
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 4, 2018

450 | P a g e

www.ijacsa.thesai.org

Load Balancing based on Bee Colony Algorithm with

Partitioning of Public Clouds

Pouneh Ehsanimoghadam

Department of Computer,

Germi Branch, Islamic Azad University

Germi, Iran

Mehdi Effatparvar
*

Department of Computer

Ardabil Branch, Islamic Azad University

Ardabil, Iran

Abstract—Cloud computing is an emerging trend in the IT

industry that provides new opportunities to control costs

associated with the creation and maintenance of applications. Of

prevalent issues in cloud computing, load balancing is a primary

one as it has a significant impact on efficiency and plays a leading

role in improved management. In this paper, by using a heuristic

search technique called the bee colony algorithm, tasks are

balanced on a virtual machine such that their waiting time in the

queue is minimized. In the proposed model, the cloud is

partitioned into several sectors with many nodes as resources of

distributed computing. Furthermore, the indices of speed and

cost are considered to prioritize virtual machines. The results of

a simulation show that the proposed model outperforms

prevalent algorithms as it balances the prioritization of tasks on

the virtual machine as well as the entire cloud system and

minimizes the waiting times of tasks in the queue. It also reduces

the completion time of tasks in comparison with the HBB-LB,

WRR, and FCFS algorithms.

Keywords—Cloud computing; load balancing; bee colony

algorithm; public cloud; cloud partitioning

I. INTRODUCTION

Cloud computing provides ways of presenting IT services
in a similar manner to public utility companies. In simple
terms, cloud computing is a new approach to use computing
resources. The cloud is a group of distributed nodes that supply
resources, hardware, and software over the network based on
user demand. The increasingly strong presence of such
companies as Microsoft, Google, and Amazon in the arena of
cloud computing indicates its rapid development and influence
on IT.

New changes or concepts in the technological world can
lead to problems and complications, and cloud computing is no
exception. It poses many challenges to experts in the field. One
of these is load balancing in the cloud. Load balancing in is
crucial in computer science, and has attracted a considerable
amount of research. Many techniques have been employed for
load balancing, such as the genetic algorithm, bees’ algorithm,
neural networks, and distributed research. Load balancing
algorithms make decisions about allocating resources to tasks
and coordinating among them. The aim of load balancing is to
share resources among tasks within the system such that for
every resource, there are an equal number of tasks to be
completed, and this minimizes the total time needed [3].
Algorithms for load balancing and resource management can
be categorized into three groups (Wu, Wang & Xie, 2013 [7];

Yan, Wang, Chang & Lin, 2007 [9]). The first consists of
algorithms for static load balancing. In such algorithms,
decisions concerning load balancing are made at compile time.
The advantage of static load balancing is its simple
implementation and low overhead, as there is no need to
permanently monitor nodes to assess the efficiency of the
system. These algorithms work well when there are small
changes in loads in virtual machines. Therefore, they are not
appropriate for cloud and grid computing environments
because the load on the network is variable at every point of
time in such environments. The second category of load
balancing and resource management techniques consists of
algorithms of dynamic load balancing. In these algorithms, the
distribution of load among nodes changes, and they use the
given information to make decisions about load distribution.
The third category consists of hybrid algorithms, which involve
the hybrid use of static and dynamic algorithms, and switch
between them when necessary.

There are many papers have been proposed based on
optimization in them [10]-[19] and [24]-[26]. These papers
tried to optimize their problems by presented some formal
methods and fitness functions in them. In [18] authors
presented new distributed method to reducing the energy for
the communication between nods and coordinator. Also in
[24], [25] and [26] authors used the optimization methods in
Meso-Scaled material. Saffar Ardabili and Aghayi [20]
evaluated efficiency score of decision making units (DMUs) by
the undesirable outputs. Aghayi et al. [22] measured efficiency
measure using common set of weights in present of uncertainty
based on robust optimization. Aghayi [23] proposed the
approach to obtain cost efficiency of DMUs by fuzzy data.
Aghayi and Maleki [21] measured the efficiency of bank
branches of Ardabil, Iran using robust optimization theory and
undesirable outputs. Rostamy-malkhalifeh, and Aghayi [27]
suggested the method for calculating overall profit efficiency
using uncertainty as fuzzy in data. Aghayi and Ghelejbeigi [28]
presented the improvement of cost efficiency based on
resource allocation. Aghayi [29] computed revenue efficiency
of DMUs with undesirable and fuzzy data. Salehpour and
Aghayi [30] calculated the most revenue efficiency with price
uncertainty.

In this study, a method for cloud partitioning is proposed
that is also used to investigate the load on systems in
heterogeneous environments, with the aim of reducing the time
needed for scheduling and other tasks. The proposed method is
dynamic. In this method, the algorithms of load balancing can

http://proceedings.asmedigitalcollection.asme.org/pdfaccess.ashx?url=/data/conferences/asmep/90685/v02bt03a002-detc2016-59082.pdf

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 4, 2018

451 | P a g e

www.ijacsa.thesai.org

represent each resource according to its capabilities and
accessibility to tasks services, which enhances the efficiency of
the cloud system. To balance the load, load balancing as used
in cloud computing environments is used, inspired by the
HBB-LB algorithm (Babu & Krishna, 2013 [1]).

The rest of this paper is organized as follows: in Section 2,
prevalent scheduling algorithms are introduced. Section 3
describes the proposed scheduling algorithm, Section 4 details
the simulation to test it and the results and Section 5 contains
the conclusions of this study and recommendations for future
work in the area.

II. REVIEW OF LOAD BALANCING ALGORITHMS

One method for load balancing involves the efficient use of
virtual machines. It was proposed by Domanal and Reddy
(2013) [2], and allows for load distribution on accessible
virtual machines to guarantee that stable use of resources or
virtual machines in the cloud system. This is in contrast to
active load balancing, which involves the proper distribution of
load within the system to solve the problem of inefficient use
of virtual machines in other algorithms. However, the service
time following load balancing has not been yet studied. In
2013, Babu and Krishna [1] proposed a load balancing
algorithm inspired by the food-finding behavior of honey bees,
and is used on the Web. The aim is to reach a balanced load
within virtual machines by maximizing capability. Moreover, it
balances the prioritization of tasks in virtual machines such that
the waiting times of tasks in the queue are minimized.
However, this algorithm is impractical for dependent tasks.
Ren, Lan, and Yin (2012) [5] proposed a dynamic load
balancing algorithm according to the migration of virtual
machines within the cloud computing environment. This
algorithm contains a unit to monitor excessive loads, one for
diagnosis, and a unit for load scheduling. The unit of load
monitoring is used to collect the load information pertaining to
a group of virtual machines and the resources’ server
(calculating the load and updating it). The database information
for this algorithm is collected according to the trigger strategy
based on fractal methods. It determines the time of migration
from an overloaded virtual machine in the system. In this
method, operating capability is maximized by using
unemployed nodes in the system. Moreover, the overload in
load balancing systems is minimum. However, in this method,
only the load is studied. TeraScaler ELB was proposed by Wu
et al. (2013) [7] based on the prediction of elastic load
balancing for resource management in cloud computing. In this
algorithm, virtual machines are added or removed according to
the analysis and prediction of the given load and its history.
The algorithm of ELB resource management is regularly
implemented through two events:

 The load balancer regularly collects resource
information from the back-end server.

 The load balancer determines whether there is a request
to remove the back-end virtual machine according to
the collected resource information from the back-end
server.

In 2012, Nishant and et al. [4] proposed an algorithm for
the load distribution of workloads among the nodes of a cloud

using ant colony optimization. According to this study, ants
can move in two directions: forward and backward. In the
forward direction, if an ant faces overloaded nodes, they will
move forward. In the backward direction, if an ant faces an
overloaded node, which has faced an under-loaded node, it will
move backward. The main duty of ants is to redistribute tasks.
In this approach, the ants repeatedly update their pheromones
during all their moves. They also identify the tasks of nodes
and find their way among different types of nodes. In 2013,
Xu, Pang, and Fu [8] proposed a load balancing model based
on cloud partitioning for public clouds in different
geographical locations. This method renders load balancing
easier in extremely large and complicated environments.
Clouds have a main controller to choose the proper sectors of
tasks, and the balancer chooses the best strategy for load
balancing per sector of the cloud. Sectors can be unemployed,
normal, or overloaded. The sector of load balancing decides
how to assign tasks to nodes of normal or unemployed sectors.
In this algorithm, the features of virtual machines are not
considered. Soni and Kalra (2014) [6] proposed a central load
balancer to balance loads among virtual machines in a cloud
data center. This algorithm distributes the load among
heterogeneous virtual machines based on hardware
configuration and their states in the cloud data center. This
method can balance the load quickly and reliably in cloud
computing environments by using all virtual machines based
on their calculation capacities. The central load balancer
communicates with all users and virtual machines, which are
presented in cloud data center through a data center controller,
which also analyzes the values’ table containing the identifies,
states, and priorities of virtual machines. It searches for the
virtual machine with the highest priority to allocate user
requests. The data center controller allocates the requests to the
identifier of the virtual machine as presented by the central
load balancer.

By studying research on the load balancing of tasks and
resources, it can be concluded that more research has been
conducted on load balancing in heterogeneous environments.
Existing algorithms have some drawbacks in the cloud sample,
and this study attempts to alleviate some of them with solutions
for responding to requests quickly and managing virtual
machines properly.

III. PROPOSED METHOD

In this method, load balancing in cloud computing
environments, inspired by the algorithm that mirrors the food-
finding behavior of honey bees (HBB-LB), is used. This
algorithm not only balances load, but also considers the priority
of tasks removed from virtual machines due to overload. The
techniques of load balancing are effective for reducing the time
needed to answer and service requests. The load balancing of
non-exclusive independent tasks on virtual machines is an
important aspect of task scheduling in cloud computing. The
load on virtual machines must be distributed on balance, so that
the machine is used efficiently.

 In the ABC algorithm, several species of bees act in a
research atmosphere. The bee that is randomly chosen to act to
search is called the scout bee. It determines the location of
sources of food and nectar.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 4, 2018

452 | P a g e

www.ijacsa.thesai.org

A. Scheduling System Model

As in the cloud computing environment, we encounter a
large space with several users and service providers, tasks are
not predictable, and the capacity of each virtual machine is
different. In the proposed method, the cloud is partitioned into
several sectors. When the environment is very large, balancing
the load within the entire system is difficult. In this method, to
balance the load in smaller sectors, the load balancing
algorithm inspired by the behavior of honey bees is used.

The aim of load balancing algorithms is to balance the load
among virtual machines to maximize operating capability. The
proposed algorithm balances tasks on virtual machines as well
as the entire cloud system, so that the waiting time of tasks in
the queue is minimized.

Fig. 1 depicts the proposed method. The user presents tasks
to the cloud system, which contains a data center for
independent tasks. The tasks are presented to the system and,
prior to execution, the processing time of each task is
calculated (or the processing times of tasks are estimated
through mathematical models) and the characteristics of all
tasks are identified. The service provider has a controller and a
state table that records the features of all virtual machines.
Moreover, in the controller sector of the load of each virtual
machine, the system is divided into three general sectors
(overloaded, under-loaded, and balanced sectors). If a virtual
machine loses its load while performing tasks, it can be moved
from one sector to another. Tasks are assigned based on the
magnitude of loads of the virtual machines and processing
times. Moreover, the indices of speed and cost are considered
for the prioritization of the virtual machines. In the following,
all stages of this process are discussed.

Fig. 1. The architecture of tasks.

B. Mechanism of Partitioning the Cloud System

In the cloud model, an infrastructure is considered an IaaS
service that provides users with virtual resources. The cloud is

partitioned into several sectors. A cloud may contain a large
number of nodes in different geographical locations.
Partitioning the cloud leads to better use. Fig. 2 lists details of a
cloud system that has been partitioned into several separate
sectors. It is worth mentioning that each area can be partitioned
into several sectors. Heterogeneous virtual machines have been
used in various areas, and are managed by a central controller.
The methods of management may vary by cloud service
provider.

Fig. 2. Partitioning the cloud into three sectors.

When the environment is large, partitioning based on load
balancing limits the search environment for assigning tasks.
The cloud has a main controller that selects appropriate sectors
for input tasks. The balancer per sector of the cloud selects the
best strategy for load balancing (Xu et al., 2013) [8]. The load
states of all virtual machines per data center are stored in the
central controller, which controller deals with information for
each sector, collects the information of each node, and selects
the best strategy for partitioning virtual machines and assigning
tasks. This information is updated repeatedly. When a task is
entered into the cloud, the first stage involves selecting the
proper sector. To partition the data center, it is necessary to
calculate the load of each virtual machine. The controller
searches sectors of the cloud and investigates the overloaded,
underloaded and balanced states. Therefore, the cloud
environment is partitioned into overloaded, underloaded, and
balanced sectors. The method of calculating load per virtual
machine is explained in Table I. Following partitioning, the
tasks are presented to the underloaded sectors. To prioritize
virtual machines, speed and cost are used. It is worth
mentioning that after each stage of assigning tasks, the load on
the system is updated. In this cloud system, for each sector, a
processor is used to monitor and investigate the load on the
virtual machines. If the magnitude of load on a virtual machine
changes, it is moved to another sector. The values of LVMk,t and
LVMk,t+1 indicate the loads on virtual machines at times t and t +
1, respectively. Load differences in a time interval may show a
change in the load on the virtual machine in overloaded or
balanced sectors. When diffL is zero, there are no load changes
in virtual machines and no changes in the sectors. However, if
it is lower than zero, virtual machines are moved from one
sector to another.

TABLE I. PSEUDO CODE USED TO DETERMINE CHANGES IN LOAD

The pseudo code used to determine changes in load

1) diffL = LVMk,t+1  LVMk,t

2) If (diffL = 0) no change in the magnitude of load

3) Else if (diffL  0) the virtual machine can be moved from one sector to

another.

4) End

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 4, 2018

453 | P a g e

www.ijacsa.thesai.org

In Table II, the parameters used in this study are
introduced.

TABLE II. DEFINITIONS OF THE PARAMETERS IN THE EQUATIONS

Variables Definitions of the Variables

CTmax Maximum completion time of task

CTij Completion time of task i on machine j

Pij Processing time of task Ti by virtual machine VMj

Length Ti Length of task i

Penumj Number of processors in VMj

Pemipsj Million instructions per second of all processors in VMj

Pj Processing time of all tasks in VMj

Cj , C
Processing capacity of VMj and optimal processing
capacity

VMbwj Communication bandwidth capability of VMj

LVMj,t Load of VMj at time t

N(T,t) Number of requests per period

S(VMj,t) Speed of service

L , LVMj
Load on all virtual machines in a data center, load on

VMj

PTj , PT
Processing time of VMj and processing times of all

virtual machines

δ Standard deviation

Posj Priority per node

Speedj Speed of VM

Costj Cost of VM

α Importance of speed index

β Importance of cost index

C. Calculating Processing Time

In HBB-LB, it is hypothesized that VM = VM1, VM2,

VM3… VMm is a collection of m virtual machines with no
links and in parallel, where they must process n tasks. Tasks

are shown as a collection T = T1, T2, T3, … , Tn. Independent
tasks are non-exclusive, and are scheduled on virtual machines.
A collection of virtual machines for processing tasks are an
underloaded collection of virtual machines in the data center.
Makespan is the time taken for task completion, and is shown
in (1) (Babu & Krishna, 2013):

1. MakeSpan = max{CTij|i ϵ T , I = 1,2,…,n and j ϵ VM , j =

1,2,…,m }

The processing time of task i on virtual machine j is Pij, and
is calculated through (2) (Li, Xu, Zhao, Dong & Wang, 2011).
The processing time of all tasks on virtual machine j is Pi, and
is obtained through (3):

2. Pij =

 I = 1, 2, … , n j = 1, 2, … , m

3. Pj = 
n
i=1 Pij I = 1, 2, … , n j = 1, 2, … , m

The processing times of all tasks on a virtual machine must
be smaller than or equal to their completion times. Therefore,
by minimizing CTmax, (4) is obtained:

4. 
n
i=1 Pij  CTmax j = 1, 2, … , m

According to (3) and (4), (5) is obtained as

5. 3 and 4 Pj  CTmax j = 1, 2, … , m

6. CTmax = max
n
i=1 CTi, max

m
j=1 

n
i=1 Pij

D. Calculating Capacity of Virtual Machines

The capacity of a given virtual machine as well as all
virtual machines is calculated through (7) and (8) in
conjunction with the HBB-LB algorithm. The total capacity of
all virtual machines is equal to the capacity of the data center.
Cj is the capacity of virtual machine j and C the capacity of all
virtual machines. Moreover, Penumj, Pemipsj, and VMbwj
respectively indicate the number of processors in virtual
machine, millions of instructions for all VMj and the
bandwidth of VMj.

7. Cj = Penumj  Pemipsj VMbwj

8. C = 
m

j=1 Cj

E. Calculating Load on Virtual Machines

Load includes all tasks assigned to a virtual machine. A
problem in cloud systems that has negative effects on them is
unbalanced loads. Heterogeneous and unequal distributions of
loads among virtual machines of cloud systems can create this
problem. As some processors may be overloaded and others
unemployed, load balancing increases the efficiency of
distributed systems. This happens when nodes with heavy
loads are moved to other nodes for processing. The proposed
algorithms for load balancing are inventive and varied.

The load on a virtual machine can be calculated as the
number of tasks at time t in a queue in virtual machine j divided
by the servicing speed of virtual machine j at time t. The
magnitude of the load on all virtual machines in a data center is
calculated through (10) (Babu & Krishna, 2013) [1]:

9. LVMj,t =

10. L = 
m

j=1 LVMj

The processing time of a virtual machine, the processing
times of all virtual machines, and the standard deviation of load
are calculated through (11), (12), and (13), respectively:

11. PTj =

12. PT =

13. √



 

If δ for a virtual machine is equal or lower than [0–1] (δ 
Ts), the system is balanced. Otherwise, it is unbalanced, and
may or not have extra load. If the magnitude of load in a virtual
machine is greater than the permissible capacity, the virtual
machine is overloaded and load balancing is impossible. When
the load on a system is balanced, tasks are assigned to virtual
machines. Table III shows the pseudo code of the load
balancing algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 4, 2018

454 | P a g e

www.ijacsa.thesai.org

TABLE III. PSEUDOCODE OF LOAD BALANCING ALGORITHM

Pseudocode of load balancing algorithm

1. Input: the set task; the set VM.

2. While there are tasks in the list do

3. for all VMs of a host do

4. The Ci and LVMj,t of every VMs are calculated.

5. The PTi and PT of every VMs are calculated.

6. The of every VMs is calculated.

7. If  Ts Then

8. System is balanced, and Send Task to Partition;

9. The Posj of every VMs is calculated;

10. The Pj and CTi of every tasks are calculated.

11. If Posjmax and CTmax

12. Assign taski to VM

13. Exit

14. If L  maximum capacity

15. Load balancing is not possible

16. Else

17. Trigger load balancing

18. end for

19. end while

F. Calculating Priority of Virtual Machines

Following partitioning, the priority of under loaded virtual
machines is calculated through (14). The priority per virtual
machine is set according to speed and cost. POS, Speed, and
Cost, respectively, indicate the priority per node in the virtual
machine, the speed per node in the virtual machine, and the

cost per node in it. The coefficients  and  indicate the
importance of the speed and cost indices, respectively. As users

assign varying priorities to indices of  and , their values

change in the interval [1, 1].

14. Posj = * Speedj + * Costj

IV. EVALUATION AND RESULTS OF SIMULATION

The accuracy of the proposed method was tested (according
to a CloudSim simulation) and the performance of the HBB-
LBP algorithm assessed in comparison with the HBB-LB,
FCFS, and WRR algorithms. For the simulation, a data center
and four groups of tasks of 10, 20, 30, and 40 were used.
Table IV lists the values of the simulation.

TABLE IV. VALUES OF SIMULATION

Type Parameters Value

Data center

Number of data centers 1

Number of hosts 3

Virtual machine

Number of virtual machines 25

Value of misp in every

processor
250–2000

Bandwidth 10000–1000

Tasks

Number of tasks 10–40

Length of tasks Random

Number of needed processors 1–4

Fig. 3 shows the average time for task completion before
and after load balancing in the HBB-LBP algorithm (the
proposed algorithm) with different numbers of tasks. The x-
axis shows the number of tasks and the y-axis their completion
times in seconds. The completion times of tasks continued to
decrease. If the number of tasks increased, the algorithm
exhibited better performance. Fig. 4 shows a comparison

between the completion times of tasks for HBB-LBP, HBB-
LB, FCFS, and WRR. The x-axis shows the number of tasks
and the y-axis their completion times. According to the results,
the HBB-LBP algorithm was the most efficient. Fig. 5 shows a
comparison between the average times of response of HBB-
LBP, HBB-LB, FCFS, and WRR.

Fig. 3. Completion times of tasks before and after load balancing in the

proposed algorithm.

Fig. 4. Comparison among the completion times of tasks in the algorithms.

Fig. 5. Comparison among average times of response by the algorithms.

In general, the HBB-LBP method reduced the completion
times of tasks and their response times in comparison with the
three other algorithms. According to Table V, it reduces
completion times by 9.02%, 44.08%, and 51.97% compared
with HBB-LB, WRR, and FCFS, respectively.

Moreover, HBB-LBP reduced response time by 13.80%,
44.34%, and 63.94% in comparison with HBB-LB, WRR, and
FCFS, respectively.

TABLE V. INDICES USED TO ASSESS THE PROPOSED ALGORITHM (HBB-
LB) AND THE PERCENTAGE OF IMPROVEMENT

 Algorithms

Evaluations

FCFS WRR HBB-LB

Completion times of
tasks

51.97 44.08 9.02

Response times 63.94 44.34 13.80

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 9, No. 4, 2018

455 | P a g e

www.ijacsa.thesai.org

V. CONCLUSION AND FUTURE RESEARCH

In this study, a method to partition a cloud system and
investigate system load in heterogeneous environments was
proposed. In the proposed model, the cloud is partitioned into
several sectors and a load balancing method is used in the
smaller sectors. This was inspired by the food-finding behavior
of honey bees. This load balancing algorithm can consider each
resource based on its capabilities and accessibility to tasks
service providers, which increases the efficiency of the cloud
system. Moreover, the indices of speed and cost are considered
for the prioritization of virtual machines. Therefore, the
proposed algorithm selects efficient resources for performing
tasks based on the indices of speed and cost for the
prioritization of virtual machines and the amount of load on the
resources, which minimizes the time needed to service all tasks
and balances system load. For future resources, the effect of
fixed cost as well as the time can be evaluated, and a pricing
model for user payments to cloud service providers can be
organized. Moreover, cloud system modeling can be
accomplished through reliable models and a hierarchical
scheduler that considers the reliability of an application. This
kind of load balancing can be expanded for independent tasks
and the algorithm can be improved to include other factors
pertaining to service quality. Moreover, the magnitude of load
within the entire cloud system can be investigated, and
migration can be used to distribute load between under loaded
and overloaded resources.

REFERENCES

[1] D. Babu, P.V. Krishna, Honey bee behavior inspired load balancing of
tasks in cloud computing environments. Applied Soft Computing, 13(5),
2292–2303, 2013.

[2] S. Domanal, G. R. M. Reddy, Load balancing in cloud computing using
modified throttled algorithm. Cloud Computing in Emerging Markets.
Doi:10.1109/CCEM.2013.6684434, 2013.

[3] K. Li, G. Xu, G. Zhao, Y. Dong, D. Wang, Cloud task scheduling based
on load balancing ant colony optimization. Sixth Annual Chinagrid
Conference (pp. 3–9). Liaoning, 2011.

[4] K. Nishant, P. Sharma, V. Krishna, C. Gupta, Load balancing of nodes
in cloud using ant colony optimization. 14th International Conference
on Computer Modeling and Simulation (pp. 3–8). Cambridge, 2012.

[5] H. Ren, Y. Lan, C. Yin, The load balancing algorithm in cloud
computing environment. 2nd International Conference on Computer
Science and Network Technology (pp. 925–928). Changchun, 2012.

[6] G. Soni, M. Kalra, A novel approach for load balancing in cloud data
center. IEEE International Advance Computing Conference (pp. 807–
812). Gurgaon, 2014.

[7] H-S. Wu, C-J. Wang, J-Y. Xie, Terascaler ELB-an algorithm of
prediction-based elastic load balancing resource management in cloud
computing. 27th International Conference on Advanced Information
Networking and Applications Workshops (pp. 649–654). Barcelona,
2013.

[8] G. Xu, J. Pang, X. Fu, A load balancing model based on cloud
partitioning for the public cloud. Tsinghua Science & Technology, 18(1),
34–39, 2013.

[9] K. Q. Yan, S. C. Wang, C. P. Chang, J. S. Lin, A hybrid load balancing
policy underlying grid computing environment. Computer Standards &
Interfaces, 29(2), 161–173, 2007.

[10] M. Effatparvar, M. Dehghan, A. M. Rahmani, A comprehensive survey
of energy-aware routing protocols in wireless body area sensor
networks. Journal of medical systems, 40(9), 201, 2016.

[11] M. Effatparvar, M. S. Garshasbi, A genetic algorithm for static load
balancing in parallel heterogeneous systems. Procedia-Social and
Behavioral Sciences, 129, 358-364, 2014.

[12] S. Molaiy, M. Effatparvar, Scheduling in Grid Systems using Ant
Colony Algorithm. International Journal of Computer Network and
Information Security, 6(2), 19, 2014.

[13] M. Effatparvar, M. Dehghan, A. M. Rahmani, Lifetime maximization in
wireless body area sensor networks. Biomedical Research, 28(22), 2017.

[14] M. Effatparvar, F. Rezanezhad, S. Aghayi, Load balancing and resource
allocation management with Data Envelopment Analysis method for
cloud computing environment. Recent Applications of Data
Envelopment Analysis, 978(1), 92, 2016.

[15] M. Effatparvar, S. S. Madani, Evaluation of Fault Tolerance in Cloud
Computing using Colored Petri Nets. Evaluation, 7(7), 2016.

[16] A. Jalalat, B. Mahdavi, M. Salemi, M. Effatparvar, Comparative Study
of Heuristic Algorithms and Nature-Inspired Algorithms for Scheduling
in Grid Computing

[17] B. Azizpour, M. Effatparvar, M. S. Garshasbi, A New Fuzzy-based Job
Scheduling Algorithm for Cluster Computing. International Journal of
Computer Applications, 77(1), 2013.

[18] M. EffatParvar, A. Bemana, M. Dehghan, Determining a central
controlling processor with fault tolerant method in distributed system. In
Information Technology, 2007. ITNG'07. Fourth International
Conference on (pp. 658-663). IEEE. 2007.

[19] M. S. Garshasbi, M. Effatparvar, High performance scheduling in
parallel heterogeneous multiprocessor systems using evolutionary
algorithms. International Journal of Intelligent Systems and
Applications, 5(11), 89, 2013.

[20] J. S. Ardabili, N. Aghayi, A. Monzali, New efficiency using undesirable
factors of data envelopment analysis. Adv. Modeling & Optimization,
9(2), 249-255, 2007.

[21] N. Aghayi, B. Maleki, Efficiency measurement of DMUs with
undesirable outputs under uncertainty based on the directional distance
function: Application on bank industry. Energy, 112, 376-387, 2016.

[22] N. Aghayi, M. Tavana, M. A. Raayatpanah, Robust efficiency
measurement with common set of weights under varying degrees of
conservatism and data uncertainty. European Journal of Industrial
Engineering, 10(3), 385-405, 2016.

[23] N. Aghayi, Cost efficiency measurement with fuzzy data in DEA.
Journal of Intelligent & Fuzzy Systems, 32(1), 409-420, 2017.

[24] P. Shankar, M. Fazelpour, J. D. Summers, Comparative study of
optimization techniques in sizing mesostructures for use in
NonPneumatic tires. Journal of Computing and Information Science in
Engineering, 15(4), 041009, 2015.

[25] M. Fazelpour, P. Shankar, J. D. Summers, Developing design guidelines
for meso-scaled periodic cellular material structures under shear loading.
In ASME 2016 International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference (pp.
V02BT03A002-V02BT03A002). American Society of Mechanical
Engineers. 2016.

[26] M. Yoder, Z. Satterfield, M. Fazelpour, J. D. Summers, G. Fadel,
Numerical Methods for the design of meso-structures: a comparative
review. In ASME 2015 International Design Engineering Technical
Conferences and Computers and Information in Engineering
Conference (pp. V02BT03A003-V02BT03A003). American Society of
Mechanical Engineers, 2015.

[27] Rostamy-malkhalifeh, M., & Aghayi, N. (2011). Measuring Overall
Profit Efficiency with Fuzzy Data. Journal of Mathematical Extension.

[28] Aghayi, N., & Ghelejbeigi, Z. (2016). Improving Cost Efficiency by
Resource Allocation. Far East Journal of Mathematical Sciences, 99(11),
1633.

[29] Aghayi, N. (2016, January). Revenue Efficiency Measurement with
Undesirable Data in Fuzzy DEA. In Intelligent Systems, Modelling and
Simulation (ISMS), 2016 7th International Conference on (pp. 109-113).

[30] Salehpour, S., & Aghayi, N. (2015). The most revenue efficiency with
price uncertainty. International Journal of Data Envelopment Analysis,
3(1), 575-592.

