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Abstract—This paper discusses experimental results on the
possibility of accurately estimating the position of smart devices
in known indoor environments using agent technology. Discussed
localization approaches are based on WiFi signaling, which can
be considered as an ubiquitous technology in the large majority
of indoor environments. The use of WiFi signaling ensures that no
specific infrastructures nor special on-board sensors are required
to support localization. Localization is performed using range
estimates from the fixed access points of the WiFi network,
which are assumed to have known positions. The performance of
two range-based localization algorithms are discussed. The first,
called Two-Stage Maximum-Likelihood algorithm, is well-known
in the literature, while the second is a recent optimization-based
algorithm that uses particle swarm techniques. Results discussed
in the last part of the paper show that a proper processing of
WiFi-based range estimates allows obtaining accurate position
estimates, especially if the optimization-based algorithm is used.

Keywords—WiFi-based localization; indoor localization; parti-
cle swarm optimization; agent technology

I. INTRODUCTION

In recent years, mobile devices and smart appliances have
assumed a relevant impact on everyday life and their number
has rapidly increased. Such devices can be commonly used in
a variety of contexts, including, e.g., fitness activity and sport,
tourism and outdoor navigation, monitoring of environmental
parameters, social networks and social games. One of the
weaknesses observed in available smart appliances is that
they do not yet offer support for accurate indoor localiza-
tion. While outdoor localization is effectively achieved using
various assisted technologies, such as the Global Positioning
System (GPS), accurate indoor localization is still an open
issue (e.g., [1], [2]). Recently, the use of specific technologies
to support indoor localization has been investigated. Among
such technologies, it is worth recalling Ultra Wide Band
(UWB), which seems to be very promising (e.g., [3], [4]). The
large bandwidth and the high time resolution of UWB signals
reduce the impact of phenomena which typically interfere
with wireless communications in indoor environments (e.g.,
non-line-of-sight propagation, multi-path, and multiple access
interference) [5]. The main drawback of this technology is
that it requires a dedicated infrastructure which is not widely
available in common indoor scenarios, and which is also still
expensive today. In order to overcome such a limitation, we
focus in this paper on indoor localization approaches based
on the use of WiFi technology, which can be easily found in
almost all indoor environments.

In the experimental scenario discussed in this paper, WiFi-

based localization is addressed by means of agent technology.
Presented experimental results are obtained by using an add-
on module for the Java Agent and DEvelopment framework
(JADE) [6]. JADE has been developed during the last 20
years and, in 1998, four of the major manufactures of mobile
appliances of the time started a joint research initiative [7] to
bring agent technology to what we used to call Java-enabled
phones at the time. The results of such an initiative eventually
became the base of JADE for Android [8]. Since then, no-
madic agents have been considered one of the most promising
applications of agent technology and JADE, together with
its companion language JADEL [9]–[11], is a consolidated
tool in this field which has been used for many applications
(e.g., [12]–[14]). The significant opportunities that the synergic
combination of agents and smart appliances offer have already
been investigated, e.g., in the scope of the Agent-based Multi-
User Social Environment (AMUSE) project [15]. AMUSE is
a major evolution of JADE and it consists of an open-source
platform built on top of JADE that addresses specific issues of
online social games, which is an application domain where the
use of agents is particularly promising. AMUSE has already
been fruitfully used to experiment mixed-reality games, in
which the possibility of interacting with the physical world
becomes crucial [16]. In addition, other examples of games
that can be developed using AMUSE include social games
in indoor areas with high concentration of potential users,
like halls of shopping malls, waiting areas of airports and
train stations, interactive museums and exhibits, and covered
markets in historic towns. Such areas typically offer dedicated
WiFi coverage by means of Access Points (APs) spread in
the environment, which can be used to support effective
localization by means of dedicated techniques as discussed
in the following sections. Note that discussed techniques only
requires that the WiFi receiver is active on smart appliances
and they do not necessitate that appliances are connected to
one of the WiFi networks of the area.

The JADE module used to obtain experimental results
discussed in this paper can be used to develop agents capable
of sensing their positions with respect to a fixed reference
frame in known indoor environments [17]. Localization is
performed by properly processing estimates of the distances
between the smart appliance where the agent runs and the
APs of the WiFi network, whose positions are assumed to be
known. In such scenarios, estimated distances among the smart
appliance and APs can be used to feed a localization algorithm
which is in charge of providing the agent with an estimate of
its position. Experimental results discussed in this paper show
that the accuracy of the two discussed localization algorithms
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are comparable. Actually, both can achieve an accuracy in the
order of 1 m, and even better accuracy can be obtained by
properly averaging range estimates. Note that the paper focuses
on presenting two of the localization algorithms available in
the JADE add-on module, and a detailed description of the
architecture of the module is left for a future paper.

This paper is organized as follows. Section II introduces
the problem of localization and discusses relevant related work.
Section III shows how WiFi signaling can be used to obtain
information on the position of smart appliances and introduces
useful notations. Section IV illustrates the two discussed lo-
calization algorithms. Section V introduces metrics to evaluate
the performance of discussed approaches and shows illustrative
experimental results. Section VI concludes the paper.

II. RELEVANT APPROACHES FOR INDOOR LOCALIZATION

Many localization algorithms have been proposed in the
literature to provide location information to nodes of a network
(e.g., [18]). In particular, range-based localization methods
rely on the knowledge of inter-node distances or angle infor-
mation and they can be classified into active and passive [3]. In
active methods, all nodes are equipped with sensors and with
an electronic device which sends information to a positioning
system. Passive localization, instead, is based on the fact that
wireless communications strongly depend on the surrounding
environment. Relying on the scattering caused by small targets
during signal propagation and/or on the variance of a measured
signals, changes in the received signals can be used to detect
and locate targets and for tracking purposes [19].

In this paper, we focus on active range-based algorithms,
which typically involves two steps. First, proper parameters
related to signals traveling between the smart appliance and
some nodes of the network with known positions are estimated.
Such parameters can be the Time of Flight (ToF), the Angle
of Arrival (AoA), or the Received Signal Strength (RSS) [20].
Then, the parameters evaluated in the first step are used to
estimate the position of the smart appliance using a proper
localization algorithm. Concerning the first step, note that
range-estimation techniques based on AoA rely on the mea-
surements of angles between nodes, which are usually taken
by means of antenna arrays that require dedicated hardware.
Moreover, the installation cost of antenna arrays can be high
and the number of signal paths in indoor environments can
be large for the presence of obstacles, which make accurate
angle estimation challenging in practical scenarios. Time-based
range-estimation techniques, instead, rely on measurements of
the ToF of signals traveling between nodes, and, therefore, they
require high time resolution in the processing of considered
signals and they are not particularly well suited when WiFi
technology is used. For the reasons mentioned above, we focus
on localization approaches based on RSS, which is typically
used when performing localization with WiFi signaling. Under
the assumption that the energy of transmitted signals is known,
the availability of a relation between the received power of a
signal traveling between two nodes and the distance between
the nodes can be used to estimate the distance using RSS
measurements at the receiver node. In detail, in order to use
RSS measurements to estimate the distance that separates a
receiving node from a transmitting node, we rely on the Friis
transmission equation, according to which the received power

P (ρ) at distance ρ can be expressed as [5]

P (ρ) = P0 − 10β log10

ρ

ρ0
, (1)

where, P0 is the known power at reference distance ρ0 and
β is a parameter related to the details of the transmission [21].
An estimate of the received power P (ρ) yields the value of
the distance ρ by inverting (1).

In the remaining of this paper, we assume that range esti-
mates are obtained from measurements of the RSS of signals
traveling between nodes using (1). The adopted add-on module
for JADE uses the functionality of the smart appliance where
it is installed to obtain the RSS of signals used by WiFi APs to
support network scanning. Measured RSS is used to estimate
the distances between the smart appliance where the module
is installed, which is normally called Target Node (TN), and
the APs of the network, which are assumed to be in known
and static positions. Each communication between the TN and
one of the AP allows obtaining an estimate of the distance
between them together with other valuable information, such as
the Basic Service Set IDentification (BSSID) of the responding
AP. Assuming that the position of each AP is known, each
mapped BSSID can be associated with the coordinates of the
corresponding AP and, hence, each distance estimate can also
be related to the coordinates of the corresponding AP. The
possibility of associating the position of an AP with each
distance estimate between a TN and that AP is crucial to
support localization, as discussed in the following.

In order to provide agents with information on their current
positions, the add-on module for JADE integrates localization
algorithms that use estimated distances from APs to estimate
the position of the TN and feed it to interested agents. In detail,
once range estimates are acquired, they are used to feed one
of the available localization algorithms, which computes an
estimate of the position of the TN. Finally, interested agents
are informed of the current position of the TN, which is used
as the position of the agents that are host in the smart appliance
where the add-on module is installed. The current version of
the JADE module includes different localization algorithm and,
in this paper, we compare the performance of two of them:

• The Two-Stage Maximum-Likelihood (TSML) algo-
rithm, which is well-known in the literature because
it can attain the Cramer-Rao lower bound, which is a
lower bound for the variance of an estimator [22].

• A recent optimization-based algorithm [23], which
relies on the use of Particle Swarm Optimization
(PSO) to obtain effective localization.

Preliminary results on the accuracy of discussed algorithms
were presented in [24], where only the TSML algorithm was
considered to address a localization scenario different from
the scenario discussed in the following sections. Experimental
results discussed in this paper show that the accuracy of the
two localization algorithms are comparable, and that they can
both achieve an accuracy in the order of 1 m. Such accuracy
can be further improved, especially for the second algorithm,
by using proper processing of estimated distances.
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III. WIFI-BASED RANGE ESTIMATES

In this section, we introduce relevant notation that will
be used to describe the localization scenario and localization
algorithms. Throughout the paper, we denote the number of
available APs as M . Note that the coordinates of APs are
assumed to be known and static, and using a proper coordinate
system, they are denoted as

si = (xi, yi, zi)
ᵀ. (2)

The unknown position of the TN is denoted as

u = (x̄, ȳ, z̄)ᵀ. (3)

For the sake of simplicity, in the following we assume that
there exist a unique TN whose position needs to be estimated,
but it is worth noting that discussed approaches can be used
also with a large number of TN, provided they are all equipped
with the JADE add-on module. Using the introduced notation,
the distance between the TN and the i-th AP is

ρi = ||u− si||,

where ||x|| denotes the Euclidean norm of vector x. The
position of the TN defined in (3) can be found by intersecting
the spheres with radii {ρi}Mi=1 centered in {si}Mi=1, i.e., by
solving the following non-linear system of equations:

(x− x1)2 + (y − y1)2 + (z − z1)2 = ρ21
...

(x− xM )2 + (y − yM )2 + (z − zM )2 = ρ2M .

(4)

In order to guarantee that the system of equations (4) has
a unique solution, the number of available APs needs to be at
least equal to 4.

Unfortunately, when performing localization in realistic
scenarios, the exact values of distances {ρi}Mi=1 between the
TN and APs are unknown. As a matter of fact, their knowledge
together with the system of equations (4) would also imply
that the true TN position u would be known. For this reason,
it is necessary to rely on range estimates acquired by a proper
processing of the RSS of WiFi signals. As soon as range
estimates from the M APs are available, a proper localization
algorithm can use them to estimate the position of the TN. It
is assumed that this acquisition and processing procedure is
iterated L > 1 times, thus leading to L position estimates at
different instants. We denote the estimated distance between
the i−th AP and the TN at the j−th iteration as ρ̂i,j .

Before describing the localization algorithms used to obtain
discussed results, let us make additional comments on range
estimates. Instead of using a single range estimate from each
APs, it is possible to acquire K > 1 range estimates from each
AP and then use the average of such range estimates to derive
an estimate of the TN position. In detail, let us define

ρ̂Ki,j =
1

K

j+K−1∑
h=j

ρ̂i,h (5)

which represent the averaged range estimates from the i-
th AP obtained by averaging ρ̂i,j over K consecutive acqui-
sitions. Averages ρ̂Ki,j can be used instead of single estimates
ρ̂i,j to alleviate problems related to acquisition noise and multi-
path.

From now on, we make an additional assumption which
allows simplifying the localization algorithm, i.e., we assume
that the height z̄ of the considered TN is known. Even
though this may seem a strong assumption, we remark that, in
considered scenarios, users are holding their smart appliances,
i.e., the TNs, in their hands or in their pockets. Hence, even if
the true height is not accurately known, it can be reasonably
approximated to, e.g., z̄ = 1 m. Errors in the order of a few
centimeters on the value of z̄ do not have a strong impact on
the accuracy of discussed algorithms because range estimates
error are typically in the order of 10 cm [25]. Additionally, this
assumption has the advantage of simplifying the localization
algorithm as if the considered scenario was a bidimensional
one, namely, as if the coordinates of the i-th AP were (xi, yi, z̄)
for i ∈ {1, . . . ,M}. In other words, the third coordinate
can be neglected and the mathematical description of the
discussed localization algorithms is simplified. Let us define
the difference between the height z̄ of the TN and the height
zi of the i-th AP as

hi = ||z̄ − zi||. (6)

Given this definition, it is possible to evaluate the pro-
jections of the distances {ρi}Mi=1 between the TN and the i-
th AP on the plane z = z̄ where the TN lies. According to
the Pythagorean theorem, under the assumption that the true
values of distances {ρi}Mi=1 are known, the projections of such
distances can be written as

ri =
√
ρ2i − h2i . (7)

An illustrative geometric representation of the relations
among ρi, hi, and ri is shown in Fig. 1, assuming that the
coordinates of the considered AP, expressed in meters, are
(0, 0, 3) and those of the TN, expressed in meters, are (1, 1, 1).

Under the assumption that that the height z̄ of the TN is
known, the abscissa and the ordinate of the TN can be found
by intersecting the circumferences centered in {(xi, yi)}Mi=1
with radii {ri}Mi=1, i.e., by solving the following non-linear
system of equations:

(x− x1)2 + (y − y1)2 = r21
...

(x− xM )2 + (y − yM )2 = r2M .

(8)

As previously observed, the values of {ρi}Mi=1 are unknown
and, consequently, the values of {ri}Mi=1 are also unknown.
Hence, it is necessary to rely on range estimates obtained
from the RSS of WiFi signals. Let us define the projections of
distances ρ̂i,j from the i−th AP at the j−th iteration on the
plane z = z̄ as

r̂i,j =
√
ρ̂2i,j − h2i . (9)
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Fig. 1. The distance ρ between an AP (blue square) and a TN (red star) is
shown (green line), together with the height h of AP with respect to the TN
(cyan line). The projection r of the distance ρ on the plane on which the TN
lies is also shown (magenta line).

The position estimate of the TN at the j−th iteration will
be denoted as

ûj = (x̂j , ŷj , z̄). (10)

Similarly, from the definition of averaged range estimates
ρ̂Ki,j introduced in (5), it is also possible to define the projec-
tions of the averaged range estimates introduced in (5) on the
plane z = z̄ as

r̂Ki,j =

√(
ρ̂Ki,j
)2 − h2i . (11)

Finally, the position estimates obtained by feeding the
localization algorithm with averaged range estimates {r̂Ki,j}Mi=1
are denoted as

v̂Kj = (x̂Kj , ŷ
K
j , z̄). (12)

We remark that the j-th position estimate v̂Kj relies on the
M averaged range estimates {ρ̂Ki,j}Mi=1, and, therefore, on the
M ·K range estimates {ρ̂i,h}Mi=1 with h ∈ {j, . . . , j+K−1}.
For this reason, the first position estimate v̂K1 can be obtained
only after an initial phase during which K range estimates
from each of the M APs are acquired. Once v̂K1 is evaluated,
the position estimates that follow can be determined as soon as
a new M -tuple of range estimates from the M APs is acquired.
We remark that using the notation introduced for averaged
range estimates it is also possible to consider the case without
range averaging by setting K = 1 in (5).

IV. TWO RELEVANT LOCALIZATION ALGORITHMS

Various range-based localization algorithms have been pro-
posed in the literature (e.g., [26]) and they can all be integrated
with the adopted JADE add-on module. This section describes
the two algorithms used to obtain experimental results shown
in next section, namely the TSML algorithm and the PSO-
based algorithm. The starting point for the considered local-
ization algorithms is (8), where the exact distances {ri}Mi=1
are replaced by their estimates r̂i,j . For the sake of simplicity,
in the descriptions of localization algorithms we neglect the

subscript j, which counts iterations, and we denote as {r̂i}Mi=1
a generic set of range estimates at a given iteration. Using this
notation, the non-linear system of equations (8) is replaced by

(x̂− x1)2 + (ŷ − y1)2 = r̂21
...

(x̂− xM )2 + (ŷ − yM )2 = r̂2M .

(13)

The system of equations (13) shows the equations of
the M circumferences lying on the plane z = z̄, centered
in {(xi, yi)}Mi=1 with radii {r̂i,j}Mi=1. If the radii of such
circumferences were the exact distances {ri}Mi=1, they would
all intersect in the same point, which would correspond to
the exact TN position. Instead, the radii of circumferences
in (13) are range estimates, and they are affected by errors.
Hence, circumferences do not intersect in a unique point and,
therefore, proper localization algorithms are needed. In the
following, we denote the solution of (13) as ũ = (x̂, ŷ).

A. Two-Stage Maximum-Likelihood Algorithm

In order to simplify the description of the algorithm, let us
define the following quantity, related to the solution ũ of (13)

n̂ = x̂2 + ŷ2. (14)

Then, the system of equations (13) can be reformulated in
matrix notation as

G
1
ω̂ = ĥ1, (15)

where

G
1

=

 −2x1 −2y1 1

...
...

...
−2xM −2yM 1



ω̂ =

 x̂

ŷ

n̂

 ĥ1 =


r̂21,j − a21

...
r̂2M,j − a2M


(16)

and
ai =

√
x2i + y2i (17)

We remark that (15) is not a linear system since the
third element of vector ω̂ depends on the first two elements
according to (14). Neglecting this dependence, the solution ω̂
of (15) is determined through a Maximum-Likelihood (ML)
approach as

ω̂ = (Gᵀ
1
W

1
G

1
)−1Gᵀ

1
W

1
ĥ1, (18)

where W
1

is a positive definite matrix [27]. For the sake
of simplicity, in the implementation used to obtain discussed
experimental results, matrix W

1
is equal to the identity matrix.

Once the solution ω̂ of (15) is evaluated, the dependence
of n̂ on x̂ and ŷ can be taken into account by considering the
following system of equations:

G
2
φ̂ = ĥ2, (19)
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where φ̂ = (x̂2, ŷ2)ᵀ and

G
2

=

 1 0

0 1

1 1

 ĥ2 =

 ω̂2
1

ω̂2
2

ω̂3

 . (20)

Let us remark that ω̂j in (20) denotes the j−th component
of ω̂. The solution of the rectangular system (19) can be
determined, using a ML approach, as

φ̂ = (Gᵀ
2
W

2
G

2
)−1Gᵀ

2
W

2
ĥ2, (21)

where W
2

is a positive definite matrix. In the implemen-
tation used to obtain discussed experimental results, matrix
W

2
is set equal to the identity matrix, as done for W

1
.

Given the solution φ̂, the estimated abscissa and ordinate at a
generic iteration of the considered localization algorithm can
be expressed as

ũ = (x̂, ŷ) = U

(√
φ̂1,

√
φ̂2

)ᵀ

, (22)

where U = diag(sign(ω̂)), and φ̂ = (φ̂1, φ̂2). Finally,
reintroducing the subscript j to denote the corresponding
iteration, the estimated position of the TN at the j−th iteration
can be written as

ûj = (x̂j , ŷj , z̄). (23)

The same localization algorithm can be applied also to the
averaged range estimates r̂Ki,j defined in (11). In this case,
the initial system of equations can be obtained from (13)
by substituting range estimates r̂i,j with the averaged range
estimates r̂Ki,j , namely,

(x̂− x1)2 + (ŷ − y1)2 =
(
r̂K1,j
)2

...

(x̂− xM )2 + (ŷ − yM )2 =
(
r̂KM,j

)2
.

(24)

The M equations in (24) represent the M circumferences
lying on the plane z = z̄, centered in {(xi, yi)}Mi=1, with radii
equal to the averaged range estimates {r̂Ki,j}Mi=1. By applying
the TSML algorithm to the system of equations in (24), it is
possible to obtain position estimates evaluated using averaged
distances and, in the following, such position estimates are
denoted as

v̂Kj =
(
x̂Kj , ŷ

K
j , z̄

)
. (25)

B. The PSO-Based Algorithm

Observe that the system of equations (13) can be re-written
in matrix notation as

1 ũᵀũ+A ũ = k̂, (26)

where 1 is the vector with M elements equal to 1, k̂ is a
vector whose i−th element is r̂2i − (x2i + y2i ), and A is the

following M × 2 matrix

A =


−2x1 −2y1
−2x2 −2y2

...
...

−2xM −2yM

 . (27)

Also observe that the solution of the system of equations
(26), and, hence, of the system of equations (13), can be
reinterpreted as the solution of a related optimization problem.
In detail, the solution ũ = (x̂, ŷ) can be found as the solution
of the following minimization problem:

ũ = arg min
u

, F (u) (28)

where the fitness function F (u) is defined as

F (u) = ||k̂ − (1 ûᵀû+A û)||. (29)

In order to solve the minimization problem (28), thus
finding estimates for the abscissa and the ordinate of the
TN, we proposed to use the PSO algorithm [28]. The PSO
algorithm was first introduced in [29] and it considers the set
of potential solutions of an optimization problem as a swarm
of S particles which move through a search space according
to proper rules. In detail, it is assumed that, at every instant,
each particle is associated with a position in the search space
and with a velocity. Positions and velocities of particles are
iteratively updated according to proper rules, which are meant
to move all particles towards the solution of the minimization
problem, namely towards the position which minimizes the
fitness function (29). The rules that are normally adopted to
update positions and velocities are inspired by the rules which
govern the behaviors of birds in swarms.

The use of PSO to support the localization of a TN works
as follows. At initialization, the positions of the particles are
randomly initialized in the search space, which, in our context,
corresponds to the plane z = z̄ where the abscissa and the ordi-
nate of the TN are supposed to be situated. The initial positions
are denoted as x(i)(0), where i ∈ {1, . . . , S} is the index of a
generic particle and S is the number of particles. Similarly, the
velocities of all the particles are randomly initialized and they
are denoted as w(i)(0), where i ∈ {1, . . . , S} is the index of
a generic particle. After this initialization phase, positions and
velocities of all particles are updated at each iteration t > 0 to
simulate interactions among individuals [30]. The position of
the i−th particle at the t−th iteration is denoted as x(i)(t) and
its velocity is denoted as w(i)(t). At each iteration, the velocity
of the i−th particle is updated according to a specific rule
expressed as the sum of three addends. In detail, the velocity
of the i−th particle at the (t+ 1)-th iteration is [31]

w(i)(t+ 1) = ω(t)w(i)(t) + c1R1(t)(y(i)(t)− x(i)(t))
+ c2R2(t)(y(t)− x(i)(t)),

(30)

where the following quantities [32] are used:

• y(t) is the best position globally reached so far;

• y(i)(t) is the best position reached so far by the i-th
particle;
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• ω(t) is called inertial factor;

• c1 is called cognition parameter;

• c2 is called social parameter; and

• R1(t) and R2(t) are independent random variables
uniformly distributed in (0, 1).

The first addend in (30) is related to the velocity of the i−th
particle at previous iteration t, which is weighed according to
the inertial factor ω(t). In the second addend, the cognition
parameter is a positive real parameter and the best position
reached so far by the i−th particle can be expressed as

y(i)(t) = arg min
z∈X(i)

F (z), (31)

where X(i) = {x(i)(0), . . . , x(i)(t)}. Hence, this second
addend is meant to move each particle towards its best position
reached so far. Finally, in the third addend, the social parameter
is a positive real parameter and the best position reached so
far by any particle in the swarm can be expressed as

y(t) = arg min
z∈Y (i)

F (z), (32)

where Y (i) = {y(1)(t), . . . , y(S)(t)}. The third addend is
meant to move each particle towards the global best position,
namely the position which corresponds to the lowest value of
the fitness function among all those reached by any particle in
the swarm [30]. The velocities computed with (30) are used to
update the positions of particles at each iteration. Such updates
are performed by adding the velocities evaluated in (30) to the
previous positions of each particle, namely

x(i)(t+ 1) = x(i)(t) + w(i)(t+ 1). (33)

The PSO algorithm is iterated until a termination condition
is met. One of the possible termination conditions for the PSO
algorithm is the reach of a maximum number of iterations.
Once the execution of the algorithm is terminated, the solution
corresponds to the position of the particle in the global best
position, namely the position of the particle with the lowest
value of the fitness function. This solution correspond to the
estimated abscissa and ordinate of the TN.

The PSO algorithm outlined previously is used to solve the
localization problem formulated in (28) and, hence, to solve
the localization problem described in (13). The same algorithm
can be applied also when the system of equations (24), where
averaged range estimates r̂Ki,j defined in (11) appear, is used.
In this case, (24) can be re-written in matrix notation as

1 ũᵀũ+A ũ = k̂j (34)

where 1 is the vector with M elements equal to 1, k̂j is
a vector whose i−th element is

(
r̂Ki,j
)2 − (x2i + y2i ), and A is

defined in (27). By applying the PSO algorithm to (34), it is
possible to obtain position estimates evaluated using averaged
distances and, in the following, such position estimates are
denoted as

v̂Kj = (x̂Kj , ŷ
K
j , z̄). (35)

Experimental results shown in the remaining of this paper
are obtained with a population of S = 40 particles. The inertial
factor is set to ω(t) = 0.5 and the values of c1 and c2 are
both set to 2, so that the average values of c1R1(t) and of
c2R2(t) correspond to 1. The termination condition for the
PSO algorithm corresponds to the reach of 50 iterations. These
values proved to be effective for localization purposes [33].
Illustrative experimental results about the performance of the
PSO-based algorithm are shown in next section.

V. PERFORMANCE EVALUATION

In the experimental campaign described in this section
we consider three values for K, namely, K = 1 (i.e., no
averaging); K = 10; and K = 100. The performance of
discussed localization approaches is evaluated in terms of the
distances between the true TN position and its estimates. In
order to evaluate the performance of the discussed localization
algorithms, let us define the distance error as

dj = ||ûj − u||. (36)

Observe that, since we assume that the height of the
TN is known, the third component of ûj is equal to the
third component of the vector u which represents the true
TN position. Therefore, (36) represents the projection of the
distance error on the plane z = z̄. The definition of the
distance error (36) allows introducing the maximum value of
the distance errors, which can be denoted as

dmax = max
j∈{1,...,L}

dj . (37)

Let us also introduce the average value of the distance error,
which can be expressed as

davg =
1

L

L∑
j=1

dj . (38)

Finally, the standard deviation of the distance error is

σd =

√√√√ 1

L

L∑
j=1

(dj − davg)2. (39)

Analogous values relative to position estimates v̂Kj ob-
tained using averaged range estimates can be defined. In detail,
let us define

δKj = ||v̂Kj − u|| (40)

which represents the distance error on the plane z = z̄
between the true TN position and its estimate in the j−th
iteration obtained using averaged range estimates over K
consecutive range acquisitions. The definition of δKj allows
computing the maximum value of the distance error as

δKmax = max
j∈{1,...,L}

δKj , (41)

and the average value of the distance error as

δKavg =
1

L

L∑
j=1

δKj . (42)

www.ijacsa.thesai.org 481 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 5, 2018

Finally, the standard deviation of the distance error is

σKδ =

√√√√ 1

L

L∑
j=1

(δKj − δKavg)2. (43)

Observe that the values in (37), (38), and (39) can be
equally defined using the more general notation in (41), (42),
and (43), respectively, for K = 1.

In order to assess the accuracy of the localization algo-
rithms previously described, we performed an experimental
campaign in an illustrative indoor scenario which consists of
a square room whose sides are 4 m long. The considered
scenario is shown in Fig. 2, where M = 3 APs are shown
(blue squares). Observe that M = 3 is the minimum number of
APs which allows the application of described localization al-
gorithms. The coordinates of the APs are denoted as {APi}3i=1
and they are positioned in the room in such a way that, in a
proper coordinate system, they can be expressed, in meters, as

AP1 = (0, 0, 3)ᵀ

AP2 = (0, 4, 3)ᵀ

AP3 = (4, 4, 3)ᵀ.

(44)

In Fig. 2, three different TN positions are also shown (red
stars) and their position in the same coordinate system can be
expressed in meters as

u1 = (1, 1, 1)ᵀ

u2 = (1, 2, 1)ᵀ

u3 = (2, 2, 1)ᵀ.

(45)

Using the described configuration of fixed APs, the three
different TN positions are estimated. Results of such position
estimates are discussed in the remaining of this section, using
both localization algorithms introduced in previous section, on
the basis of the distance error discussed above. Let us remark
that, even if in the considered scenario all APs are placed
at the same height (i.e., 3 m), and all TNs are placed at the
same height (i.e., 1 m), both proposed localization algorithms
are general and they do not require that APs share the same
height. Moreover, different heights for the TNs could also be
considered, provided that they are known, so that the values
of hi defined in (6) can be computed.

In the remaining of this section, relevant comments on the
localization of the three TNs are presented. In all scenarios,
the number of iterations in set equal to L = 100. Hence, the
average value and the standard deviations of distance errors
is based on 100 position estimates. In the following figures
and tables, in order to distinguish between position estimates
obtained using the two algorithms, we add superscript (T ) and
(P ) to denote position estimates derived using the TSML and
the PSO-based algorithm, respectively.

A. First Scenario

We start by considering the TN denoted as TN1 in Fig. 2,
whose coordinates are u1 = (1, 1, 1)T . Since the coordinates
of the APs are also known, the true distances {ρi}3i=1 between
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Fig. 2. The positions of the three considered APs (blue squares) and three
different TN positions (red stars) are shown.

the i-th AP and the TN can be computed. In detail, from (44)
and (45), the values of {ρi}3i=1 can be computed as

ρ1 ' 2.45 m ρ2 ' 3.74 m ρ3 ' 4.69 m.

The projections {ri}3i=1 of the range estimates {ρi}3i=1 on
the plane z = 1 m can be also computed according to the
Pythagorean theorem. Simple algebraic manipulations show
that the values of {ri}3i=1 are

r1 ' 1.41 m r2 ' 3.16 m r3 ' 4.24 m.

In order to apply the discussed algorithms, we acquire
range estimates from each AP to have: 100 position estimates
obtained without range averaging; 100 position estimates ob-
tained by averaging over K = 10 consecutive range esti-
mates; and 100 position estimates obtained by averaging over
K = 100 consecutive range estimates.

Fig. 3 shows the true position of TN1 on the plane z = 1
(red star). In the same figure, the projections of the position
estimates on the plane z = 1 (black circles) obtained without
averaging are also shown, together with the projections of the
position estimates (magenta crosses) obtained by averaging
over 10 consecutive range estimates from each AP, and the
projections of the position estimates (green triangles) obtained
by averaging over 100 consecutive range estimates from each
AP. From Fig. 3 it can be observed that, as expected, the
position estimates are closer to each other as K increases.
This is in agreement with the intuitive idea that averaging
range estimates over large values of K leads, on average,
to more accurate values of r̂Ki,j . The more accurate are the
range estimates used to feed the localization algorithm, the
more accurate are the obtained position estimates. Fig. 4 shows
the Cumulative Distribution Functions (CDFs) of the distance
errors without range averaging (black line), with K = 10
(dashed magenta line), and with K = 100 (dash-dotted green
line). As intuitively expected from Fig. 3, the larger is K, the
steepest is the graph of the CDF.

Fig. 5 shows the true position of TN1 on the plane z = 1
(red star), together with: the projections of position estimates
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Fig. 3. Projections of the position estimates of TN1 in Fig. 2 obtained using
the TSML algorithm on the plane z = 1: (i). without range averaging (black
circles); (ii) with K = 10 (magenta crosses); and (iii) with K = 100 (green
triangles). The true TN position (red star) is also shown.
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Fig. 4. The cumulative distribution function of distance errors from Fig. 3:
(i) without range averaging (black line); (ii) with K = 10 (dashed magenta
line), and (iii) with K = 100 (dash-dotted green line), relative to the position
estimates of TN1 obtained using the TSML algorithm.
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Fig. 5. Projections of the position estimates of TN1 in Fig. 2 obtained using
the PSO algorithm on the plane z = 1: (i). without range averaging (black
circles); (ii) with K = 10 (cyan crosses); and (iii) with K = 100 (yellow
triangles). The true TN position (red star) is also shown.
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Fig. 6. The cumulative distribution function of distance errors from Fig. 5:
(i) without range averaging (black line); (ii) with K = 10 (dashed cyan line),
and (iii) with K = 100 (dash-dotted yellow line), relative to the position
estimates of TN1 obtained using the PSO algorithm.

on the plane z = 1 (black circles) obtained without range
averaging; the projections of position estimates (cyan crosses)
obtained by averaging over 10 consecutive range estimates
from each AP; and the projections of position estimates
(yellow triangles) obtained by averaging 100 consecutive range
estimates from each AP. As observed when using the TSML
algorithm, the position estimates are closer to the TN position
as K increases. Hence, also when considering the PSO-based
algorithm, more accurate range estimates lead to more accurate
position estimates. Fig. 6 shows the CDFs of distance errors
without range averaging (black line), with K = 10 (dashed
cyan line), and with K = 100 (dash-dotted yellow line). As
expected, larger values of K correspond to steeper CDFs.

Table I shows the values of the maximum distances and
of the average distances between the considered TN and its
estimates, and the values of standard deviations of distance

errors for K = 1, K = 10, and K = 100. It can be observed
that when localization is performed using the TSML algorithm,

TABLE I. VALUES OF THE MAXIMUM DISTANCE ERROR (FIRST
ROW), OF THE AVERAGE DISTANCE ERROR (SECOND ROW), AND OF THE

STANDARD DEVIATION OF THE DISTANCE ERROR (THIRD ROW) ARE
SHOWN, FOR DIFFERENT VALUES OF K , RELATIVE TO POSITION

ESTIMATES OF TN1 OBTAINED WITH THE TSML ALGORITHM AND WITH
THE PSO-BASED ALGORITHM, RESPECTIVELY

TN1 TSML PSO

K 1 10 100 1 10 100

δKmax [m] 1.32 0.49 0.27 1.23 0.59 0.34

δKavg [m] 0.38 0.26 0.24 0.49 0.32 0.29

σKδ [m] 0.24 0.09 0.02 0.23 0.10 0.03
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Fig. 7. Projections of the position estimates of TN2 in Fig. 2 obtained using
the TSML algorithm on the plane z = 1: (i) without range averaging (black
circles); (ii) with K = 10 (magenta crosses); and (iii) with K = 100 (green
triangles). The true TN position (red star) is also shown.
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Fig. 8. The cumulative distribution function of distance errors from Fig. 7:
(i) without range averaging (black line); (ii) with K = 10 (dashed magenta
line), and (iii) with K = 100 (dash-dotted green line), relative to the position
estimates of TN2 obtained using the TSML algorithm.

the values of the maximum distance between the considered
TN and its estimates decrease as K increases. In detail, without
range averaging the values of the maximum distance between
the considered TN and its estimates is equal to 1.32 m and
it decreases to 0.49 m when K = 10 and to 0.27 m when
K = 100. Analogous considerations hold when analyzing
results relative to the PSO-based algorithm. In this case, the
value of the maximum distance between the considered TN
and its estimates without range averaging equals 1.23 m, and
it is slightly smaller than that evaluated when considering
the TSML algorithm. The values of the maximum distance
between the considered TN and its estimates are equal to
0.59 m and to 0.34 m when K = 10 and K = 100,
respectively, and they are slightly higher than those obtained
by applying TSML algorithm. Form the fourth row of Table I
it can be observed that also the values of the average distance
between the considered TN and its estimates decrease as K
increases, starting from 0.38 m when no range averaging is
considered to 0.24 m when K = 100 is considered. The
values of the average distance δKavg between the considered
TN and its estimates when using the PSO-based algorithm are
comparable to those obtained when using the TSML algorithm,
and they are equal to 0.49 m, when range averages are not
performed, and to 0.32 m and 0.29 m when K = 10 and
K = 100, respectively. Finally, Table I shows that the values
of the standard deviations of distance errors σKδ also decrease
when K increases. This results was expected also from Fig. 4
and Fig. 6, from which it is evident that increasing K not only
reduces the distances between the position estimates and the
TN, but it also reduces the distances between different position
estimates because it alleviates the influence of acquisition
errors. For the same choice of K, the values of the standard
deviation evaluated using the TSML algorithm and using the
PSO-based algorithm are similar and their order of magnitude
is 0.2 m without range averaging and 0.02 m when K = 100.

B. Second Scenario

We now consider the TN positioned in the point denoted
as TN2 in Fig. 2, whose coordinates are denoted as u2 in (45).
In this case, the true distances {ρi}3i=1 between the i-th AP
and the TN are

ρ1 ' 3 m ρ2 ' 3 m ρ3 ' 4.12 m.

The projections of the range estimates on the plane z = 1 m
can be evaluated, according to the Pythagorean theorem, as

r1 ' 2.23 m r2 ' 2.23 m r3 ' 3.60 m.

In order to estimate the position of TN2, range estimates
from the APs are taken in order to have: 100 position es-
timates obtained without range averaging; 100 position esti-
mates obtained by averaging over K = 10 consecutive range
estimates; and 100 position estimates obtained by averaging
over K = 100 consecutive range estimates.

In Fig. 7, the true position of TN2 on the plane z = 1
(red star) is shown. Fig. 7 also shows the projections of the
position estimates on the plane z = 1 (black circles) obtained
without range averaging. Moreover, the projections of the
position estimates (magenta crosses) obtained by averaging
over 10 consecutive range estimates from each AP, and the
projections of the position estimates (green triangles) obtained
by averaging over 100 consecutive range estimates from each
AP are shown. Fig. 7 shows that the distance among the TN
position and its estimates decreases as K increases. This is
motivated by the fact that large values of K lead to more
precise averaged range estimates, which allow more accurate
position estimates to be derived.

Fig. 8 shows the CDFs of the distance errors without
range averaging (black line), with K = 10 (dashed magenta
line), and with K = 100 (dash-dotted green line). As when
considering TN1, the steepness of the CDF increases as K also
increases.
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Fig. 9. Projections of the position estimates of TN2 in Fig. 2 obtained using
the PSO algorithm on the plane z = 1: (ii) without range averaging (black
circles); (ii) with K = 10 (cyan crosses); and (iii) with K = 100 (yellow
triangles). The true TN position (red star) is also shown.
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Fig. 10. The cumulative distribution function of distance errors from Fig. 9:
(i) without range averaging (black line); (ii) with K = 10 (dashed cyan line),
and (iii) with K = 100 (dash-dotted yellow line), relative to the position
estimates of TN2 obtained using the PSO algorithm.

TABLE II. VALUES OF THE MAXIMUM DISTANCE ERROR (FIRST
ROW), OF THE AVERAGE DISTANCE ERROR (SECOND ROW), AND OF THE

STANDARD DEVIATION OF THE DISTANCE ERROR (THIRD ROW) ARE
SHOWN, FOR DIFFERENT VALUES OF K , RELATIVE TO POSITION

ESTIMATES OF TN2 OBTAINED WITH THE TSML ALGORITHM AND WITH
THE PSO-BASED ALGORITHM, RESPECTIVELY

TN2 TSML PSO

K 1 10 100 1 10 100

δKmax [m] 0.61 0.29 0.19 1.53 0.59 0.27

δKavg [m] 0.28 0.19 0.18 0.54 0.28 0.23

σKδ [m] 0.13 0.05 0.008 0.35 0.10 0.01

Fig. 9 shows the true position of TN2 on the plane
z = 1 (red star), together with, the projections of the position
estimates (black circles) obtained without range averaging, the
projections of the position estimates (cyan crosses) obtained
with K = 10, and the projections of the position estimates
(yellow triangles) obtained with K = 100. As observed when
using the TSML algorithm, the accuracy of the position esti-
mates increases as K increases. Hence, also when considering
the PSO-based algorithm, more accurate range estimates lead
to more accurate position estimates.

Fig. 10 shows the CDFs of the distance errors without range
averaging (black line), with K = 10 (dashed cyan line), with
K = 100 (dash-dotted yellow line). As expected from Fig. 9,
the larger is K, the steepest is the graph of the CDF.

Table II shows the values of the maximum distances and
of the average distances between the considered TN and its
estimates, and the values of the standard deviations of the
distance errors for K = 1, K = 10, and K = 100. As when
considering the first scenario, all such values decrease as the
number of range averages K increases. Table II also shows
that with no range estimate averaging, the maximum distance
and the average distance between the considered TN and its
estimates when using the PSO-based algorithm correspond to
the double of the analogous values obtained with the TSML

algorithm. When K = 10 and K = 100, values obtained
with the TSML algorithm are more similar to each other, even
though the values obtained with the latter are slightly higher
than those obtained with the former. Concerning the standard
deviations of the distance error, it can be observed that, as in
the first scenario, the values corresponding to K = 100 are one
order of magnitude lower than those obtained when K = 1.

C. Third Scenario

Finally, let us now consider the TN positioned in the middle
of the room, denoted as TN3 in Fig. 2, whose coordinates are
denoted as u3 in (45). In this case, the true distances {ρi}3i=1
between the i-th AP and the TN, expressed in meters, are

ρ1 = ρ2 = ρ3 ' 3.46 m.

Since the values of {hi}3i=1 are 2 m, the projections of the
distances on the plane z = 1 m can be computed as

r1 = r2 = r3 ' 2.83 m.

As in previous scenarios, range estimates from each of
the three APs are acquired in order to have: 100 position
estimates obtained without range averaging; 100 position esti-
mates obtained by averaging over K = 10 consecutive range
estimates; and 100 position estimates obtained by averaging
over K = 100 consecutive range estimates.

Fig. 11 shows the projection of the true position of TN3 on
the plane z = 1 (red star). In the same figure, the projections
of the position estimates (black circles) obtained without range
averaging, the projections of the position estimates (magenta
crosses) obtained by averaging over 10 consecutive range
estimates from each AP, and the projections of the position
estimates (cyan triangles) obtained by averaging over 100
consecutive range estimates from each AP, are also shown. As
in the previous cases, Fig. 11 shows that the distance between
position estimates and the TN decreases as K increases.

www.ijacsa.thesai.org 485 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 9, No. 5, 2018

TABLE III. VALUES OF THE MAXIMUM DISTANCE ERROR (FIRST
ROW), OF THE AVERAGE DISTANCE ERROR (SECOND ROW), AND OF THE

STANDARD DEVIATION OF THE DISTANCE ERROR (THIRD ROW) ARE
SHOWN, FOR DIFFERENT VALUES OF K , RELATIVE TO POSITION

ESTIMATES OF TN3 OBTAINED WITH THE TSML ALGORITHM AND WITH
THE PSO-BASED ALGORITHM, RESPECTIVELY

TN3 TSML PSO

K 1 10 100 1 10 100

δKmax [m] 0.64 0.31 0.16 0.88 0.47 0.33

δKavg [m] 0.31 0.18 0.15 0.43 0.34 0.32

σKδ [m] 0.15 0.05 0.006 0.23 0.05 0.004

Fig. 12 shows the CDFs of the distance errors without range
averaging (black line), with K = 10 (dashed magenta line),
and with K = 100 (dash-dotted green line), which is steeper
as K increases.

Fig. 13 shows the true position of TN3 on the plane
z = 1 (red star), together with the projections of the position
estimates on the plane z = 1 (black circles) obtained without
range averaging, the projections of the position estimates (cyan
crosses) obtained by averaging over 10 consecutive range
estimates from each AP, and the projections of the position
estimates (yellow triangles) obtained by averaging over 100
consecutive range estimates from each AP. As in previous
scenarios, the position estimates are closer to each other and
to the true TN position as K increases. Hence, also when
considering the PSO-based algorithm, more accurate range
estimates lead to more accurate position estimates.

Fig. 14 shows the CDFs of the distance errors without range
averaging (black line), with K = 10 (dashed cyan line), and
with K = 100 (dash-dotted yellow line). Once again, the larger
is K, the steepest is the graph of the CDF.

Table III shows the values of the maximum distances and
of the average distances between the considered TN and it
estimates, and the values of the standard deviations of the the
distance errors for K = 1, K = 10, and K = 100.

As when considering previous scenarios, all such values
decrease as the number of range averages K increases. More-
over, for the same choice of K values obtained with the
TSML algorithm are of the same order of magnitude than
those obtained with the PSO-based algorithm, even though the
values obtained with the latter are slightly higher than those
obtained with the former. Concerning the standard deviations
of the distance error, it can be observed that, as in previous
scenarios, the values corresponding to K = 100 are one order
of magnitude lower than those obtained when K = 1. It is
worth observing that, according to results shown in Tables I,
II and III, the performance of both algorithms are similar in
all scenarios.

VI. CONCLUSION

This paper presented an experimental evaluation of two
approaches to indoor localization which both use ordinary
WiFi signaling with no dedicated localization infrastructure.
In both discussed approaches, agents acquire range estimates
from the APs of the WiFi infrastructure, and they use such

estimates to obtain real-time information on the position of
the smart appliances which hosts them.

The results obtained in the presented experimental cam-
paign are meant to give a quantitative assessment on the
performance of WiFi-based indoor localization, and they show
that the level of accuracy of WiFi-based localization can be in-
creased by a proper pre-processing of acquired range estimates.
Obtained results show that agents can reach a localization
accuracy of less than 1 m, thus making the proposed approach
adequate for many application scenarios. In particular, such
an accuracy is sufficient to support social games in large
environments like shopping malls, waiting areas of airports
and train stations, and covered markets in historical areas of
towns. It is worth noting that presented results are valid under
the assumption that the smart appliance does not move, or that
it moves slowly with respect to range acquisition rate. Such
an assumption does not necessarily hold for social games, and
further investigation on dynamic scenarios is in progress.
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using the TSML algorithm on the plane z = 1: (ii) without range averaging
(black circles); (ii) with K = 10 (magenta crosses); and (iii) with K = 100
(green triangles). The true TN position (red star) is also shown.
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(i) without range averaging (black line); (ii) with K = 10 (dashed magenta
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