∑     
  
     ) 

     

 ∑ ∑  .      (   )        (  
     

 )/ 
   

 
    

  ∑ ∑  ∑ ∑  (           
         (

 

   
    –     (    )))

 
   

 
   

 
   

 
    

  ∑ ∑  ∑ ∑  (                 
  (             

 
   

 
   

 
   

 
   

    ))                                                                                        (  )  

          (   )      (   )       (   )  

Where,    (         )   *          + is vector of 
Lagrange multipliers and   (         )   *         
      +  is vector of Karush-Kuhn-Tucker multipliers. The 
dual problem is formulated as follows: 

Maximize  
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Finally, the dynamic equation of the neural network is 
defined by the following differential equations:  
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IV. EVALUATION 

To evaluate the performance of the proposed approach 
(CND-SVNE), its performance has been compared with 
Failure Independent Protection (FIP) approach [1]. FIP adds 
one redundant node and set of links to connect this node with 
all remaining nodes. Three metrics are used in the evaluation: 
VNE revenue, VN acceptance ratio, and substrate resources 
utilization. Where VNE revenue is the sum of all accepted and 
accommodated virtual resources, VN acceptance ratio is 
number of accepted virtual networks divided by total number 
of submitted virtual networks, and substrate resources 
utilization is used substrate resources divided by total substrate 
resources. 

In the Evaluation environment, substrate network topology 
has been generated with 100 nodes and 500 links by using 
Waxman generator. Bandwidth of the substrate links are 
uniformly distributed between 50 and 150 with average 100. 
Each substrate node is randomly assigned one of the following 
server configurations: HP ProLiant ML110 G4 (Intel Xeon 
3040, 2 cores X 1860 MHz, 4 GB), or HP ProLiant ML110 G5 
(Intel Xeon 3075, 2 cores X 2660 MHz, 4 GB). We generated 
1000 Virtual network topologies using Waxman generator with 
average connectivity 50%. The number of virtual nodes in each 
VN is variant from 2 to 20. Each virtual node is randomly 
assigned one of the following CPU: 2500 MIPS, 2000 MIPS, 
1000 MIPS, and 500 MIPS, which are correspond to the CPU 
of Amazon EC2 instance types. Bandwidths of the virtual links 
are real numbers uniformly distributed between 1 and 50. VN’s 
arrival times are generated randomly with arrival rate 10 VNs 
per 100 time units. The lifetimes of the VNRs are generated 
randomly between 300 and 700 time units with average 500 
time units. Generated SN and VNs topologies are stored in 
brite format and used as inputs for all mapping algorithms. 
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Fig. 1. Revenue comparison. 

 
Fig. 2. VN Acceptance ratio comparison. 

 
Fig. 3. Substrate resources utilization comparison. 

As shown in Fig. 1, 2, and 3, the proposed approach 
increases VN acceptance ratio compared with FIP. By 
accepting and accommodating more virtual network requests, 
the proposed approach increases datacenter’s revenue and 
increases substrate resources utilization. This improvement 
comes from reducing amount of required redundant virtual 
links in the proposed approach. Additionally, the proposed 

approach does not require any additional computation after 
failures this is due to existence of recovery plan (mutation 
matrix) for each failure. 

V. CONCLUSION 

In this paper, a collective neurodynamic survivable virtual 
network embedding approach has been proposed. The 
proposed approach combines substrate node failure survivable 
virtual network embedding approach proposed by Guo et al. 
[1] with substrate link failure survivable virtual network 
embedding approach proposed by Khan et al. [7]. Fast 
convergence of the neural network optimization that has been 
proposed by Xia [6] has been exploited to reduce amount of 
required redundant resources, while co-ordination between 
neurodynamic models has been done by using particle swarm 
optimization. Experimental results show that the proposed 
approach outperforms Failure Independent Protection 
approach. 

For the future work, we plan to extend the proposed 
approach to consider virtual network size during specifying 
redundant resources. Instead of adding fixed number of 
redundant nodes for each virtual network, number of redundant 
nodes will be proportional to size of virtual network. 
Furthermore, influence of the proposed approach on 
fragmentation of substrate resources will be investigated for 
further improvement. 
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