
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 4, 2018

Simulated Annealing with Levy Distribution for Fast
Matrix Factorization-Based Collaborative Filtering

Mostafa A. Shehata, Mohammad Nassef, Amr A. Badr
Department of Computer Science

Faculty of Computers and Information
Cairo University

Abstract—Matrix factorization is one of the best approaches
for collaborative filtering because of its high accuracy in pre-
senting users and items latent factors. The main disadvantages
of matrix factorization are its complexity, and are very hard
to be parallelized, especially with very large matrices. In this
paper, we introduce a new method for collaborative filtering
based on Matrix Factorization by combining simulated annealing
with levy distribution. By using this method, good solutions are
achieved in acceptable time with low computations, compared to
other methods like stochastic gradient descent, alternating least
squares, and weighted non-negative matrix factorization.

Keywords—Simulated annealing; levy distribution; matrix fac-
torization; collaborative filtering; recommender systems; meta-
heuristic optimization

I. INTRODUCTION

The objective of Recommender Systems is to recommend
new products or items for users based on their history [1].
There are two major approaches to create a Recommender
System. The first one is the Content Filtering or (Content
Based). This approach tries to create a profile for each user
and item, and then tries to match these profiles [3]. The second
approach is the Collaborative Filtering. It uses the rating
history of users and items, and creates a large sparse matrix
called Rating Matrix. This matrix usually contains ratings from
1 to 5. The 0’s are for the incomplete ratings. The objective of
the Collaborative Filtering is to predict these missing ratings.
One of the most successful method for Collaborative Filtering
is the Latent Factor Model[3]. This method tries to learn the
latent features of each user and item in a fixed number of
dimensions. Then represent each of them in a latent feature
vector that can be used to predict the incomplete ratings or
measure the similarity.

Matrix Factorization is one of the best techniques used for
Latent Factor Model. The basic idea is to construct the low-
dimensional matrices to approximate the original rating matrix
[2], [3], [7], [12], [13].

R ≈ U · I (1)

where RM,N is the rating matrix, UM,K is the users matrix,
IK,N is the items matrix. M and N are the number of users
and items respectively, K is the number of latent feature that
represent each user and item. Where K � min(M,N). Row
m in matrix U represents user number m in the rating matrix,
whereas column n in matrix I represents item number n in
the rating matrix. So, in the rating matrix, the rating of user

m for item n can be calculated by the dot product of row m
of matrix U by the column n of matrix I .

rm,n ≈ um· iTn (2)

The rating matrix is very sparse, because it contains a
few users ratings. The objective of this paper is to use the
known ratings to construct the low-rank matrices, to predict
the unknown or incomplete ratings.

One of the most common evaluation metrics for Collabora-
tive Filtering is RMSE (root mean squared error). We calculate
RMSE only for the known rating using the following equation:

RMSE = 2

√
(
∑

m,n∈KR
(rm,n − (um· iTn))2)/|KR| (3)

where KR is the list of known ratings.

There is a lot of work done on Matrix Factorization and
Collaborative Filtering. Here we discus three of the most
popular methods.

Stochastic Gradient Descent (SGD): SGD is one of the
popular Matrix Factorization methods [3]. The idea is to
minimize the following cost equation:

min
u∗,i∗,b∗

∑
(m,n)∈KR

(rm,n − µ− bm − bn − um · iTn)2+

λ(‖um‖2 + ‖in‖2 + b2m + b2n)

(4)

where λ is a regularization term, µ is the overall average
rating, bm and bn are the user and item bias, respectively.

em,n = rm,n − µ− bm − bn − um · iTn (5)

To minimize the squared-error (4), the algorithm iterates
over all ratings in the training set. Then, it computes the
associated prediction error in (5). Next, the error value is used
to compute the gradient. The algorithm finally uses the gradient
to update user bias, item bias, user matrix U , and item matrix
I .

bm = bm + γ(em,n − λbm) (6)

bn = bn + γ(em,n − λbn) (7)

um = um + γ(em,n · in − λ · um) (8)

in = in + γ(em,n · um − λ · in) (9)

www.ijacsa.thesai.org 314 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 4, 2018

where γ is the learning rate. The learning rate determines
the moving speed towards the optimal solution. If γ is very
large, we might skip the optimal solution. If it is too small, we
may need too many iterations to reach the optimal solution.
So using an appropriate γ is very important.

Alternating Least Squares (ALS): ALS is very good for
parallelization [11]. When we have large data, and need
to distribute the computations over cluster of nodes. ALS
objective is to minimize the following equation:

min
u∗,i∗,b∗

∑
(m,n)∈KR

(rm,n−um · iTn)2 +λ(‖um‖2 +‖in‖2) (10)

It is the same like (4), but without the bias terms. The basic
idea can be summarized as follows:

1) Initialize U , and I matrices.
2) Fix I , solve for U by minimizing (10).
3) Fix U , solve for I by minimizing (10).
4) Repeat the previous two steps until converging or

reaching the max iteration.

to solve the user U and item I matrices we use the
following two equations, respectively:

uTm = (rm · I) · (IT · I + λEye)−1 (11)

iTn = (rTn · U) · (UT · U + λEye)−1 (12)

where Eye is the Identity matrix.

Weighted Non-Negative Matrix Factorization (WNMF):
Here we present a special type of Matrix Factorization called
Non-Negative Matrix Factorization (NMF). The only differ-
ence is the non-negativity constraint for the input matrix, and
the low rank matrices as well. The problem can be formulated
as an optimization problem:

min
A,H

‖V −A ·H‖2

subject to A,H ≥ 0
(13)

where V is the original matrix, WandH are the two
factorized matrices. One of the most simplest methods for
NMF is Multiplicative Update Rules [12] [2]. It is a good
compromise between speed and ease of implementation. So
NMF objective (13) can be optimized using the following
update rules:

A(t+1) = A(t) V ·HT

A ·H ·HT
(14)

H(t+1) = H(t) AT · V
AT ·A ·H

(15)

The original version of Multiplicative Update Rules will
not fit in our problem. The two rules will not be able to
differentiate between the true ratings, and the incomplete
ratings. So we need to modify the original rules, to be able to
learn from the true ratings, then predict the incomplete. In [10]
they could modify the original Multiplicative Update Rules to
be able to do Incomplete Matrix Factorization. This method

called Weighted Non-Negative Matrix Factorization (WNMF).
So now the new objective function is:

min
u∗,i∗

∑
(m,n)∈KR

(rm,n − um · iTn)2 (16)

It is similar to (4), (10), but without the bias b or reg-
ularization λ. Now we can optimize function (16) using the
following two rules:

U (t+1) = U (t) (W ∗R) · IT

(W ∗ (U · I)) · IT
(17)

I(t+1) = I(t)
UT · (W ∗R)

UT · (W ∗ (U · I))
(18)

where WM,N is a matrix which its elements are equal
to 1 if the corresponding entry in R is known rating, and 0
otherwise. (∗) denotes to the element wise multiplication.

In this paper we focus on efficiency more than effective-
ness. We assume that we have a very large data, and limited
time. So we need an acceptable solution in reasonable time.
So we chose the Metaheuristic algorithms for this problem,
because of its ability to scape from the local optimal, and
reaching good solutions in reasonable time. We used Simulated
Annealing algorithm, with Levy Flight as a random walk
operator.

The rest of the paper is organized as follows: in Section
(II) we briefly describe the prerequisite topics that are needed
before going through the proposed method. In Section (III) we
describe our proposed method. In Section (IV) we discuss the
experimental results, effect of each parameter, and compare our
proposed method against others. Finally, Section (V) concludes
the paper.

II. PRELIMINARIES

A. Metaheuristic Optimization

There are two types of optimization algorithms, Determin-
istic and Stochastic. Deterministic algorithms usually focus on
optimal solution, like Simplex method in linear programming,
some of these algorithms use the derivative of the objective
function, these algorithms are called gradient based algo-
rithms.

In Stochastic Optimization we will talk about Metaheuristic
Algorithms, we can divide Metaheuristic into two parts, META
and HEURISTIC, META means “beyond” or “higher level”,
and HEURISTIC means “to find” or “to discover by trial and
error”. This type of algorithms depends on randomization and
local search to find the optimal solution iteratively, whereas
each iteration tries to improve the current solutions from
previous iteration. Also Metaheuristic doesn’t guarantee the
optimal solution, but it gives good quality solutions in a rea-
sonable time. Metaheuristic achieves its goal by making a good
balance between two major components, intensification and
diversification. Intensification is to search for a better solution
within the local area of the current solution. Diversification is
to use the randomization to escape from the local optimum,
and explore all the search space [4].

www.ijacsa.thesai.org 315 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 4, 2018

There are many types of Metaheuristic algorithms, like
single solution, or population based, in this paper we use Single
Solution.

B. Levy Distribution and Random Walk

We presented randomization techniques for exploring the
search space (Diversification), local search for optimizing the
current solution, and searching within the local area of it
(Intensification). In (19) xt is the current solution state, s
is a new step or random number drawn from a probability
distribution, we add s to x to move it from state t to t+ 1.

xt+1 = xt + s (19)

Levy Flights are a random walk that their steps are drawn
from Levy Distribution. Mantegna algorithm is the best and
easiest way to generate random numbers from Levy Distribu-
tion [4], [5], so the random walk can be achieved using the
following equations:

xt+1
i = xti + αL(s, λ), (20)

Where α is the step size.

L(s, λ) =
λΓ sin(πλ/2)

π

1

s1+λ
, (21)

s =
U

|V |1/α
(22)

U N(0, σ2), V N(0, 1) (23)

Where N is a Gaussian normal distribution

σ2 =

[
Γ(1 + λ)

λΓ((1 + λ)/2)
.
sin(πλ/2)

2(λ−1)/2

]1/λ
(24)

C. Simulated Annealing

SA is one of the most popular metaheuristic algorithms. It
simulates the annealing process for solids by cooling to reach
the crystal state. Reaching the crystal state is like reaching the
global optimum in optimization. It is a single solution algo-
rithm. The basic idea is to perform a random walk, but with
some probability called Transition Probability that may accept
new solutions that do not improve the objective function,
see (25). Accepting bad solutions with Transition Probability
gives more exploration for the search space (Diversification).
Transition Probability decreases gradually during the iterations
to decrease the Diversification and increase the Intensification.
This means that the algorithm will end up with accepting only
better solutions [4] [6].

p = exp

[
− ∆f

T

]
> r (25)

In (25) f is the difference between the two evaluation
function values of the current solution and the new one. T is
the current temperature which is decreased iteratively by the
cooling rate. r is a random number. So the algorithm accepts
bad solution if the Transition Probability p is greater than r.

One of the common cooling schedules is linear cooling
schedule, in (26).

T = T0 − βt (26)

Fig. 1. Representing U matrix and I matrix in one matrix, the number of
rows is equal M +N , and the number of columns is equal K.

T0 is the initial temperature, β is the cooling rate, t is
the pseudo time for iterations. The following pseudo code
demonstrate the basic implementation of Simulated Annealing:

Algorithm 1 Simulated Annealing
1: Objective function f(x), x = (x1, ..., xd)T

2: Initialize the initial temperature T0 and initial guess x(0)
3: Set the final temperature Tf and the max number of

iterations N
4: Define the cooling schedule T 7→ αT, (0 < α < 1)
5: while (T > Tf and t < N) do
6: Drawn ε from a Gaussian distribution
7: Move randomly to a new location: xt+1 = xt +
ε(random walk)

8: Calculate ∆f = ft+1(xt+1)− ft(xt)
9: Accept the new solution if better

10: if not improved then
11: Generate a random number r
12: Accept if p = exp[∆f/T] > r
13: end if
14: Update the best x? and f?
15: t = t+ 1
16: end while

III. PROPOSED METHOD

In this section we introduce our new method for solving
Matrix Factorization. In our method we use Simulated An-
nealing based on Levy Flight as a random walk, instead of
Gaussian distribution, see Section (II-A). We called it SA-Levy.
We choose Simulated Annealing because its low computations,
as it is a single solution Metaheuristic algorithm. So it will be
very fast compared to other population based Metaheuristic
algorithms. Also compared to the state of the art methods like
ALS, and WNMF Simulated Annealing is much faster, because
it needs only one matrix multiplication per iteration. Regarding
SGD, Simulated Annealing is easier to be parallelized.

In Simulated Annealing we just need to represent the
solution, and implement the evaluation function to compare the
current solution against others. We use RMSE as an evaluation
function.

Fig. 1 shows the representation of the solution, we put the
two matrices users and items in one matrix to simplify the

www.ijacsa.thesai.org 316 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 4, 2018

TABLE I. SHOWS THE EFFECT OF THE NUMBER OF ITERATION ON RMSE

Iterations 5 10 25 50 100 200
RMSE 1.112 1.118 1.118 1.118 1.118 1.118

TABLE II. SHOWS THE EFFECT OF NUMBER OF LATENT FEATURES
ON RMSE

Latent 10 20 30 40 50Features
RMSE 1.120 1.118 1.118 1.118 1.118

TABLE III. SHOWS THE EFFECT OF STEP SIZE OF LEVY FLIGHT ON
RMSE

Step Size 0.1 0.01 0.001
RMSE 1.119 1.118 1.145

solution and the calculation [8], the number of rows is equal
the number of users M plus the number of items N , and the
number of columns is equal the number of latent features K.

IV. EXPERIMENTAL RESULTS

In this section we show the effect of the parameters on
the RMSE results, we use MovieLens 1M dataset [9] in our
experiments, 80% of the dataset is used for training and 20%
for testing.

Tables I, II and III show how RMSE can be affected by
the number of iteration, number of latent features, and step
size, see (20). In Table I, we can see that good RMSE can
be achieved by few number of iterations, so there is no need
for many iteration to converge. In Table II we can see that
best RMSE can be achieved starting from 20 latent features.
In Table III we found that the best value for the step size
is 0.01. We can say that the step size is the most important
parameter in our method. It manages the balance between
Intensification and Diversification, see Section (II-A). Small
values of step size give more intensification, and large values
give more Diversification.

Table IV shows the difference between using Gaussian
distribution and Levy distribution as a random walk. Levy
distribution outperform Gaussian because of its ability to
escape from the local minimum [4][5].

Table V shows that SA-Levy can be outperformed by other
methods in terms of effectiveness. But SA-Levy can outper-
form all other methods in terms efficiency, because of its low
computations, where it needs only one matrix multiplication
in each iteration. Unlike WNMF or ALS which need many
matrix multiplications or calculating matrix inversion in each

TABLE IV. COMPARES LEVY AGAINST GAUSSIAN DISTRIBUTION AS
A RANDOM WALK FOR SIMULATED ANNEALING

Distribution Levy Gaussian
RMSE 1.118 1.168

TABLE V. COMPARES SA-LEVY WITH OTHER METHODS (SGD,
WNMF AND ALS)

System SA-Levy SGD WNMF ALS
RMSE 1.118 0.871 0.943 1.007

iteration. Also it is much easier than SGD to be parallelized
because it doesn’t need huge amount of data to be shuffled
between the cluster nodes. So SA-Levy can be a good choice
if we have limited time or resources and large amount of data.

Choice of Parameters

We conducted these experiments using Simanneal. It is
a python module for simulated annealing optimization1, also
the project source code can be found here2. Based on the
MovieLens 1M dataset [9] we found that the best parameters
are 10 Iteration, 20 latent features, 0.01 step size. For the tem-
perature parameter we found that the best values for maximum
and minimum temperature are 25000 and 2.5 respectively. To
focus more on Diversification at the beginning then decrease
it gradually to increase the Intensification.

V. CONCLUSION AND FUTURE WORK

We presented in this work a new method for matrix
factorization based Collaborative filtering. We achieved a sig-
nificant improvement in Simulated Annealing, by using Levy
distribution as a random walk, instead of Gaussian distribution.
We expect this contribution could fit in many optimization
problems, not only matrix factorization. We think that SA-Levy
is a good choice for complex matrix factorization problems.
When we have a very large data, and limited time for compu-
tation. We expect that SA-Levy can be easily implemented on
any distributed system, that has basic linear algebra operations,
like Apache Spark3, and Hadoop4.

REFERENCES

[1] Kantor, Paul B. Recommender systems handbook. Eds. Francesco Ricci,
Lior Rokach, and Bracha Shapira. Berlin, Germany:: Springer, 2015.

[2] Duan, Liang, et al. ”Scaling up link prediction with ensembles.” Pro-
ceedings of the Ninth ACM International Conference on Web Search
and Data Mining. ACM, 2016.

[3] Koren, Yehuda, Robert Bell, and Chris Volinsky. ”Matrix factorization
techniques for recommender systems.” Computer 42.8 (2009).

[4] Yang, Xin-She. Nature-inspired optimization algorithms. Elsevier, 2014.
[5] Mantegna, Rosario Nunzio. ”Fast, accurate algorithm for numerical

simulation of Levy stable stochastic processes.” Physical Review E 49.5
(1994): 4677.

[6] Van Laarhoven, Peter JM, and Emile HL Aarts. ”Simulated annealing.”
Simulated annealing: Theory and applications. Springer Netherlands,
1987. 7-15.

[7] Luo, Xin, et al. ”An efficient non-negative matrix-factorization-based
approach to collaborative filtering for recommender systems.” IEEE
Transactions on Industrial Informatics 10.2 (2014): 1273-1284.

[8] Salehi, Mojtaba. ”Latent feature based recommender system for learning
materials using genetic algorithm.” Information Systems & Telecommu-
nication (2014): 137.

[9] Harper, F. Maxwell, and Joseph A. Konstan. ”The movielens datasets:
History and context.” ACM Transactions on Interactive Intelligent Sys-
tems (TiiS) 5.4 (2016): 19.

1https://github.com/perrygeo/simanneal
2https://github.com/mostafaashraf413/MF SA Levy
3https://spark.apache.org/
4http://hadoop.apache.org/

www.ijacsa.thesai.org 317 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 4, 2018

[10] Zhang, Sheng, et al. ”Learning from incomplete ratings using non-
negative matrix factorization.” Proceedings of the 2006 SIAM Interna-
tional Conference on Data Mining. Society for Industrial and Applied
Mathematics, 2006.

[11] Zhou, Yunhong, et al. ”Large-scale parallel collaborative filtering for the
netflix prize.” Lecture Notes in Computer Science 5034 (2008): 337-348.

[12] Lee, Daniel D., and H. Sebastian Seung. ”Algorithms for non-negative

matrix factorization.” Advances in neural information processing sys-
tems. 2001.

[13] Hernando, Antonio, Jess Bobadilla, and Fernando Ortega. ”A non
negative matrix factorization for collaborative filtering recommender
systems based on a Bayesian probabilistic model.” Knowledge-Based
Systems 97 (2016): 188-202.

www.ijacsa.thesai.org 318 | P a g e

