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Abstract—Membrane computing is a kind of biocomputing
model. At present, the main research areas of membrane com-
puting are computational models and P system design. With the
expansion of the P system scale, how to rapidly construct the P
system has become a prominent issue. Designing P system based
on P module is a P system design method proposed in recent
years. This method provides information hiding and can build
P system through recursive combination. However, the current
P module design lacks a unified design method and lacks the
standard process of building P system from P module. This paper
studies the structural characteristics of cell-like P systems, and
proposes an improved P module design method and a process
for assembling P systems through P modules. In order to fully
expound the design method of P module, the P system for the
square root of the large number was analyzed and designed. And
the correctness of the P system based on the P module design
method was verified by an instance.
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I. INTRODUCTION

Membrane computing, also known as P system, is a branch
of natural computing [1]. The models of P system are mainly
divided into three types, namely, the cell-like P system [2], the
tissue-like P system [3] and the neural-like P system [4]. They
have been applied to solve the problems such as NP problems
[5]–[8], image processing [9], [10], arithmetic operations [11]–
[14] and so on.

In our previous work, most energy are put to implement the
arithmetic operations in cell-like P systems: Ref. [11] firstly
proposed an arithmetic P systems to implement the arithmetic
operation in 2001; in [12] proposes an algorithm and builds
expression P systems without priority rules for evaluating arith-
metic expression; in [13] designed the P systems for addition,
subtraction and multiplication; in [14] proposes a family of
systems for solving Matrix-Vector Multiplication. Although
we have obtained many excellent research results in the cell-
like P system, the difficulty for constructing the P system
has continued to increase due to the increasingly complex
algorithm. As a result, some experts and scholars began to
propose some new models of modular constructing the P
system. In 2009, Romero-Campero et al. proposed a biology
model for modular combination cells [15] and Serbanuta et al.
proposed K systems embedded in P system which can develop
new extensions of P system [16]. In 2010, Păun et al. proposed
the dp system [17], which contains ideas for modularity.

Based on the above models, the modularized construction
model, the P module [18], is proposed for simplifing the
computing system structure and improving the reusability. At
present, this model has been applied to some areas of research.
In [19] proposed an improved generic version of P modules, an
extensible framework for recursive composition of P systems.
It proposed an solution to solve Byzantine agreement problem
by P module. In [20] presented an improved deterministic
solution for Flow-shop Scheduling problem. In [21] extended
the P module theoretically and proposes the P module to solve
the stereo matching problem in the application. Besides, it
realized the discovering neighbors and Echo Algorithm. In [22]
studied on the problem which aims to find out a point-disjoint
and edge-disjoint path between source point and target point.
All of these literature researches are related to the algorithms
application of the P module. However, due to the lack of a
unified design method, the P system based on the P module
have low design efficiency and high error rate. In order to
improve such problems, this paper designs a well-structured P
module by combining the structural design methods in design
methodology. The correctness of the dynamic execution of the
P system is ensured with a good structure, making the P system
easy to understand, easy to debug, and easy to maintain.

In this paper, the cell-like P system and the P module are
introduced in Section 2. Section 3 improves the P module
and proposes the design and assembly of the P module. With
the method of structural design in design methodology, four
methods for constructing P module are proposed to design
well-structured P system based on P modules in Section 4.
Section 5 gives an instance to show the working mechanism of
P module by using the related definitions and design methods
of the P module. Section 6 summarizes the research work and
presents a deeper level of research in the future.

II. FOUNDATIONS AND RELATED WORKS

A. Cell-like P System

The cell-like P system is a class of P system constructed
by biochemical reactions in abstract biological cells. In the
cell-like P system, the substances in the cells are abstracted
as computational objects and the biochemical reactions within
the cells are abstracted as object evolutionary rules. A cell-like
P system containing five membranes is shown by Fig. 1.

Fig. 1 is a schematic representation of a cell-like P system.
A cell-like P system consists of the membranes (elementary
membrane and combination membrane), the membrane regions
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Fig. 1. The structure of cell-like P system.

surrounded by membranes, the membrane object collection in
the regions and membrane rule collection.Formally, a cell-like
P system (of degree m≥1) can be defined as form [23]: In the
general model, the structure is in the form of nested membrane,
which is not easy to be modularized, componentized and
expanded. The rules in the cell-like P system can lead to high
coupling degree.

Π = (O,µ, ω1, · · · , ωm, R1, · · · , Rm, io) (1)

In the general model, the structure is in the form of nested
membrane, which is not easy to be modularized, componen-
tized and expanded. The rules in the cell-like P system can
lead to high coupling degree.

B. The Related Works

The P module is a model that modularizes the biochemical
reaction of a group of cells and supports information hiding.
Formally, a P module can be defined as form:

Π = (O,K, δ, P ) (2)

1) O is a finite non-empty alphabet of objects;
2) K is a finite set of cells, where each cell, δ ∈ K, has the

form δ = (Q, s0, ω0, R) where,
a) Q is a finite set of states;
b) s0 ∈ Q is the initial state;
c) ω0 ∈ O∗ is the initial multiset of objects;
d) R is a finite ordered set of multiset rewriting rules of

the general form:

sx→α s
′x′(u)βγ ; (3)

where,
(i) s, s′ ∈ Q;

(ii) x, x′ ∈ O∗,u ∈ O∗;
(iii) α is a rewriting operator, α ∈ {min,max}, The

rewriting operator α = min indicates that the
rewriting is applied once, if the rule is applicable;
and α = max indicates that the rewriting is applied
as many times as possible, if the rule is applicable.
When α = max, α can be omitted in the rule.

(iv) β ∈ {↑, ↓, l};
(v) γ ∈ {one, spread, repl};

3) δ is a binary relation on K, i.e. a set of parent-child
structural arcs, representing duplex or simplex commu-
nication channels between cells;

4) P is a subset of K,indicating the port cells, i.e. the only
cells can be connected to other modules.

P module is a modular combination model of cells. It
mainly uses the characteristics of its recursive combination to

realize the hidden functions of internal information and internal
structure, so as to facilitate the construction of a complex P
system.

III. DESIGN AND ASSEMBLY OF THE P MODULE

This section improves the P module with high encap-
sulation, information hiding, modular combination and high
concurrency. Its special external definition, external reference
and assembly mechanism make it highly independent, realize
the reuse of modules and speed up the construction of P
system.

A. P Module Improvement

The P module is a model of cell-like P system, which
abstracts a cell into a P module. It has the characteristics of
module encapsulation and the inheritance of rules and objects.
Each module is independent and several P modules can be
combined into the combination P module by a structured way.
Formally, a P module (of degree m ≥1) can be defined as
form:

Π = (O,K, δ,Q,D↑, D↓, R↑, R↓) (4)

1) O is a finite non-empty alphabet of objects, O=O1∪O2.
For each submodule, they contain the public objects from
the parent module and their own objects.

a) O1 is a subset of O, which represents private objects.
b) O2 is a subset of O, disjoint of O1, which represents

public objects.
2) K is a finite set of P modules.
3) δ is a subset of (K ×K)∪ (K ×R↓)∪ (R↑ ×K), i.e. a

set of parent-child structural arcs, representing duplex or
simplex communication channels, between two existing P
modules or between an existing P modules and an external
reference.

4) Q is a subset of O2, which is the generic synchronizing
object set that P modules finally output.

5) D↑ is a subset of K, representing def↑ definitions, e.g.
def↑Πi represents that the entrance module of this P
module is Πi; D↓ is a subset of K, representing def↓
definitions, e.g. def↓Πi represents that the export module
of this P module is Πi.

6) R↑ is a finite set, disjoint of K, representing ref↑
references, e.g. ref↑ai represents that the entrance arc
of this P module is ai; R↓ is a finite set, disjoint of K,
representing ref↓ references, e.g. ref↑bi represents that
the export arc of this P module is bi.

7) Each cell, σ ∈ K, has the form σ = (L, S, s0, ω0, R).
where,

a) L represents the inheritance rights of the rules; L =
{Γ,∆,Φ}; Γ represents this rule as a public rule, ∆
represents this rule as a protected rule, Φ represents
this rule as a private rule(this can be omitted).

b) S is a finite set of states;
c) s0 ∈ S is the initial state;
d) ω0 ∈ O∗ is the initial multiset of objects;
e) R is a finite ordered set of rules:

lsx→α s
′/x′; (id) (5)

where,
(i) l ∈ L;
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(ii) s, s′ ∈ S;
(iii) x ∈ O∗;
(iv) α is a rewriting operator, α ∈ {min,max}, The

rewriting operator α = min indicates that the
rewriting is applied once, if the rule is applicable;
and α = max indicates that the rewriting is applied
as many times as possible, if the rule is applicable.
When α = max, α can be omitted in the rule.

(v) id is a number identified the sequence of rule
execution. Prior and preference can be given high-
ranking. If the rules in the same state are in the same
priority, id can be omitted in the rule.

In this model, the connection relationship between P mod-
ules is a parent-child relationship, and theirs inheritance can be
reflected by objects, O, and rules, R. Through the inheritance
of the P module, we can organize system structure more
effectively, clarify the relationship between modules, and make
full use of existing modules to achieve more complex and
deeper development.

B. P Module Assembly Mechanism

According to the definition of P module introduced above,
a P system is a P module which is constructed by nested P
modules. The nested P module is expressed by the combination
P module which is constructed by P modules in the same layer.
Given an arbitrary finite set of disjoint P modules, we can
construct a combination P module by instantiating some of
their external references to some of their external definitions,
which implicitly instantiates the relationship of P modules in
the same layer. When the parent P module is executed, the
submodule will inherit the public objects and public rules of
the parent P module to further initialize the internal structure
of the module and start to work. The siblings can be executed
in parallel, this shows the powerful computing power of the
whole system. The combination P module can encapsulate the
details of the interior, users only pay attention to their input
and output.

Considering of a finite family of n P modules,
Ψ = { Πi|i ∈ [1, n] }, where Πi = (Oi,Ki, δi, Qi,
D↑i , D↓i , R↑i , R↓i)(i ∈ [1, n]), the result of a composition
P module depends on one kind of actual instantiation that
the external reference and the definition are matched. The
external reference is matched to external definition by two
partial mappings, ρ↑ : ∪i∈[1,n]R↑i → ∪i∈[1,n]D↑i , ρ↓ :
∪i∈[1,n]R↓i → ∪i∈[1,n]D↓i . A previously uninstantiated arc
(σ, r), where (σ ∈ Ki, r ∈ R↓i|i ∈ [1, n]), is instantiated as
(σ, ρ↓(σi)), and a previously uninstantiated arc (r, σ), where
(σ ∈ Ki, r ∈ R↑i |i ∈ [1, n]), is instantiated as (ρ↑(σi) , σ).

Based on what has been described above, the P mod-
ule family Ψ can be expressed as the form, Π =
(O,K, δ,Q,D↑, D↓, R↑, R↓), when ρ↑, ρ↓ are the partial map-
pings that define the instantiation (as previously introduced),
if:

1) Ψ is cell-disjoint;
2) O = ∪i∈[1,n]Oi;
3) K = ∪i∈[1,n]Ki;
4) δ = { (ρ̃↑(σ)

, ρ̃↓(σ)
)| ∪i∈[1,n] σi } , where ρ̃↑(σ) = σ ∈

Dom(ρ↑)?ρ↑(σ)
: σ, ρ̃↓(σ)

= σ ∈ Dom(ρ↓)?ρ↓(σ)
: σ;

5) Q = ∪i∈[1,n]Qi/ ∪i∈[1,n−1] Qi=Qn;(Qn is the ouput
onjects as the exit of the combination P module)

6) D↑ ⊆ ∪i∈[1,n]D↑i , D↓ ⊆ ∪i∈[1,n]D↓i ;
7) R↑= ∪i∈[1,n]R↑i\Dom(ρ↑),R↓ = ∪i∈[1,n]R↓i\Dom(ρ↓);

As described above, we can know the concrete the con-
struction and assembly mechanism of P modules in P system,
which includes the nested combination principle of the P
module in the same layer and the perfect encapsulation mech-
anism. The construction and assembly mechanism also make a
detailed definition of δ,D,R as a way of communication. The
P modules construction and assembly mechanism facilitates
the design of P system for complex algorithms, where every P
module provides encapsulation and information hiding to other
P modules.

IV. BASIC STRUCTURE OF THE P SYSTEM

The P system is constructed by layer upon layer encap-
sulation using P module. P modules in the same layer are
assembled by the construction and assembly mechanism and
encapsulated into a combination P module. The construction
and assembly methods of a combination P module include
four ways, i.e. the sequence method, the branch method, the
cycle method and the parallel method, which show the four
structures of the P module, respectively.

A. Sequential Method

Since the specific implementation rules of each P module
will be determined by the function to be performed, the
definition of the rules in each P module need to be abstracted
to be a form,which is shown below through the two rules. The
general design definition of a elementary P module perform
a series of calculations on the initial object set, and finally
output the result set. As shown below, here are two rules to
represent this process, r1 represents a series of operations on
the initial object set, which are a series of operations except
the output of the result set, and the evolution from the initial
set of objects x to y is accomplished by multiple rules in
the specific implementation. r2 represents the calculated set of
objects is evolved into the set of public objects required by
the submodule, so that the submodule can inherit from it to
obtain a complete initial set of objects.

r1: Γ/∆/ΦS0x0, . . . , xi0 →min/max S1y0, . . . , yj0

r2: Γ/∆/ΦS1y0, . . . , yj0 →min/max S0z0, . . . , zk0

Fig. 2 illustrates a combined P module through the sequen-
tial modular composition of two elementary P modules.

r1,r2

Π0 Π1

r3,r4

Π2

Fig. 2. The sequential structure based on the P module.

In Π0 < def↓Π0
, ref↓a1

>, using the ruleset following this
paragraph objects αi(i ∈ [1, k0]) can be obtained by inputting
objects, xi(i ∈ [1, i0]).

r1: Γ/∆/Φ S0x0, . . . , xi0 →min/max S1y0, . . . , yj0
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r2: Γ/∆/ΦS1y0, . . . , yj0 →min/max S0α0, . . . , αk0

In Π1 < def↓Π1
, ref↓a2

>following this paragraph, using
the ruleset following this paragraph, objects βi(i ∈ [1, k1]) can
be obtained by inputting objects, αi(i ∈ [1, k0]).

r3: Γ/∆/Φ S0α0, . . . , αk0
→min/max S1y0, . . . , yj1

r4: Γ/∆/ΦS1y0, . . . , yj1 →min/max S0β0, . . . , βk1

The combination P module, Π2 < def↓Π0
, ref↓a2

> ,
contains two P modules, Π0 and Π1, which also appears as an
external def↓ definition, and makes external ref↓ references
to a unspecified P module, a2. There is a definition of Π2

following this paragraph.

Π2 = (O,K, δ,Q,D↑, D↓, R↑, R↓)

where,

1) O = O1 ∪O2

= { x0, . . . , xi0 , y0, . . . , yj0 , x0, . . . , xi1 , y0, . . . , yj1
} ∪ { α0, . . . , αk0

, β0, . . . , βk1
}

= { x0, . . . , xi0 , y0, . . . , yj0 , x0, . . . , xi1 , y0, . . . , yj1 ,
α0, . . . , αk0

, β0, . . . , βk1
}

2) K = { Π0,Π1 }
3) δ = { (Π0, ref↓a1

→ def↓Π1
) }

4) Q = { α0, . . . , αk0
, β0, . . . , βk1

} / { α0, . . . , αk0
} =

{ β0, . . . , βk1
}

5) D↓ = { def↓Π0
} , D↑ = { }

6) R↓= { ref↓a2
},R↑={ }

We can connect Π0 and Π1 by the generic instantiation:
(Π0, ref↓a1

→ def↓Π1
) .

B. Branch Method

Fig. 3 illustrates a combined P module through the branch
modular composition of four P modules.

r1,r2,r3,r4

Π0

Π2

a0

r7,r8
a2 a4

Π4

Π1

r5,r6

a1 a3

Π3

r9,r10
a5

Fig. 3. The branch structure based on the P module.

In Π0 < def↓Π0
, ref↓a5

>, using the ruleset following this
paragraph, there is no material input to determine the object
m (m is a set of objects), if there is a material object, get
αi(i ∈ [1, k0]); otherwise, get βi(i ∈ [1, k0]).

r1: Γ/∆/ΦS0x0, . . . , xi0 ,m→min/max S1y0, . . . , yj0 ; 1

r2: Γ/∆/ΦS0x0, . . . , xi0 ,→min/max S1y0, . . . , yj0 ; 2

r3: Γ/∆/ΦS1y0, . . . , yj0 →min/max S0α0, . . . , αk0

r4: Γ/∆/ΦS1y0, . . . , yj0 →min/max S0β0, . . . , βk0

In Π1 < def↓Π1
, ref↓a3

>, using the ruleset following this
paragraph, objects φi(i ∈ [1, k1]) can be obtained by inputting
objects, αi(i ∈ [1, k0]) .

r5: Γ/∆/ΦS0α0, . . . , αk0
→min/max S1y0, . . . , yj1

r6: Γ/∆/ΦS1y0, . . . , yj1 →min/max S0φ0, . . . , φk1

In Π2 < def↓Π2
, ref↓a4

>, using the ruleset following this
paragraph, objects φi(i ∈ [1, k1]) can be obtained by inputting
objects, βi(i ∈ [1, k0]) .

r7: Γ/∆/ΦS0β0, . . . , βk0
→min/max S1y0, . . . , yj2

r8: Γ/∆/ΦS1y0, . . . , yj2 →min/max S0φ0, . . . , φk1

In Π3 < def↓Π3
, ref↓a5

>, using the ruleset following this
paragraph, objects γi(i ∈ [1, k2]) can be obtained by inputting
objects, φi(i ∈ [1, k1]) .

r7: Γ/∆/ΦS0φ0, . . . , φk1
→min/max S1y0, . . . , yj2

r8: Γ/∆/ΦS1y0, . . . , yj2 →min/max S0γ0, . . . , γk2

The combined P module, Π4 < def↓Π0
, ref↓a5

>, contains
four P modules, Π0, Π1, Π2 and Π3, which also appears as
an external def↓ definition, and makes one external ref↓ ref-
erences to one unspecified P module, a5. There is a definition
of Π4 following this paragraph.

Π4 = (O,K, δ,Q,D↑, D↓, R↑, R↓)

where,

1) O = O1 ∪O2

= { x0, . . . , xi0 , y0, . . . , yj0 ,m, x0, . . . , xi1 , y0,
. . . , yj1 } ∪ { α0, . . . , αk0 , β0, . . . , βk0 , φ0, . . . ,

φk1
, γ0, . . . , γk2

}
= { x0, . . . , xi0 , y0, . . . , yj0 ,m, x0, . . . , xi1 , y0,
. . . , yj1 , α0, . . . , αk0 , β0, . . . , βk0 , φ0, . . . , φk1 ,

γ0, . . . , γk2
}

2) K = { Π0,Π1,Π2,Π3 }
3) δ = { (Π0, ref↓a1

→ def↓Π1
), (Π0, ref↓a2

→
def↓Π2

), (Π1, ref↓a3
→ def↓Π3

), (Π2, ref↓a4
→

def↓Π3
) }

4) Q = { α0, . . . , αk0
, β0, . . . , βk0

, φ0, . . . , φk1
, γ0, . . . ,

γk2
} / { α0, . . . , αk0

, β0, . . . , βk0
, φ0, . . . , φk1

} =
{ γ0, . . . , γk2

}
5) D↓ = { def↓Π0

} , D↑ = { }
6) R↓ = { ref↓a5

} , R↑ = { }

We can connect Π0 and Π1 by the generic instantiation:
(Π0, ref↓a1

→ def↓Π1
), Π0 and Π2 by the generic instan-

tiation: (Π0, ref↓a2
→ def↓Π2

), Π1 and Π3 by the generic
instantiation:(Π1, ref↓a3

→ def↓Π3
) and connect Π2 and Π3

by the generic instantiation: (Π2, ref↓a4
→ def↓Π3

).

C. Cycle Method

Fig. 4 illustrates a combined P module through the cycle
modular composition of two P modules which construct do-
while model.
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r1,r2

Π0 Π1

r3,r4,r5,r6

Π3

Π2

r7,r8

Fig. 4. The cycle structure based on the P module.

In Π0 < def↓Π0
, ref↓a1

>,using the ruleset following this
paragraph, objects αi(i ∈ [1, k0]) can be obtained by inputting
objects, xi(i ∈ [1, i0]) .

r1: Γ/∆/ΦS0x0, . . . , xi0 →min/max S1y0, . . . , yj0

r2: Γ/∆/ΦS1y0, . . . , yj1 →min/max S0α0, . . . , αk0

In Π1 < def↓Π1
, ref↓a2

, ref↓a4
>, there is no material

input to determine the object m (m is a set of objects), if
there is a material object, get βi(i ∈ [1, k1]); otherwise, get
φi(i ∈ [1, k0]).

r3: Γ/∆/ΦS0α0, . . . , αk0
,m→min/max S1y0, . . . , yj1 ; 1

r4: Γ/∆/ΦS0α0, . . . , αk0
,→min/max S1y0, . . . , yj1 ; 2

r5: Γ/∆/ΦS1y0, . . . , yj1 →min/max S0β0, . . . , βk1

r6: Γ/∆/ΦS1y0, . . . , yj1 →min/max S0φ0, . . . , φk1

In Π2 < def↓Π2
, ref↓a3

>, using the ruleset following this
paragraph, objects γi(i ∈ [1, k2]) can be obtained by inputting
objects,βi(i ∈ [1, k1]) .

r7: Γ/∆/ΦS0β0, . . . , βk1
→min/max S1y0, . . . , yj2

r8: Γ/∆/ΦS1y0, . . . , yj2 →min/max S0γ0, . . . , γk2

The combined P module, Π3 < def↓Π0
, ref↓a4

>, contains
three P modules, Π0, Π1 and Π2, which also appears as
an external def↓ definition, and makes two external ref↓
references to one unspecified P modules, a4. There is a
definition of Π3 following this paragraph.

Π3 = (O,K, δ,Q,D↑, D↓, R↑, R↓)

where,

1) O = O1 ∪O2

= { x0, . . . , xi0 ,m, y0, . . . , yj0 , y0, . . . , yj1 , y0, . . . ,
yj2 } ∪ { α0, . . . , αk0 , β0, . . . , βk1 , φ0, . . . , φk1 , γ0,

. . . , γk2
}

= { x0, . . . , xi0 ,m, y0, . . . , yj0 , y0, . . . , yj1 , y0, . . . ,
yj2 , α0, . . . , αk0 , β0, . . . , βk1 , φ0, . . . , φk1 , γ0, . . . ,

γk2
}

2) O =O1 ∪O2={ x0, . . . , xi0 ,m, y0, . . . , yj0 , y0, . . . , yj1 ,
y0, . . . , yj2 }∪{ α0, . . . , αk0 , β0, . . . , βk1 ,φ0, . . . , φk1 ,
γ0, . . . , γk2 }={ x0, . . . , xi0 ,m, y0, . . . , yj0 , y0, . . . , yj1 ,
y0, . . . , yj2 , α0, . . . , αk0 , β0, . . . , βk1 ,φ0, . . . , φk1 ,
γ0, . . . , γk2 }

3) K = { Π0,Π1,Π2 }

4) δ = { (Π0, ref↓a1
→ def↓Π1

), (Π1, ref↓a2
→

def↓Π2
), (Π2, ref↓a3

→ def↓Π0
) }

5) Q = { α0, . . . , αk0
, β0, . . . , βk1

, φ0, . . . , φk1
, γ0, . . . ,

γk2
} / { α0, . . . , αk0

, , β0, . . . , βk1
, φ0, . . . ,φk1

} =
{ γ0, . . . , γk2

}
6) D↓ = { def↓Π0

} , D↑ = { }
7) R↓ = { ref↓a3

, ref↓a4
} , R↑ = { }

We can connect Π0 and Π1 by the generic instantiation:
(Π0, ref↓a1

→ def↓Π1
) and connect Π1 and Π2 by the generic

instantiation: (Π1, ref↓a2
→ def↓Π2

) and connect Π2 and Π0

by the generic instantiation: (Π2, ref↓a3
→ def↓Π0

).

D. Parallel Method

The parallel structure can be seen as a variant of the
branch structure, but the operation rules in this structure are
very different from the branch structure due to the large
number of P modules in parallel computation and its unique
parallelism. Fig. 5 shows the generic parallel structure of
parallel computing modules of degree m(m is a variable).

r1,r2, ,rm+1

Π0

rm+2,rm+3,rm+4

Π1

rm+5,rm+6,rm+7

Π2

rm+8,rm+9,rm+1

0

Π3

r4m-1,r4m,r4m+1

Πm

r4m+2, ,r5m+2,r5m+3

Πm+1

...

Πm+2

Fig. 5. The parallel structure based on the P module.

The parallelism of the parallel structure is embodied in the
1 − m P module. They equally inherit the public object set
from Π0, and Πm+1 inherits the object set of m parallel P
modules.

For the parallel structure, each parallel module first inherits
the same object set form Π0, then uses some of the inheriting
object sets to execute the respective calculation rules, and
finally outputs the result set and remaining inherited objects to
Πm+1. Πm+1 inherits the object set of all parallel P modules,
Πm+1 module needs to process these inheriting objects in
order to run correctly .

Due to the existence of multiple inheritance and the exis-
tence of a special case of 1 pair n and n pair 1, it becomes more
complicated to maintain the consistency of the data. Some
inheriting object set still remain the submodule,because the
parallel execution P modules use only part of the inheriting
object set. In the remaining inherited objects, one is the object
set as the public global variables that need pass to the child
module, and the other is the redundant object set. For the
first case, the submodules of the parallel modules inherits the
object sets of the m P modules and results in a multiple of the

www.ijacsa.thesai.org 269 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 5, 2018

number of object sets. Therefore, it is necessary to divide the
public global variables in the submodule (i.e. the public global
variables/the number of the parallel P modules). In the second
case, since it is useless data, each parallel submodule needs to
destroy the redundant object set (because the redundant object
set does not have a general purpose, so specific problems need
to be specifically designed). To make the above situation clear,
set the public global variable to be ω for the rule design.
The following is the general structure design of the parallel
structure.

In Π0 < def↓Π0
, ref↓a1

, ref↓a2
, ref↓a3

, . . . , ref↓am >,
the original objects include x0, . . . , xi0 and ω(it is the public
global variable), using the ruleset following this paragraph,
objects αi, βi, . . . , φi(i ∈ [1, k0]) can be obtained by inputting
objects, xi(i ∈ [1, i0]) .

r1: Γ/∆/ΦS0x0, . . . , xi0 →min/max S1y0, . . . , yj0

r2: Γ/∆/ΦS1y0, . . . , yj0 →min/max S0α0, . . . , αk0

r3: Γ/∆/ΦS1y0, . . . , yj0 →min/max S0β0, . . . , βk0

. . .

rm+1: Γ/∆/ΦS1y0, . . . , yj0 →min/max S0φ0, . . . , φk0

In Π1 < def↓Π1
, ref↓b1 >, using the ruleset following

this paragraph, objects α′i(i ∈ [1, p0]) can be obtained by
inputting objects,αi(i ∈ [1, k0]). For the remaining objects,
i.e. (β0, . . . , βk0), they need to be removed by the rule named
rm+4 .

rm+2: Γ/∆/ΦS0α0, . . . , αk0
→min/max S1y0, . . . , yj1

rm+3: Γ/∆/ΦS1y0, . . . , yj1 →min/max S0α
′
0, . . . , α

′
p0

rm+4: Γ/∆/ΦS1β0, . . . , βk0 , . . . , φ0, . . . , φk0 →max S0

In Π2 < def↓Π2
, ref↓b2 >, using the ruleset following this

paragraph, objects β′i(i ∈ [1, p0]) can be obtained by inputting
objects,βi(i ∈ [1, k0]) .

rm+5: Γ/∆/ΦS0β0, . . . , βk0
→min/max S1y0, . . . , yj1

rm+6: Γ/∆/ΦS1y0, . . . , yj1 →min/max S0β
′
0, . . . , β

′
p0

rm+7: Γ/∆/ΦS1α0, . . . , αk0 , . . . , φ0, . . . , φk0 →max S0

Due to the uncertainty in the number of the parallel P
modules, we will not list rules of other parallel P modules here.
Their difference is that the use of different initialization object
sets, the output set of different object sets and the remaining
object sets needed to be removed.

Πm+1 < def↓Πm+1
, ref↓i0 > can inherit the same object

set,ω, from n P modules and result in the error of ω, so need
to get the correct object set,ω, by ω=ω/m(rule:r4m+2). Then
perform corresponding calculations on different kinds of object
sets. Its rule set is as listed below.

r4m+2: Γ/∆/ΦS0ω
m →max S1ω;

r4m+3: Γ/∆/ΦS0α
′
0, . . . , α

′
p0
→min/max S1y0, . . . , yj2 ;

r4m+4: Γ/∆/ΦS0β
′
0, . . . , β

′
p0
→min/max S1y0, . . . , yj2 ;

. . .

r5m+2: Γ/∆/ΦS0φ
′
0, . . . , φ

′
p0
→min/max S1y0, . . . , yj2 ;

r5m+3: Γ/∆/ΦS0y0, . . . , yj2 →min/max S1γ0, . . . , γk1
;

The combined P module, Πm+2 < def↓Π0
, ref↓i0 >,

contains three kinds of P modules, i.e. the control P module,
the parallel P modules and the merge P module. The control P
module is Π0, the parallel P module are Πi(i ∈ [1,m]),the
merge P module is Πm+1. There is a definition of Πm+2

following this paragraph.

Πm+2 = (O,K, δ,Q,D↑, D↓, R↑, R↓)

where,

1) O =O1 ∪O2={ x0, . . . , xi0 , y0, . . . , yj0 , y0, . . . , yj1 , y0,
. . . , yj2 }∪{ ω, (α0, . . . , αk0), (β0, . . . , βk1),. . . ,(φ0,
. . . , φk1), (γ0, . . . , γk2), (α′0, . . . , α

′
p0

), (β′0, . . . , β
′
p0

),
. . . , (φ′0, . . . , φ

′
p0

) }={ x0, . . . , xi0 , y0, . . . , yj0 , y0,
. . . , yj1 , y0, . . . , yj2 , (α0, . . . , αk0

), (β0, . . . , βk1
),

. . . ,(φ0, . . . , φk1
), (γ0, . . . , γk2

), (α′0, . . . , α
′
p0

), (β′0,
. . . , β′p0

), . . . , (φ′0, . . . , φ
′
p0

), ω }
2) K = { Πi(i ∈ [1,m]) }
3) δ={ (Π0, ref↓ai → def↓Πi )(i∈[1,m]),(Πi, ref↓b1 →

def↓Πm+1
)(i ∈ [1,m]) }

4) Q = { ω, (α0, . . . , αk0
), (β0, . . . , βk1

),. . . ,(φ0
,. . . ,φk1

),(γ0, . . . , γk2
), (α′0, . . . , α

′
p0

), (β′0, . . . , β
′
p0

),
. . . ,(φ′0 , . . . , φ′p0

) } / { (α0, . . . , αk0
), (β0, . . . , βk1

),
. . . ,(φ0, . . . , φk1), (α′0, . . . , α

′
p0

), (β′0, . . . , β
′
p0

), . . . ,
(φ′0, . . . , φ

′
p0

) } = { ω, γ0, . . . , γk2
}

5) D↓ = { def↓Π0
} , D↑ = { }

6) R↓ = { ref↓i0 } , R↑ = { }

We can connect Π0 and the parallel P modules,Πi(i ∈
[1,m]) by the generic instantiation: (Π0, ref↓ai →
def↓Πi )(i ∈ [1,m]) and connect Πi(i ∈ [1,m]) and Πm+1

by the generic instantiation: (Πi, ref↓b1 → def↓Πm+1
)(i ∈

[1,m]).

V. AN EXAMPLE: P SYSTEM DESIGN BASED ON P
MODULE

Based on the high computational complexity of calculating
the arithmetic square root of a large number, this section
proposes an efficient algorithm to reduce its computational
complexity, and implement the algorithm in the P system by
using the P module and four P module construction methods.

A. Square Root Algorithm of a Large Number

Two algorithms for calculating the square root of a large
number are introduced here. One is a square root estimation
algorithm for estimating the scope of the square root. This
algorithm is illustrated by Table I.

The algorithm is applied to estimate the square root,
including four steps and the time complexity of Sqrte(n) is
about O(d) (d is the number of digits of n).

The other is a square root algorithm through m bisection
calculation algorithm. This algorithm is an improved algorithm
of 2-points, which is illustrated by Table II.

According Table II, the complexity of Mbisection
(b,n,a,m) is about O(logmn) (m is the number of the interval
splited, n is the interval size ).
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TABLE I. ALGORITHM:EstimateSqr(X)

Input: x
Output: the left interval point of estimated square root and the interval size of
estimated square root

Steps:
(1) Circularly dividing 100 with no remainder,then get the high-value of the
inputting number expressed as the numbers, y,and the number of cycles.
(2) Select the square root of the high-value according to the formula, i.e. the
high-value >[81, 64, 49, 36, 25, 16, 9, 4, 1], then the high-value square root
result is [10, 9, 8, 7, 6, 5, 4,3, 2].
(3) Combinate the square root of the high-value and the cycles.
(4) Output: the left interval point of estimated square root and the size of
estimated square root.
End

TABLE II. Mbisection(b, l, x,m)

Input: b, l, x
x :the original number to be squared;
b: the left interval point of

√
x ;

l: the size of the interval of
√
x;

m: the quantity of equidistant intervals
original interval: [b, b+ l]

Output: the square root

Steps:
(1) Splite the interval into m equidistant intervals and obtain m+ 1 copies of
endpoint number in the interval, x0, x1, . . . , xm.
(2) Parallelly calculate f(xi) = x2

i − x(i ∈ [0,m]), then output these key
value pairs (xi, f(xi)) (i ∈ [0,m]).
(3) Filter these key value pairs, if there is the number, f(xi) = 0, then output
xi as the final result; otherwise, output two adjacent numbers, xi, xi+1 when
f(xi) < 0 and f(xi+1) > 0.
(4)If xi+1 − xi >= 2, xi+1 and xi are as a new round of inputting and
enter (1); otherwise, output xi + 1 as the final result.
End

B. Square Root Algorithm of a Large Number based on the
P Module

The previous chapter proposed two algorithms for solving
the square root of a large number, but the computational
efficiency of each algorithm is not optimized. To reduce the
computational complexity, the two algorithms can be combined
to form an efficient algorithm named Bigsplite, which inte-
grates the square root estimation algorithm, EstimateSqr(x),
and the square root algorithm through m bisection calculation
algorithm, Mbisection(b, l, x,m). By using P modules, the
P system, Bigsplite, has high powerful parallel execution
capabilities, high reusability and low coupling.

Provided that input α, the square root algorithm of a
large number based on the P module, Bigsplite(α), is
illuminated by Fig. 6. While Fig. 6 shows that how to
construct the P system by using P modules. In the begin-
ning of the system construction, the initial objects struc-
ture of the elementary modules only contains one object,
c, except for Π1. . . Π9. The objects that corresponds to
Π1. . . Π9 are b4c4q2s, b9c5q3s,b16c7q4s, b25c9q5s, b36c11q6s,
b49c13q7s,b64c15q8s, b81c17q9s, b100c19q10s. The specific rules
of this algorithm in the P system are shown in the appendix.
According to the flow chart and the rule sets, the detailed
implementation process is described in detail below.

1) Firstly, copy α to τ for saving global parameters,α.
Through circularly dividing the data, τ , by 100, the
quotient of the cycle calculation value- δ and the number

IN:α

τ=α;while τ>=100 do{ τ τ/100;θ θ+1;}δ=τ;

 β<√δ<β+γ;(γ=1) 
(where β=1 )

 β<√δ<β+γ;(γ=1) 
(where β=2)

 β<√δ<β+γ;(γ=1) 
(where β=9 )...

β=β*10θ,γ=γ*10θ(γ=1) 

[β,β+γ]divide into m portions on average:φ0,φ1...φm 

(copy ψi=φi;(i [0,m]))

f(φ0)=ψ0*φ0-α;
If f(φ0)==0 γ0=φ0;

Else if(φ0)<0 α0=φ0;
Else if(φ0)>0 β0=φ0;

f(φ1)=ψ1*φ1-α;
If f(φ1)==0 γ1=φ1;

Else if(φ1)<0 α1=φ1;
Else if(φ1)>0 β1=φ1;

f(φm)=ψm*φm-α;
If f(φm)==0 γm=φm;

Else if(φm)<0 αm=φm;
Else if(φm)>0 βm=φm;

γi==0?δ=γi:
(γ=βi+1-αi;β=βi+1;
where  αiβi+1;;)

(i [0,m])
ε=δ

γ>2?(γ=γ;β=β;):δ=β+1;

N

Y

N

Y

OUT

EstimateSqr(α)

Mbisection(β*10θ,1*10θ,α,m)

Π0

Π1 Π2 Π9

Π11

Π16

Π10

...

Π30 Π31 Π30+m

Π14

Π12

Π15

Π13

Fig. 6. The square root algorithm of large number based on the P module.

of cycle calculations-θ are obtained after the cycle ends.
At present, there are public objects in Π0, i.e. the original
objects, α, the highest-segment value of α, δ, and the bits
of
√
α except the highest-bit, θ. Go to the step 2.

2) In Π1, . . . ,Π9, these P modules parallel compute the
square root of the high-segment value, δ, inheriting from
Π0. Through finding a P module of Π1, . . . ,Π9 that
make the value, q, satisfying the arithmetic formula:√
δ < q <

√
δ + 1 and converting q to be β + γ(γ = 1),√

δ can be expressed by β <
√
δ < β + γ(γ = 1). For

other P modules, they need to remove inherited public
objects, α and θ. Finally, there are public objects in
Πi(Πiistheselectedcell), i.e. the original objects, α, the
bits of

√
α except the highest-bit, θ, the left interval point

of
√
δ, β, and the size of

√
δ, γ. Go to step (3). (Parallel

Computing)
3) In Π10, combinate of digits, θ, and the valuation interval

of the square root of high-segment value, [β, β+γ], then
get the valuation range of α, i.e. [β ∗ 10θ, (β + γ) ∗ 10θ]
which is replaced by [β, β + γ](γ = 1). Finally, public
objects have the original objects, α, the left valuation
inteval point, β, and the valuation interval size, γ. Go
to step (4).

4) In Π12, the valuation interval, [β, β + γ](γ = 1),
is divided into m intervals on average, which are
showed as m + 1 endpoints, ϕ0, ϕ1, . . . , ϕm(they are
also ψ0, ψ1, . . . , ψm). Public objects include the original
objects, α, ϕ0, ϕ1, . . . , ϕm and ψ0, ψ1, . . . , ψm. Go to
step (5).

5) In Π30+i(i ∈ [0,m]), they respectively calculate
f(ϕi, ψi) = ϕi ∗ ψi − α by the objects they want
to use, i.e. ϕi, ψi(i =the id of P module−30), and
respectively destroy other objects, i.e. ϕi, ψi(i 6=the id
of cell−30). If f(ϕi, ψi) == 0, producing γi(γi = ϕi);
else if f(ϕi, ψi) < 0, producing αi(αi = ϕi); else if
f(ϕi, ψi) > 0, producing βi(βi = ϕi). There must be
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two kinds of objects for each module, one is one of the
αi, βi, γi(i =the id of cell−30), the second is that each
module has a common global variable, α. Go to step
(6).(Parallel Computing)

6) In Π13, determine whether there is an accurate result from
the results of the calculation, γi, if so, then the square
root value, δ = γi, inherited by Π15 and go to step(7);
otherwise, find the interval of the square root, i.e. [β, β+
γ]=[αi, βi+1]. At present, there is either δ and α or β, γ
and α. Go to step (8).

7) In Π15,output the final result ε(ε = δ).
8) In the cell Π14, determine whether the size of the interval,

i.e. γ, is more than 2, if so, the result, δ = β+ 1 is given
to Π15 and go to step (7); otherwise,pass β, γ, α to Π12

and go to step (4).

The square root algorithm of a large number based
on the P module, Bigsplite(α), can pass through two
phases, EstimateSqr(α) and Mbisection(β, γ, α,m), when
the result interval of the square root is [β, β + γ] by
EstimateSqr(α). The size of the second parameter of the
algorithm named Mbisection is much smaller than the orig-
inal input number, α, so the total number of the recur-
sive computing is decreased, but the time complexity of
Mbisection(β, γ, α,m) is still O(logmn). So the time com-
plexity of the square root algorithm of large number based on
the P module is O(logmn).

C. Structure of P Module for Calculating the Square Root of
a Large Number

Fig. 7 is a P module flow chart illustrating the modular
combination of P modules that calculates the square root of a
large number.
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Fig. 7. A P module flow of a parallel algorithm.

As is shown Fig. 7, the number of P modules in the P
system are (19 + m). The P system can be expressed as
the biggest combination P module Π17 < def↓Π0

, ref↓i9 >.
The entire definition and operation mechanism of the system
is mainly represented by public object sets, rule sets, and
construction and assembly mechanism. The description of the

public object set can not only show the evolutionary direction
and flow of the entire system calculation, but also more
easily incorporate the rule set in the appendix to ensure the
correctness of the rule design of P system. The following is
a simple description of the public and private objects in the
evolution of the rules of each module.

1) In Π0, O1={ τ, b, c } and O2={ α, θ, δ };
2) In the parallel P modules of Π10, O1={ b, c, q, s, e } and

O2={ α, θ, δ, β, γ };
3) In Π11, O1={ θ, c } and O2={ α, β, γ };
4) In Π13, O1={ c, γ,β,di,bi } and O2={ α,ϕi, ψi };(i ∈

[0, n])
5) In the parallel P modules of Π14, O1={ c, v, r,φi, ψi }

and O2={ α, αi, βi, γi };(i ∈ [0, n])
6) In Π15, O1={ αi, βi, γi,c,pi } and O2={α, δ, γ, β };(i ∈

[0, n])
7) In Π16, O1={ c } and O2={ α, δ, γ, β };
8) In Π17, O1={ c, δ } and O2={ α, ε };

As a whole, the biggest P module,Π17 < def↓Π0
, ref↓i9 >,

includes a closely related combination of two functional
combination P modules, Π11<def↓Π0

,ref↓i3> and
Π16<def↓Π12

,ref↓i9>. Π11 implements the algorithm
EstimateSqr(x) and Π19 implements the algorithm
Mbisection(b, x, a,m). These two P modules form a
sequential structure which describes that narrow the computing
scope in the first step and accurately calculate to obtain the
final result in the next step.

The combination P module Π11<def↓Π0
, ref↓i3> mainly

describes a square root estimation algorithm for estimating the
scope of the square root. Π11 is a parallel structure which is
combinated by 11 P modules Πi(i ∈ [0, 10]). Πi(i ∈ [1, 9])
are the core parallel modules.

In the elementary P module Π0 <def↓Π0
, ref↓o1 , ref↓o2 ,

ref↓o3 , ref↓o4 , ref↓o5 , ref↓o6 , ref↓o7 , ref↓o8 , ref↓o9>,
mainly obtain the high-value and the number of digits other
than the high-value by processing the original data in parallel.
The rules in Πi < def↓Πi , ref↓i2 > (i ∈ [1, 9]) are exactly the
same. Π10 < def↓Π10

, ref↓i3 > outputs the estimated square
root result.

The combination P module Π16 < def↓Π12
, ref↓i9 >

mainly describes a square root algorithm through m bi-
section calculation approach. In a whole, Π16 is a cy-
cle structure, do-while. Two ways which include (Π13 →
Π14 → Π15) and (Π13 → Π15) can end the cycle.
(Π13 → Π14 → Π15) is executed when the size of the
interval is not greater than 2. (Π13 → Π15) is executed
when the exact square root value are obtained. If the size
of interval is more than 2, the cycle continue. Π12 <
def↓Π12

, ref↓a0
, ref↓a1

, . . . , ref↓am > splite the interval into
m equidistant intervals and obtain m + 1 copies of endpoint
number in the interval,ϕ0, ϕ1, . . . , ϕm(ψ0, ψ1, . . . , ψm) Also,
Π16 is a parallel structure. Π30+i(i ∈ [0,m]) is the parallel P
modules in the combination P module Π16, which calculate a
formula, f(ϕi, ψi) = ϕi ∗ ψi − α(i ∈ [0,m]).

D. Calculate Instance

We assume that the inputting data is 69399 and the number
of parallel computing P module is 11, namely, m=11. So 69399
copies of objects into the membrane system to evolve.
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1) The membrane structure after the original data, Π0 in-
cludes O2={ α69399 }and O1={ c }. Then obtaining the
set of public objects, O2= { δ6, θ2, α69399 }.

2) The parallel P modules in Π10, namely, Π1, . . . ,Π9,
inherit the public objects from Π0 and start the core
calculation of EstimateSqr(69399). After the parallel
calculation, Π11 inherits β2, γ1, θ2, α69399 from Π10.
Then Π11 gets β200, γ100and α69399 after calculation.

3) Start Mbisection(200, 69399, 100, 11). Π13 inherits the
objects from Π11, so the inputting objects in Π19

are β200, γ100 and α69399. By the rules, Π13 gets
objects, O2={ φ200+i∗10i (i ∈ [0, 10]), ψ200+i∗10

i (i ∈
[0, 10]), α69399 }. Then Π30+i(i ∈ [0, 10]) correspond-
ingly inherit O2 in Π13. Namely, in Π30+i(i ∈
[0, 10]), O2={ φ200+i∗10i (i ∈ [0, 10]), ψ200+i∗10

i (i ∈
[0, 10]), α69399 }.

4) After the first cycle of the algorithm,
Mbisection(200, 69399, 100, 11), Π16 gets α260

6 ,β270
7

and α69399 from Π36 and Π37. Then Π16 gets β260, γ10
and α69399 from Π15.

5) After the second cycle of the algorithm,
Mbisection(260, 69399, 10, 11), Π16 gets α262

1 ,β264
2 and

α69399 from Π31 and Π32. Then Π16 gets β262, γ2 and
α69399 from Π15 and ends, while Π17 inherits δ263 from
Π15(δ263 = β262 + c) and saved as ε263. The objects
ε263 represents the square root of 69399. That means the
final result is the number, 263.

VI. CONCLUSION

In this paper, the design and assembly of the P module is
formed to provide a framework for constructing a P system by
recursive combined P modules, so that the P module combines
the three characteristics of packaging, information hiding and
modular combination. By designing a well-structured P mod-
ule, the correctness of the dynamic execution of the P system
is ensured with a good structure, the efficiency of software
development is improved, and the error rate is reduced.

As the application of this paper, we use the definition and
design method of P module to solve the large number square
root problem. By designing a P system for solving the square
root of a large number, the correctness and high efficiency
of the P system design method based on the P module are
clarified.

The design method in this paper is mainly aimed at the cell-
like P system and further work can apply it to other models
of P systems, such as the tissue-like P system and neural-like
P system.
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APPENDIX: RULESET

1 The rules in Π0
r1: S0α→max S1ατ ;
r2: S1τ

100c→min S2τ
100c; 1

r3: S1τc→min S5τc;2
r4: S2τ

100 →max S3b;
r5: S3τ →max S4;
r6: S3b→min S4bθ;
r7: S4b→min S1τ ;
r8: S5τ →min S0δ;

2 The rules in Π1 to Π9
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r9: S0δb→max S1d;
r10: S1bs→min S2bs; 1
r11: S1s→min S4s; 2
r12: S2bc→min S3e;
r13: S3bs→min S4bs; 1
r14: S3s→min S5s; 2
r15: S4δ →max S0;
r16: S4e→max S0bc; 1
r17: S4d→max S0b; 2
r18: S4α→max S0;
r19: S4θ →max S0;
r20: S5qs→max S0γ; 1
r21: S5q →max S0β; 2
r22: S5e→max S0bc; 2
r23: S5d→max S0b; 2

3 The rules in Π10
r24: S0θc→max S1c
r25: S1β →max S0β

10

r26: S1γ →max S0γ
10;

4 The rules in Π12
r27: S0γ

n →max S1d0d1 . . . dn; 1
r28: S0β →max S1b0b1 . . . bn; 1
r29: S0γc→max S1γc; 2
r30: S1γc→max S2cd0d1 . . . dn; 1
r31: S1c→max S2c; 2
r32: S1γ →max S2; 3
r33: S2di →max S0ϕ

i
iψ
i
i ;

r34: S2bi →max S0ϕiψi;

5 The rules in Π13

r35: S0αm →max S1α; 1
r36: S0γic→min S1cγi; 1
r37: S0c→min S2c; 2
r38: S1γi →max S3δ;
r39: S2αiβi+1 →max S3pi+1βi+1β;
r40: S3βipi →max S3γ; 1
r41: S3pi →max S0; 2
r42: S3αi →max S0; 2
r43: S3βi →max S0; 2

6 The rules in Π14
r44: S0cγ

3 →min S0cγ
3; 1

r45: S0c→min S1c; 2
r46: S1β →max S0δ;
r47: S1c→max S0δc;
r48: S1γ →max S0;

7 The rules in Π15

r49: S0δ →max S0ε;

8 The rules in Π30 to Π30+m
r50: S0ψic→min S1c; 1
r51: S0c→min S2c; 2
r52: S1ϕi →max S0ϕir;
r53: S2αr →max S3v;
r54: S3αv →max S4αv; 1
r55: S3rv →max S5v; 2
r56: S3v →max S6v; 3
r57: S4ϕi →max S7αi;
r58: S5ϕi →max S7βi;
r59: S6ϕi →max S7γi;
r60: S7v →max S0α;
r61: S7r →max S0;
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