
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

54 | P a g e

www.ijacsa.thesai.org

A Collective Neurodynamic Approach to Survivable

Virtual Network Embedding

Ashraf A. Shahin1,2

1
College of Computer and Information Sciences, Al Imam Mohammad Ibn Saud Islamic University (IMSIU)

Riyadh, Kingdom of Saudi Arabia
2
Department of Computer and Information Sciences, Institute of Statistical Studies & Research,

Cairo University, Cairo, Egypt

Abstract—Network virtualization has attracted significant

amount of attention in the last few years as one of the key

features of cloud computing. Network virtualization allows

multiple virtual networks to share physical resources of single

substrate network. However, sharing substrate network

resources increases impact of single substrate resource failure.

One of the commonly applied mechanisms to protect against such

failures is provisioning redundant substrate resources for each

virtual network to be used to recover affected virtual resources.

However, redundant resources decreases cloud revenue by

increasing virtual network embedding cost. In this paper, a

collective neurodynamic approach has been proposed to reduce

amount of provisioned redundant resources and reduce cost of

embedding virtual networks. The proposed approach has been

evaluated by using simulation and compared against some

existing survivable virtual network embedding techniques.

Keywords—Collective neurodynamics; integer linear

programming; global optimization; network virtualization;

survivable virtual network embedding

I. INTRODUCTION

Virtualization is one of the distinctive features of cloud
computing. Virtualization increases utilization of substrate
resources and increases revenue of cloud datacenters by
allowing embedding multiple virtual networks in a single
substrate network. However, mapping virtual resources to
substrate resources is known to be NP-hard even without
considering other cloud computing features such as scalability
and survivability [1]-[3].

Although, sharing substrate resources among multiple
virtual networks sustains cloud computing with many valuable
benefits, it brings critical survivability issues. Single substrate
resource failure can cause long service downtime and waste a
lot of date from several virtual networks (VNs) [4]. Substrate
resource failure becomes a part of everyday operation in
today’s Internet Service Provider (ISP) networks [5].

One of the most efficient protection approaches is
provisioning redundant resources for each virtual network
(VN). Redundant resources enable fast reallocating affected
virtual resources after substrate resource failures. Nevertheless,
redundant resources increase capacity of required virtual
resources, which reduces revenue and reduces acceptance ratio
of cloud datacenters.

In this paper, a collective neurodynamic optimization
approach has been proposed to reduce amount of required
redundant resources and to optimize virtual network
embedding. To guarantee virtual network restorability after
substrate node failure, the proposed approach enhances virtual
network by adding one virtual node and set of virtual links.
Virtual networks are enhanced by applying virtual network
enhancing design proposed by Guo et al. in [1]. The problem
has been formulated as Mixed-Integer Linear Programming
and solved by applying neural network proposed by Xia in [6].
To guarantee survivability against substrate link failure, virtual
links are embedded by applying multi-path link embedding
approach proposed by Khan et al. in [7].

The problem of multi-path link embedding of enhanced
virtual network has been formulated as Mixed-Integer Linear
Programming and has been solved by using collective
neurodynamic optimization approach, which combines the
ability of social thinking in Particle Swarm Optimization with
the local search capability of Neural Network.

Effectiveness of the proposed approach has been evaluated
by comparing its performance with other approaches.
Simulation results show that the proposed model reduces
required redundant resources and increases revenue.

The rest of this paper is organized as follows. Section 2
describes the related work. Section 3 briefly describes the
proposed model. Section 4 experimentally demonstrates the
effectiveness of the proposed model. Finally, Section 6
concludes.

II. RELATED WORK

Several survivable virtual network embedding (SVNE)
approaches have been proposed in the last few years [1]-[4].
Guo et al. [1] have proposed survivable virtual network
embedding approach. The proposed approach enhanced virtual
network by adding additional virtual resources and redesigning
virtual network with considering failure dependent protection
technique, which provides backup substrate node for each
substrate node failure scenario. Enhanced virtual network has
been formulated using binary quadratic programming, and
virtual network embedding has been formulated using mixed
integer linear programming. Although, the proposed approach
reduces amount of required substrate resources to design
survivable virtual network, it increases number of required
migrations after failures, which increases service down time.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

55 | P a g e

www.ijacsa.thesai.org

A topology-aware remapping policy has been proposed by
Xiao et al. [2] to deal with single substrate node failures. Based
on network topology, a set of candidate backup substrate nodes
has been defined for each substrate node and a set of candidate
backup substrate links has been defined for each substrate link.
In [8], Xiao et al. have extended the proposed policy in [2] to
handle multiple nodes failures. However, the proposed policy
uses all substrate nodes to accommodate incoming virtual
networks. Therefore, when a substrate node failure happens,
the proposed policy does not grantee that for each migrated
virtual node there is a candidate backup substrate node with
enough free resources to accommodate migrated virtual node.

Zhou et al. [3] have studied survivability of virtual
networks against multiple physical link failures. They have
formulated the problem of remapping virtual network with
multiple physical link failures using mixed integer linear
programming and have proposed an approach to find exact
solution for the formulated problem. However, the proposed
approach can deal only with small virtual networks.

Qiang et al. [9] have modeled the survivable virtual
network embedding problem as an integer linear programming
model and have used bee colony algorithm to find near optimal
virtual network embedding solution. After substrate node
failure, virtual nodes are migrated to normal node, which is
specified by greed rules first, and virtual links are migrated to
shortest substrate path. However, finding suitable substrate
node for each migrated virtual node is a very complicated task.
The reasons behind this complexity are not only connectivity
and CPU constraints, but also lack of substrate resources. The
proposed approach does not reserve a backup quota to be used
after failures, which decreases the probability of finding
enough and free substrate resources for recovering affected
virtual resources and increases the probability of violating
service level agreement.

To enhance virtual network survivability against single
substrate link failure, Chen et al. [10] have proposed a linear
programming model to formulate problem of allocating
bandwidth for primary paths, backup paths, and shared backup
paths. Performance of bandwidth allocation scheme has been
improved by employing load-balancing strategy. After link
failure, instead of migrating affected virtual links from failed
substrate link, allocated bandwidths are reconfigured to cover
affected virtual links.

Gu et al. [11], [13], [14] have proposed virtual network
embedding scheme to guarantee recovery from single regional
failure event. Before embedding each virtual network requests,
working and recovery embeddings are specified to grantee that
it is failure region disjoint. The problem has been formulated as
a mixed integer linear programming problem and has been
solved by proposing two heuristic solutions. The proposed
solutions have improved resource efficiencies by considering
mapping cost and load balancing during embedding process.

Mijumbi et al. [12] have proposed a distributed negotiation
protocol to support virtual network survivability against
physical link failures in multi-domain environments. The
proposed protocol contains seven messages, which forms
interactions between infrastructure providers and virtual

network providers during backup and restoration for single
physical link failures.

Meixner et al. [15] have proposed a probabilistic model to
reduce the probability of virtual network disconnections and
capacity loss due to single substrate link failure. The problem
has been modeled as integer linear program model based on
risk assessment to economically select sustainable backup
substrate node.

Sun et al. [16] have modeled the problem of survivable
virtual network embedding using mixed-integer linear
programming (MILP) and proposed two algorithms:
Lagrangian Relaxation based algorithm, and Decomposition
based algorithm. While experimental shows that the proposed
algorithms reduce computational complexity compared to
MILP, they sustain the same embedding cost.

Rahman and Boutaba [5] have provided a mathematical
formulation of the survivable virtual network embedding
(SVNE) problem. To avoid mixed-integer programs
complexity, Rahman and Boutaba have proposed hybrid policy
heuristic, which proactively solves the problem of single
substrate link failure with considering customer service level
agreement constraints. Before any virtual network arrives, a set
of candidate backup detours is calculated for each substrate
link. After receiving new virtual network request, virtual nodes
are embedded by applying two node-embedding algorithms:
greedy node embedding heuristic that has been proposed by
Zhu and Ammar in [17], and D-ViNE Algorithm, which has
been proposed by Chowdhury and Rahman in [18]. To recover
from substrate link failure, they have proposed hybrid and
proactive backup detour algorithms. Performance of different
combination of virtual node embedding algorithms and
substrate link failure recovery algorithms have been evaluated
by using ViNE-Yard simulator with different VN request
topologies. Simulation results demonstrate that the proposed
solutions outperform BLIND policy heuristic, which re-
computes a new link embedding for each VN affected by the
substrate link failure.

III. COLLECTIVE NEURODYNAMIC SURVIVABLE VNE

Cloud datacenter receives users’ requests as virtual
networks (VNs). Each VN contains a set of virtual nodes
(virtual machines) and a set of virtual links connect these
nodes. Virtual network is modeled as a weighted
undirected graph (), where is the set of virtual
nodes and is the set of virtual links. Virtual nodes and
virtual links are weighted by the required CPU and bandwidth,
respectively.

Enhancing virtual network to improve survivability of
virtual network () with | | virtual nodes, an
enhanced virtual network () is constructed.
Enhanced virtual network extends by adding one
additional virtual node and set of virtual links. Resources of
 are specified to guarantee that there are enough resources to
reallocate after any substrate link or single node failures.

Each reallocation is represented by using three matrices ,
 . is () matrix, where means that
virtual node is allocated on node j. is () ()

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

56 | P a g e

www.ijacsa.thesai.org

matrix, where refers to the required bandwidth for the

virtual link that connects virtual nodes and . is ()
matrix, where implies that virtual node requires CPU
with capacity .

Virtual network enhancing process is initialized by
allocating virtual nodes from virtual network (which contains
virtual nodes) to the first nodes in the enhanced virtual
network. The initial allocation matrix becomes as following

 ()

 refers to that node in the enhanced virtual

network is empty and is not used in this case.

To recovery from substrate node failure, re-embedding

matrix can be generated by permuting matrix . Matrix

can be represented by permutation matrix , which is an
orthogonal matrix of size () () such that

 {

Thus, re-embedding matrices is calculated as

 ()

Therefore, the problem of enhancing virtual network is
formulated as following:

Min (∑

 ∑ ∑

) (1)

Subject to

 * + * + (2)

 * + * + (3)

 ∑

 * + * + (4)

 ∑ ∑

 * +

* + ()

∑

 * + * + (6)

∑

 * + * + (7)

 * + (8)

 * + * + * + (9)

Where, is the weight coefficient to represent importance
of bandwidth and CPU resources. Constraints (2) - (5) ensure
that there are sufficient resources to re-allocate virtual network
after different failures. Constraint (6) reveals that each virtual
node is allocated to only one substrate node and constraint (7)
makes certain that each substrate node contains only one
virtual node from the same virtual network. Constraint (8)

guarantees that for each substrate node failure there is a

permutation matrix to generate re-embedding matrix
from the initial matrix .

This problem is nonconvex due to bilinear constraints (5)

and it can be linearized by replacing the quadratic terms

by five-dimensional array ()

 * + * +

After replacing the zero-one integrality constraint (9) with
non-negativity constraint, the problem becomes equivalent to
the following linear programming problem:

 () (∑

 ∑ ∑

) ()

 Subject to

∑

 * +

 * + () ∑ ∑

 * +

 *

 + () ∑ ∑ ∑ ∑

 () * + ()

 * +

 * + ()

 * +

 * + ()

∑

 * + * + ()

∑

 * + * + ()

 * + ()

 * + * + ()

 is defined as () , where and
are vectors represent required CPU and bandwidth for the
enhanced virtual network. and are vectors represent all
variables in the five-dimensional array and in the three-
dimensional array , which contains all permutations.

The primal problem (10)-(19) is liner programming and it
can be written in the following general matrix form:

Minimize ()

Subject to

 ()
 ()

 ()

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

57 | P a g e

www.ijacsa.thesai.org

where .

/ (

)

 .

/

 () ()

From dual theory [6], dual problem for the previous primal
problem is:

Maximize ()

Subject to

 ()

 ()

 ()

Where () (

)

To solve the primal problem (20)-(23) and dual problem
(24)-(27), Xia [6] has proposed neural network with the
following differential equation to drive its state vector
() .

 () ()

Where, () is the gradient of the energy function (),
which is defined as following:

 ()

 ()

 (| |)

 (| |)

‖ ‖

‖ ‖

, -

 ,() | |-

, -

 ,() | |- ()

Where, () ()

 (

) (

)

To apply the previous neural network to the primal problem
(10)-(19), constraints are switched to penalties by using
Lagrange and Karush-Kuhn-Tucker multipliers as follows:

 () (∑

 ∑ ∑

)

 ∑ (∑ ∑ ∑ ∑

 – ())

 ∑ ∑ (∑

)

 ∑ ∑ () (∑

)

 ∑ ∑ () (
)

 ∑ ∑
 (∑

)

 ∑ ∑ ∑
 (∑ ∑

 –

)

 ∑ ∑ ∑ ∑ ∑
 (–

) ()

 * +

Where, and are vectors of Lagrange and Karush-Kuhn-
Tucker multipliers, respectively.

 () * +

 () * +

 are defined as following:

 () * + * +

 () () ()

 * + * +

 () ()

 * + * +

To find the dual function, which is infimum value of the
lagrangian function (), the derivative of the function
 () with respect to must be zero. Thus, the dual
problem is formulated as follows:

Maximize

 () ∑ ()

 ∑ ∑

 ∑ ∑ ()

 ∑ ∑ ()

 ()

Subject to

 ∑ ()

 * + ()

 ∑ () () ()

* + ()

 * + * + ()

 () ()

 () ∑ ∑

 ()

 () ()

 * + * +

 ()
 ()

∑ ∑

 ()

 () ()

 * + * +

 * + ()

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

58 | P a g e

www.ijacsa.thesai.org

The time derivative of a state variable is calculated as
partial derivative of the energy function in (28). Thus, the
dynamic equation of the neural network is defined by the
following differential equations:

 {∑

 ∑ ∑

 ∑ ()

 ∑ ∑

 ∑ ∑ ()

 ∑ ∑ ()

 ∑ (

∑

 |

 ∑

 |)}

* + ()

 { (∑

 ∑ ∑

 ∑ ()

 ∑ ∑

 ∑ ∑ ()

 ∑ ∑ ()

) ∑ (

 ∑ ∑

|
 ∑ ∑

 |)} *

 + ()

 { | |

∑ ∑ ∑ ∑

 – ()

 ∑ ∑

 |

 ∑ ∑

 |

 |

 |}

* + * + ()

 {

 |
 | ∑ (

)

 ∑

 |

 ∑

 |

 ∑ ∑ (

)

 ∑ ∑ |

 |

∑ ∑ (

)

∑ ∑ |

 |

 |
 |} * +

* + () (

) ()

 ()

 { ()

 | ()
 | ∑ (()

 ()
)

 ∑

 |

 – ∑

 | ∑ ∑ (()

 ()) ∑ ∑ | ()

 () | ∑ ∑ (

 ()

 ()) ∑ ∑ |
 ()

 () | ()
 }

* + ()

 {∑ ∑ ∑ ∑ .

/

() (∑

 ∑ ∑

 ∑ ()

 ∑ ∑

 ∑ ∑ ()

 ∑ ∑ ()

)}

* + ()

 {∑ . () * + * +

 () ∑ ∑

 /

 () ()
 ()

∑ ∑

 ∑

 ∑ ∑

 ∑ ()

 ∑ ∑

 ∑ ∑ ()

 ∑ ∑ ()

 } * +

* + ()

 ()

 {∑ . ()

 () ∑ ∑

 / ∑

 ∑ ∑

 ∑ ()

∑ ∑

 ∑ ∑ ()

 ∑ ∑ ()

 } * +

* + ()

 ()

 {∑ (()

 () ∑ ∑

)

∑ . () ()

 () ∑ ∑

 / ∑

 ∑ ∑

 ∑ ()

∑ ∑

 ∑ ∑ ()

 ∑ ∑ ()

 }

* + ()

 ()

 {∑

 ∑ ∑

 ∑ ()

 ∑ ∑

 ∑ ∑ ()

 ∑ ∑ ()

 () ()
 ()

∑ ∑

 } * + *

 + ()

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

59 | P a g e

www.ijacsa.thesai.org

 ()

 { () | ()|

∑ ()

 ∑ . ()
 ()

∑ ∑

 /} * +

* + ()

 ()

 { () | ()|

∑ ()

∑ . () ()

 () ∑ ∑

 /}

 () ()

* + ()

 {

 |
| ∑

 –

 ∑ ∑ .

/

 }

 () () () *

 + * +

 {

 |
|

 ()
 () ∑ ∑

}

 () ()

* + * +

 ()

 {

 |
 |

 () ()
 ()

∑ ∑

 }

 (

) () ()

 () () * +

* + ()

Where, is a nonnegative parameter that scales the
convergence rate of the neural network.

Survivable virtual network embedding after describing
neural network that has been used for enhancing virtual
network, this subsection explains the collective neurodynamic
approach that has been employed for finding optimal multi-
path link embedding solution.

Multiple neurodynamic models have been exploited to
enhance candidate virtual network embedding solution. First,
set of neurodynamic models are initialized and distributed in
the substrate network. Second, each model improves its local
optimal solution by using its dynamic equation. After all
neurodynamic models converge to its local optimal, Particle

Swarm Optimization (PSO) technique is employed to exchange
information between neurodynamic models. Third, each model
adjusts its state with considering its own best solution as well
as the best solution found so far. The previous two steps are
repeated until a termination criterion is reached. The position
and velocity of each neurodynamic model can be expressed
using the following equations [19]:

 () () (() ())
 (() ()) ()

 () () () ()

Where, () is the local optimal solution of the
neurodynamic model at time , () is the global optimal
solution at time , and are two random numbers between 0
and 1. The constants and are specified to control
influence of () and () on the search process. The
constant is called inertia weight, which controls effect of the
previous velocity on the new one.

In the remaining of this subsection, the problem of multi-
path link embedding of enhanced virtual network has been
formulated as quadratic integer program and transformed into
mixed integer linear program. Finally, dynamic equation of the
neurodynamic model has been explained.

In multi-path link embedding [7], each virtual link is
divided into virtual sub-links, which connect the
same virtual nodes as the original virtual link. Bandwidth of
each virtual sub-link is equal to () of the original
virtual link bandwidth. Consequently, there is only one extra
sub-link is added for survivability against substrate link failure.
The problem of embedding enhanced virtual network is
formulated as quadratic integer program:

 ∑ ∑ ∑ ∑ ()

 ()

(

) * +
 * + ()

(

 ()) * +

 * + ()

∑

 * + ()

∑

 * + ()

 * + * + * + ()

Where, is a set of disjoint paths between substrate
nodes and . () is the total length of all substrate
paths in the set . () is the minimum free
bandwidth in all substrate links that participate in substrate
paths of .

Main goal of the objective function (54) is minimizing cost
of embedding enhanced virtual networks. Cost of embedding
virtual nodes depends on total CPU capacity of enhanced
virtual network. Each virtual node is allocated to one and only
one substrate node. Therefore, cost of embedding virtual nodes
is considered unvarying in the previous formulation. In the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

60 | P a g e

www.ijacsa.thesai.org

other side, each virtual link is divided into links and
embedded in substrate paths, which contain sequences of
substrate links. Thus, cost of embedding virtual link depends
on total lengths of all required substrate paths to accommodate
this virtual link.

Constraint (55) ensures that there is sufficient substrate
CPU to embed virtual node. Constraint (56) reveals that there
is enough free bandwidth in all substrate links that are
employed to embed virtual link.

To solve the quadratic integer program (54)-(59), the
quadratic term is eliminated to transform the problem

into mixed integer linear program. The linearization of the
problem allows us to solve the problem by applying the neural
network that is proposed in [6]. After replacing quadratic term
 with four-dimensional array and replacing zero-

one integrality constraints with nonnegativity constraints, the
problem becomes equivalent to the following linear
programming problem.

 ()
∑ ∑ ∑ ∑ ()

 ()

(

) * + * + ()

(

 ()) * +

 * + ()

∑ ∑ ∑ ∑

 ()

 * +

 * + ()

 * +

 * + ()

∑

 * + ()

∑

 * + ()

 * + * + ()

 is defined as () where and are vectors represent
all variables in the two-dimensional array and in the four-
dimensional array Y.

By using Lagrange and Karush-Kuhn-Tucker multipliers,
constraints are switched to penalties in the following
Lagrangian function:

 () ∑ ∑ ∑ ∑ ()

 (∑ ∑ ∑ ∑

 –)

 ∑ (∑

)

 ∑ () (∑

)

 ∑ ∑ . () (

)/

 ∑ ∑ ∑ ∑ (
 (

 – ()))

 ∑ ∑ ∑ ∑ (
 (

)) ()

 () () ()

Where, () * + is vector of
Lagrange multipliers and () *
 + is vector of Karush-Kuhn-Tucker multipliers. The
dual problem is formulated as follows:

Maximize

 () ∑

 ∑ ()

 ()

Subject to

 ()
 (

 ())
 * +

* + () () (

) ()

 () () (

)

∑ ∑

 ∑ ∑

 * + * + ()

 () () ()

 * + ()

Finally, the dynamic equation of the neural network is
defined by the following differential equations:

 { () (∑ ∑ ()

 ∑

 ∑ ()

)

 | | ∑ ∑ ∑ ∑

 . ()

 /

 . ()

 / |. ()

 / |

 | |}

* + * + ()

 { – | | ∑

 ∑

 (

) – (

) |(

) |

∑ ∑ ()

 ∑ ∑ (

) –∑ ∑ |

 | –∑ ∑ | |

| |} * + * + ()

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

61 | P a g e

www.ijacsa.thesai.org

 { (∑ ∑ ∑ ∑ ()

 ∑

 ∑ ()

)

 ∑ ∑ ∑ ∑ (()

 (

 ())

) } ()

 {(∑ ∑ ∑ ∑ ()

 ∑

 ∑ ()

)

 ∑ . () () (

)

∑ ∑ .

// } * + ()

 ()

 {(∑ ∑ ∑ ∑ ()

 ∑

 ∑ ()

)

 ∑ . () () (

)

∑ ∑ .

//} * + ()

 ()

 { () | ()|

(

) . () () (

)

∑ ∑ .

//} * +

* + ()

 {

 |
|

(

 ()) (()

 (

 ())

)} * +

* + ()

 {
 |

|

 ()
 (

 ())
 ()

 () (

)

∑ ∑ (

)

 () () (

)

∑ ∑ .

/} * +

* + ()

IV. EVALUATION

To evaluate the performance of the proposed approach
(CND-SVNE), its performance has been compared with
Failure Independent Protection (FIP) approach [1]. FIP adds
one redundant node and set of links to connect this node with
all remaining nodes. Three metrics are used in the evaluation:
VNE revenue, VN acceptance ratio, and substrate resources
utilization. Where VNE revenue is the sum of all accepted and
accommodated virtual resources, VN acceptance ratio is
number of accepted virtual networks divided by total number
of submitted virtual networks, and substrate resources
utilization is used substrate resources divided by total substrate
resources.

In the Evaluation environment, substrate network topology
has been generated with 100 nodes and 500 links by using
Waxman generator. Bandwidth of the substrate links are
uniformly distributed between 50 and 150 with average 100.
Each substrate node is randomly assigned one of the following
server configurations: HP ProLiant ML110 G4 (Intel Xeon
3040, 2 cores X 1860 MHz, 4 GB), or HP ProLiant ML110 G5
(Intel Xeon 3075, 2 cores X 2660 MHz, 4 GB). We generated
1000 Virtual network topologies using Waxman generator with
average connectivity 50%. The number of virtual nodes in each
VN is variant from 2 to 20. Each virtual node is randomly
assigned one of the following CPU: 2500 MIPS, 2000 MIPS,
1000 MIPS, and 500 MIPS, which are correspond to the CPU
of Amazon EC2 instance types. Bandwidths of the virtual links
are real numbers uniformly distributed between 1 and 50. VN’s
arrival times are generated randomly with arrival rate 10 VNs
per 100 time units. The lifetimes of the VNRs are generated
randomly between 300 and 700 time units with average 500
time units. Generated SN and VNs topologies are stored in
brite format and used as inputs for all mapping algorithms.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

62 | P a g e

www.ijacsa.thesai.org

Fig. 1. Revenue comparison.

Fig. 2. VN Acceptance ratio comparison.

Fig. 3. Substrate resources utilization comparison.

As shown in Fig. 1, 2, and 3, the proposed approach
increases VN acceptance ratio compared with FIP. By
accepting and accommodating more virtual network requests,
the proposed approach increases datacenter’s revenue and
increases substrate resources utilization. This improvement
comes from reducing amount of required redundant virtual
links in the proposed approach. Additionally, the proposed

approach does not require any additional computation after
failures this is due to existence of recovery plan (mutation
matrix) for each failure.

V. CONCLUSION

In this paper, a collective neurodynamic survivable virtual
network embedding approach has been proposed. The
proposed approach combines substrate node failure survivable
virtual network embedding approach proposed by Guo et al.
[1] with substrate link failure survivable virtual network
embedding approach proposed by Khan et al. [7]. Fast
convergence of the neural network optimization that has been
proposed by Xia [6] has been exploited to reduce amount of
required redundant resources, while co-ordination between
neurodynamic models has been done by using particle swarm
optimization. Experimental results show that the proposed
approach outperforms Failure Independent Protection
approach.

For the future work, we plan to extend the proposed
approach to consider virtual network size during specifying
redundant resources. Instead of adding fixed number of
redundant nodes for each virtual network, number of redundant
nodes will be proportional to size of virtual network.
Furthermore, influence of the proposed approach on
fragmentation of substrate resources will be investigated for
further improvement.

ACKNOWLEDGMENT

The authors would like to express their cordial thanks to the
department of Research and Development (R&D) of IMAM,
university for research grant no: 370903.

REFERENCES

[1] B. Guo, C. Qiao, J. Wang, H. Yu, Y. Zuo, J. Li, Z. Chen, and Y. He,
“Survivable virtual network design and embedding to survive a facility
node failure,” Journal of Lightwave Technology, vol. 32, no. 3, pp. 483–
493, Feb 2014.

[2] A. Xiao, Y. Wang, L. Meng, X. Qiu, and W. Li, “Topology-aware
remapping to survive virtual networks against substrate node failures,”
in 2013 15th Asia-Pacific Network Operations and Management
Symposium (APNOMS), Sept 2013, pp. 1–6.

[3] Z. Zhou, T. Lin, and K. Thulasiraman, “Survivable cloud network
mapping with multiple failures,” in 2015 IEEE International Conference
on Communications (ICC), June 2015, pp. 5491–5496.

[4] H. Jiang, L. Gong, and Z. W. Zuqing, “Efficient joint approaches for
location-constrained survivable virtual network embedding,” in 2014
IEEE Global Communications Conference, Dec 2014, pp. 1810–1815.

[5] M. R. Rahman and R. Boutaba, “Svne: Survivable virtual network
embedding algorithms for network virtualization,” IEEE Transactions on
Network and Service Management, vol. 10, no. 2, pp. 105–118, June
2013.

[6] Y. Xia, “A new neural network for solving linear programming
problems and its application,” IEEE Transactions on Neural Networks,
vol. 7, no. 2, pp. 525–529, Mar 1996.

[7] M. M. A. Khan, N. Shahriar, R. Ahmed, and R. Boutaba, “Multi-path
link embedding for survivability in virtual networks,” IEEE
Transactions on Network and Service Management, vol. 13, no. 2, pp.
253–266, June 2016.

[8] A. Xiao, Y. Wang, L. Meng, X. Qiu, and W. Li, “Topology-aware
virtual network embedding to survive multiple node failures,” in 2014
IEEE Global Communications Conference (GLOBECOM), Dec 2014,
pp. 1823–1828.

[9] Z. Qiang, W. Qiang, F. Sheng, and L. Wu, “Heuristic survivable virtual
network embedding based on node migration and link remapping,” in

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 3, 2018

63 | P a g e

www.ijacsa.thesai.org

2014 IEEE 7th Joint International Information Technology and Artificial
Intelligence Conference (ITAIC), Dec 2014, pp. 181–185.

[10] Q. Chen, Y. Wan, X. Qiu, W. Li, and A. Xiao, “A survivable virtual
network embedding scheme based on load balancing and
reconfiguration,” in 2014 IEEE Network Operations and Management
Symposium (NOMS), May 2014, pp. 1–7.

[11] F. Gu, K. Shaban, N. Ghani, S. Khan, M. Naeini, M. Hayat, and C. Assi,
“Survivable cloud network mapping for disaster recovery support,”
IEEE Transactions on Computers, vol. 64, no. 8, pp. 2353–2366, Aug
2015.

[12] R. Mijumbi, J.-L. Gorricho, J. Serrat, J. Rubio-Loyola, and R. Aguero,
“Survivability-oriented negotiation algorithms for multi-domain virtual
networks,” in 2014 10th International Conference on Network and
Service Management (CNSM), Nov 2014, pp. 276–279.

[13] F. Gu, H. Alazemi, A. Rayes, and N. Ghani, “Survivable cloud
networking services,” in 2013 International Conference on Computing,
Networking and Communications (ICNC), Jan 2013, pp. 1016–1020.

[14] F. Gu, “Survivable cloud networking services,” Ph.D. dissertation, The
University of New Mexico, Albuquerque, New Mexico, July, 2013.

[15] C. Meixner, F. Dikbiyik, M. Tornatore, C. Chuah, and B. Mukherjee,
“Disaster-resilient virtual-network mapping and adaptation in optical
networks,” in 2013 17th International Conference on Optical Network
Design and Modeling (ONDM), April 2013, pp. 107–112.

[16] G. Sun, H. Yu, L. Li, V. Anand, H. Di, and X. Gao, “Efficient
algorithms for survivable virtual network embedding,” in Asia
Communications and Photonics Conference and Exhibition, Dec 2010,
pp. 531–532.

[17] Y. Zhu and M. Ammar, “Algorithms for assigning substrate network
resources to virtual network components,” in Proceedings IEEE
INFOCOM 2006. 25TH IEEE International Conference on Computer
Communications, April 2006, pp. 1–12.

[18] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual
network embedding algorithms with coordinated node and link
mapping,” IEEE/ACM Transactions on Networking, vol. 20, no. 1, pp.
206–219, Feb 2012.

[19] A. Shahin, “Memetic Multi-Objective Particle Swarm Optimization-
Based Energy-Aware Virtual Network Embedding” International
Journal of Advanced Computer Science and Applications(IJACSA),
Vol.6, NO 4, May 2015, pg. 35-46

