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Abstract—Cloud computing is an emerging trend in the IT 

industry that provides new opportunities to control costs 

associated with the creation and maintenance of applications. Of 

prevalent issues in cloud computing, load balancing is a primary 

one as it has a significant impact on efficiency and plays a leading 

role in improved management. In this paper, by using a heuristic 

search technique called the bee colony algorithm, tasks are 

balanced on a virtual machine such that their waiting time in the 

queue is minimized. In the proposed model, the cloud is 

partitioned into several sectors with many nodes as resources of 

distributed computing. Furthermore, the indices of speed and 

cost are considered to prioritize virtual machines. The results of 

a simulation show that the proposed model outperforms 

prevalent algorithms as it balances the prioritization of tasks on 

the virtual machine as well as the entire cloud system and 

minimizes the waiting times of tasks in the queue. It also reduces 

the completion time of tasks in comparison with the HBB-LB, 

WRR, and FCFS algorithms. 
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I. INTRODUCTION 

Cloud computing provides ways of presenting IT services 
in a similar manner to public utility companies. In simple 
terms, cloud computing is a new approach to use computing 
resources. The cloud is a group of distributed nodes that supply 
resources, hardware, and software over the network based on 
user demand. The increasingly strong presence of such 
companies as Microsoft, Google, and Amazon in the arena of 
cloud computing indicates its rapid development and influence 
on IT. 

New changes or concepts in the technological world can 
lead to problems and complications, and cloud computing is no 
exception. It poses many challenges to experts in the field. One 
of these is load balancing in the cloud. Load balancing in is 
crucial in computer science, and has attracted a considerable 
amount of research. Many techniques have been employed for 
load balancing, such as the genetic algorithm, bees’ algorithm, 
neural networks, and distributed research. Load balancing 
algorithms make decisions about allocating resources to tasks 
and coordinating among them. The aim of load balancing is to 
share resources among tasks within the system such that for 
every resource, there are an equal number of tasks to be 
completed, and this minimizes the total time needed [3]. 
Algorithms for load balancing and resource management can 
be categorized into three groups (Wu, Wang & Xie, 2013 [7]; 

Yan, Wang, Chang & Lin, 2007 [9]). The first consists of 
algorithms for static load balancing. In such algorithms, 
decisions concerning load balancing are made at compile time. 
The advantage of static load balancing is its simple 
implementation and low overhead, as there is no need to 
permanently monitor nodes to assess the efficiency of the 
system. These algorithms work well when there are small 
changes in loads in virtual machines. Therefore, they are not 
appropriate for cloud and grid computing environments 
because the load on the network is variable at every point of 
time in such environments. The second category of load 
balancing and resource management techniques consists of 
algorithms of dynamic load balancing. In these algorithms, the 
distribution of load among nodes changes, and they use the 
given information to make decisions about load distribution. 
The third category consists of hybrid algorithms, which involve 
the hybrid use of static and dynamic algorithms, and switch 
between them when necessary.  

There are many papers have been proposed based on 
optimization in them [10]-[19] and [24]-[26]. These papers 
tried to optimize their problems by presented some formal 
methods and fitness functions in them. In [18] authors 
presented new distributed method to reducing the energy for 
the communication between nods and coordinator. Also in 
[24], [25] and [26] authors used the optimization methods in 
Meso-Scaled material. Saffar Ardabili and Aghayi [20] 
evaluated efficiency score of decision making units (DMUs) by 
the undesirable outputs. Aghayi et al. [22] measured efficiency 
measure using common set of weights in present of uncertainty 
based on robust optimization. Aghayi [23] proposed the 
approach to obtain cost efficiency of DMUs by fuzzy data. 
Aghayi and Maleki [21] measured the efficiency of bank 
branches of Ardabil, Iran using robust optimization theory and 
undesirable outputs. Rostamy-malkhalifeh, and Aghayi [27] 
suggested the method for calculating overall profit efficiency 
using uncertainty as fuzzy in data. Aghayi and Ghelejbeigi [28] 
presented the improvement of cost efficiency based on 
resource allocation. Aghayi [29] computed revenue efficiency 
of DMUs with undesirable and fuzzy data. Salehpour and 
Aghayi [30] calculated the most revenue efficiency with price 
uncertainty. 

In this study, a method for cloud partitioning is proposed 
that is also used to investigate the load on systems in 
heterogeneous environments, with the aim of reducing the time 
needed for scheduling and other tasks. The proposed method is 
dynamic. In this method, the algorithms of load balancing can 
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represent each resource according to its capabilities and 
accessibility to tasks services, which enhances the efficiency of 
the cloud system. To balance the load, load balancing as used 
in cloud computing environments is used, inspired by the 
HBB-LB algorithm (Babu & Krishna, 2013 [1]). 

The rest of this paper is organized as follows: in Section 2, 
prevalent scheduling algorithms are introduced. Section 3 
describes the proposed scheduling algorithm, Section 4 details 
the simulation to test it and the results and Section 5 contains 
the conclusions of this study and recommendations for future 
work in the area. 

II. REVIEW OF LOAD BALANCING ALGORITHMS 

One method for load balancing involves the efficient use of 
virtual machines. It was proposed by Domanal and Reddy 
(2013) [2], and allows for load distribution on accessible 
virtual machines to guarantee that stable use of resources or 
virtual machines in the cloud system. This is in contrast to 
active load balancing, which involves the proper distribution of 
load within the system to solve the problem of inefficient use 
of virtual machines in other algorithms. However, the service 
time following load balancing has not been yet studied. In 
2013, Babu and Krishna [1] proposed a load balancing 
algorithm inspired by the food-finding behavior of honey bees, 
and is used on the Web. The aim is to reach a balanced load 
within virtual machines by maximizing capability. Moreover, it 
balances the prioritization of tasks in virtual machines such that 
the waiting times of tasks in the queue are minimized. 
However, this algorithm is impractical for dependent tasks. 
Ren, Lan, and Yin (2012) [5] proposed a dynamic load 
balancing algorithm according to the migration of virtual 
machines within the cloud computing environment. This 
algorithm contains a unit to monitor excessive loads, one for 
diagnosis, and a unit for load scheduling. The unit of load 
monitoring is used to collect the load information pertaining to 
a group of virtual machines and the resources’ server 
(calculating the load and updating it). The database information 
for this algorithm is collected according to the trigger strategy 
based on fractal methods. It determines the time of migration 
from an overloaded virtual machine in the system. In this 
method, operating capability is maximized by using 
unemployed nodes in the system. Moreover, the overload in 
load balancing systems is minimum. However, in this method, 
only the load is studied. TeraScaler ELB was proposed by Wu 
et al. (2013) [7] based on the prediction of elastic load 
balancing for resource management in cloud computing. In this 
algorithm, virtual machines are added or removed according to 
the analysis and prediction of the given load and its history. 
The algorithm of ELB resource management is regularly 
implemented through two events: 

 The load balancer regularly collects resource 
information from the back-end server. 

 The load balancer determines whether there is a request 
to remove the back-end virtual machine according to 
the collected resource information from the back-end 
server. 

In 2012, Nishant and et al. [4] proposed an algorithm for 
the load distribution of workloads among the nodes of a cloud 

using ant colony optimization. According to this study, ants 
can move in two directions: forward and backward. In the 
forward direction, if an ant faces overloaded nodes, they will 
move forward. In the backward direction, if an ant faces an 
overloaded node, which has faced an under-loaded node, it will 
move backward. The main duty of ants is to redistribute tasks. 
In this approach, the ants repeatedly update their pheromones 
during all their moves. They also identify the tasks of nodes 
and find their way among different types of nodes. In 2013, 
Xu, Pang, and Fu [8] proposed a load balancing model based 
on cloud partitioning for public clouds in different 
geographical locations. This method renders load balancing 
easier in extremely large and complicated environments. 
Clouds have a main controller to choose the proper sectors of 
tasks, and the balancer chooses the best strategy for load 
balancing per sector of the cloud. Sectors can be unemployed, 
normal, or overloaded. The sector of load balancing decides 
how to assign tasks to nodes of normal or unemployed sectors. 
In this algorithm, the features of virtual machines are not 
considered. Soni and Kalra (2014) [6] proposed a central load 
balancer to balance loads among virtual machines in a cloud 
data center. This algorithm distributes the load among 
heterogeneous virtual machines based on hardware 
configuration and their states in the cloud data center. This 
method can balance the load quickly and reliably in cloud 
computing environments by using all virtual machines based 
on their calculation capacities. The central load balancer 
communicates with all users and virtual machines, which are 
presented in cloud data center through a data center controller, 
which also analyzes the values’ table containing the identifies, 
states, and priorities of virtual machines. It searches for the 
virtual machine with the highest priority to allocate user 
requests. The data center controller allocates the requests to the 
identifier of the virtual machine as presented by the central 
load balancer. 

By studying research on the load balancing of tasks and 
resources, it can be concluded that more research has been 
conducted on load balancing in heterogeneous environments. 
Existing algorithms have some drawbacks in the cloud sample, 
and this study attempts to alleviate some of them with solutions 
for responding to requests quickly and managing virtual 
machines properly. 

III. PROPOSED METHOD 

In this method, load balancing in cloud computing 
environments, inspired by the algorithm that mirrors the food-
finding behavior of honey bees (HBB-LB), is used. This 
algorithm not only balances load, but also considers the priority 
of tasks removed from virtual machines due to overload. The 
techniques of load balancing are effective for reducing the time 
needed to answer and service requests. The load balancing of 
non-exclusive independent tasks on virtual machines is an 
important aspect of task scheduling in cloud computing. The 
load on virtual machines must be distributed on balance, so that 
the machine is used efficiently. 

 In the ABC algorithm, several species of bees act in a 
research atmosphere. The bee that is randomly chosen to act to 
search is called the scout bee. It determines the location of 
sources of food and nectar. 
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A. Scheduling System Model 

As in the cloud computing environment, we encounter a 
large space with several users and service providers, tasks are 
not predictable, and the capacity of each virtual machine is 
different. In the proposed method, the cloud is partitioned into 
several sectors. When the environment is very large, balancing 
the load within the entire system is difficult. In this method, to 
balance the load in smaller sectors, the load balancing 
algorithm inspired by the behavior of honey bees is used. 

The aim of load balancing algorithms is to balance the load 
among virtual machines to maximize operating capability. The 
proposed algorithm balances tasks on virtual machines as well 
as the entire cloud system, so that the waiting time of tasks in 
the queue is minimized. 

Fig. 1 depicts the proposed method. The user presents tasks 
to the cloud system, which contains a data center for 
independent tasks. The tasks are presented to the system and, 
prior to execution, the processing time of each task is 
calculated (or the processing times of tasks are estimated 
through mathematical models) and the characteristics of all 
tasks are identified. The service provider has a controller and a 
state table that records the features of all virtual machines. 
Moreover, in the controller sector of the load of each virtual 
machine, the system is divided into three general sectors 
(overloaded, under-loaded, and balanced sectors). If a virtual 
machine loses its load while performing tasks, it can be moved 
from one sector to another. Tasks are assigned based on the 
magnitude of loads of the virtual machines and processing 
times. Moreover, the indices of speed and cost are considered 
for the prioritization of the virtual machines. In the following, 
all stages of this process are discussed. 

 
Fig. 1. The architecture of tasks. 

B. Mechanism of Partitioning the Cloud System 

In the cloud model, an infrastructure is considered an IaaS 
service that provides users with virtual resources. The cloud is 

partitioned into several sectors. A cloud may contain a large 
number of nodes in different geographical locations. 
Partitioning the cloud leads to better use. Fig. 2 lists details of a 
cloud system that has been partitioned into several separate 
sectors. It is worth mentioning that each area can be partitioned 
into several sectors. Heterogeneous virtual machines have been 
used in various areas, and are managed by a central controller. 
The methods of management may vary by cloud service 
provider. 

 
Fig. 2. Partitioning the cloud into three sectors. 

When the environment is large, partitioning based on load 
balancing limits the search environment for assigning tasks. 
The cloud has a main controller that selects appropriate sectors 
for input tasks. The balancer per sector of the cloud selects the 
best strategy for load balancing (Xu et al., 2013) [8]. The load 
states of all virtual machines per data center are stored in the 
central controller, which controller deals with information for 
each sector, collects the information of each node, and selects 
the best strategy for partitioning virtual machines and assigning 
tasks. This information is updated repeatedly. When a task is 
entered into the cloud, the first stage involves selecting the 
proper sector. To partition the data center, it is necessary to 
calculate the load of each virtual machine. The controller 
searches sectors of the cloud and investigates the overloaded, 
underloaded and balanced states. Therefore, the cloud 
environment is partitioned into overloaded, underloaded, and 
balanced sectors. The method of calculating load per virtual 
machine is explained in Table I. Following partitioning, the 
tasks are presented to the underloaded sectors. To prioritize 
virtual machines, speed and cost are used. It is worth 
mentioning that after each stage of assigning tasks, the load on 
the system is updated. In this cloud system, for each sector, a 
processor is used to monitor and investigate the load on the 
virtual machines. If the magnitude of load on a virtual machine 
changes, it is moved to another sector. The values of LVMk,t and 
LVMk,t+1 indicate the loads on virtual machines at times t and t + 
1, respectively. Load differences in a time interval may show a 
change in the load on the virtual machine in overloaded or 
balanced sectors. When diffL is zero, there are no load changes 
in virtual machines and no changes in the sectors. However, if 
it is lower than zero, virtual machines are moved from one 
sector to another. 

TABLE I. PSEUDO CODE USED TO DETERMINE CHANGES IN LOAD  

The pseudo code used to determine changes in load  

1) diffL = LVMk,t+1  LVMk,t 

2) If (diffL = 0) no change in the magnitude of load 

3) Else if (diffL  0) the virtual machine can be moved from one sector to 

another. 

4) End 
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In Table II, the parameters used in this study are 
introduced. 

TABLE II. DEFINITIONS OF THE PARAMETERS IN THE EQUATIONS 

Variables Definitions of the Variables 

CTmax Maximum completion time of task 

CTij Completion time of task i on machine j 

Pij Processing time of task Ti by virtual machine VMj 

Length Ti Length of task i 

Penumj Number of processors in VMj 

Pemipsj Million instructions per second of all processors in VMj 

Pj Processing time of all tasks in VMj 

Cj , C 
Processing capacity of VMj and optimal processing 
capacity 

VMbwj Communication bandwidth capability of VMj 

LVMj,t Load of VMj at time t 

N(T,t) Number of requests per period 

S(VMj,t) Speed of service 

L , LVMj 
Load on all virtual machines in a data center, load on 

VMj 

PTj , PT 
Processing time of VMj and processing times of all 

virtual machines 

δ Standard deviation 

Posj Priority per node 

Speedj Speed of VM 

Costj Cost of VM 

α Importance of speed index 

β Importance of cost index 

C. Calculating Processing Time 

In HBB-LB, it is hypothesized that VM = VM1, VM2, 

VM3… VMm is a collection of m virtual machines with no 
links and in parallel, where they must process n tasks. Tasks 

are shown as a collection T = T1, T2, T3, … , Tn. Independent 
tasks are non-exclusive, and are scheduled on virtual machines. 
A collection of virtual machines for processing tasks are an 
underloaded collection of virtual machines in the data center. 
Makespan is the time taken for task completion, and is shown 
in (1) (Babu & Krishna, 2013): 

1. MakeSpan = max{CTij|i ϵ T , I = 1,2,…,n and j ϵ VM , j = 

1,2,…,m }  

The processing time of task i on virtual machine j is Pij, and 
is calculated through (2) (Li, Xu, Zhao, Dong & Wang, 2011). 
The processing time of all tasks on virtual machine j is Pi, and 
is obtained through (3): 

2. Pij =  
         

              
    I = 1, 2, … , n   j = 1, 2, … , m 

3. Pj = 
n
i=1 Pij    I = 1, 2, … , n      j = 1, 2, … , m 

The processing times of all tasks on a virtual machine must 
be smaller than or equal to their completion times. Therefore, 
by minimizing CTmax, (4) is obtained: 

4. 
n
i=1 Pij  CTmax                      j = 1, 2, … , m 

According to (3) and (4), (5) is obtained as 

5. 3 and 4 Pj  CTmax                   j = 1, 2, … , m 

6. CTmax = max
n
i=1 CTi, max

m
j=1 

n
i=1 Pij 

D. Calculating Capacity of Virtual Machines 

The capacity of a given virtual machine as well as all 
virtual machines is calculated through (7) and (8) in 
conjunction with the HBB-LB algorithm. The total capacity of 
all virtual machines is equal to the capacity of the data center. 
Cj is the capacity of virtual machine j and C the capacity of all 
virtual machines. Moreover, Penumj, Pemipsj, and VMbwj 
respectively indicate the number of processors in virtual 
machine, millions of instructions for all VMj and the 
bandwidth of VMj. 

7. Cj = Penumj  Pemipsj VMbwj 

8. C = 
m

j=1 Cj 

E. Calculating Load on Virtual Machines 

Load includes all tasks assigned to a virtual machine. A 
problem in cloud systems that has negative effects on them is 
unbalanced loads. Heterogeneous and unequal distributions of 
loads among virtual machines of cloud systems can create this 
problem. As some processors may be overloaded and others 
unemployed, load balancing increases the efficiency of 
distributed systems. This happens when nodes with heavy 
loads are moved to other nodes for processing. The proposed 
algorithms for load balancing are inventive and varied.  

The load on a virtual machine can be calculated as the 
number of tasks at time t in a queue in virtual machine j divided 
by the servicing speed of virtual machine j at time t. The 
magnitude of the load on all virtual machines in a data center is 
calculated through (10) (Babu & Krishna, 2013) [1]: 

9. LVMj,t = 
      

        
 

10. L = 
m

j=1 LVMj 

The processing time of a virtual machine, the processing 
times of all virtual machines, and the standard deviation of load 
are calculated through (11), (12), and (13), respectively: 

11. PTj = 
    

  
 

12. PT = 
 

 
 

13.    √
 

 
   

          
  

If δ for a virtual machine is equal or lower than [0–1] (δ  
Ts), the system is balanced. Otherwise, it is unbalanced, and 
may or not have extra load. If the magnitude of load in a virtual 
machine is greater than the permissible capacity, the virtual 
machine is overloaded and load balancing is impossible. When 
the load on a system is balanced, tasks are assigned to virtual 
machines. Table III shows the pseudo code of the load 
balancing algorithm. 
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TABLE III. PSEUDOCODE OF LOAD BALANCING ALGORITHM 

Pseudocode of load balancing algorithm 

1. Input: the set task; the set VM. 

2. While there are tasks in the list do 

3.          for all VMs of a host do 

4.               The Ci and LVMj,t of every VMs are calculated. 

5.               The PTi and PT of every VMs are calculated. 

6.              The   of every VMs is calculated. 

7.                        If    Ts Then 

8.                         System is balanced, and Send Task to Partition; 

9.                              The Posj of every VMs is calculated; 

10.                              The Pj and CTi of every tasks are calculated. 

11.                              If Posjmax and CTmax 

12.                                 Assign taski to VM 

13.                     Exit 

14.                 If L  maximum capacity 

15.                        Load balancing is not possible 

16.                  Else 

17.                            Trigger load balancing 

18.        end for 

19.  end while 

F. Calculating Priority of Virtual Machines 

Following partitioning, the priority of under loaded virtual 
machines is calculated through (14). The priority per virtual 
machine is set according to speed and cost. POS, Speed, and 
Cost, respectively, indicate the priority per node in the virtual 
machine, the speed per node in the virtual machine, and the 

cost per node in it. The coefficients  and  indicate the 
importance of the speed and cost indices, respectively. As users 

assign varying priorities to indices of  and , their values 

change in the interval [1, 1]. 

14. Posj = * Speedj + * Costj 

IV. EVALUATION AND RESULTS OF SIMULATION 

The accuracy of the proposed method was tested (according 
to a CloudSim simulation) and the performance of the HBB-
LBP algorithm assessed in comparison with the HBB-LB, 
FCFS, and WRR algorithms. For the simulation, a data center 
and four groups of tasks of 10, 20, 30, and 40 were used. 
Table IV lists the values of the simulation. 

TABLE IV. VALUES OF  SIMULATION 

Type Parameters Value 

 

Data center 

Number of data centers 1 

Number of hosts 3 

 

Virtual machine 

Number of virtual machines 25 

Value of misp in every 

processor 
250–2000 

Bandwidth 10000–1000 

 

Tasks 

Number of tasks 10–40 

Length of tasks Random 

Number of needed processors 1–4 

Fig. 3 shows the average time for task completion before 
and after load balancing in the HBB-LBP algorithm (the 
proposed algorithm) with different numbers of tasks. The x-
axis shows the number of tasks and the y-axis their completion 
times in seconds. The completion times of tasks continued to 
decrease. If the number of tasks increased, the algorithm 
exhibited better performance. Fig. 4 shows a comparison 

between the completion times of tasks for HBB-LBP, HBB-
LB, FCFS, and WRR. The x-axis shows the number of tasks 
and the y-axis their completion times. According to the results, 
the HBB-LBP algorithm was the most efficient. Fig. 5 shows a 
comparison between the average times of response of HBB-
LBP, HBB-LB, FCFS, and WRR.  

 
Fig. 3. Completion times of tasks before and after load balancing in the 

proposed algorithm. 

 
Fig. 4. Comparison among the completion times of tasks in the algorithms. 

 
Fig. 5. Comparison among average times of response by the algorithms. 

In general, the HBB-LBP method reduced the completion 
times of tasks and their response times in comparison with the 
three other algorithms. According to Table V, it reduces 
completion times by 9.02%, 44.08%, and 51.97% compared 
with HBB-LB, WRR, and FCFS, respectively. 

Moreover, HBB-LBP reduced response time by 13.80%, 
44.34%, and 63.94% in comparison with HBB-LB, WRR, and 
FCFS, respectively. 

TABLE V. INDICES USED TO ASSESS THE PROPOSED ALGORITHM (HBB-
LB) AND THE PERCENTAGE OF IMPROVEMENT  

                  Algorithms 

 

Evaluations 

FCFS WRR HBB-LB 

Completion times of 
tasks 

51.97 44.08 9.02 

Response times 63.94 44.34 13.80 
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V. CONCLUSION AND FUTURE RESEARCH 

In this study, a method to partition a cloud system and 
investigate system load in heterogeneous environments was 
proposed. In the proposed model, the cloud is partitioned into 
several sectors and a load balancing method is used in the 
smaller sectors. This was inspired by the food-finding behavior 
of honey bees. This load balancing algorithm can consider each 
resource based on its capabilities and accessibility to tasks 
service providers, which increases the efficiency of the cloud 
system. Moreover, the indices of speed and cost are considered 
for the prioritization of virtual machines. Therefore, the 
proposed algorithm selects efficient resources for performing 
tasks based on the indices of speed and cost for the 
prioritization of virtual machines and the amount of load on the 
resources, which minimizes the time needed to service all tasks 
and balances system load. For future resources, the effect of 
fixed cost as well as the time can be evaluated, and a pricing 
model for user payments to cloud service providers can be 
organized. Moreover, cloud system modeling can be 
accomplished through reliable models and a hierarchical 
scheduler that considers the reliability of an application. This 
kind of load balancing can be expanded for independent tasks 
and the algorithm can be improved to include other factors 
pertaining to service quality. Moreover, the magnitude of load 
within the entire cloud system can be investigated, and 
migration can be used to distribute load between under loaded 
and overloaded resources. 
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